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Abstract

There has been an increased interest in data
generation approaches to grammatical error
correction (GEC) using pseudo data. How-
ever, these approaches suffer from several is-
sues that make them inconvenient for real-
world deployment including a demand for
large amounts of training data. On the other
hand, some errors based on grammatical rules
may not necessarily require a large amount of
data if GEC models can realize grammatical
generalization. This study explores to what
extent GEC models generalize grammatical
knowledge required for correcting errors. We
introduce an analysis method using synthetic
and real GEC datasets with controlled vocabu-
laries to evaluate whether models can general-
ize to unseen errors. We found that a current
standard Transformer-based GEC model fails
to realize grammatical generalization even in
simple settings with limited vocabulary and
syntax, suggesting that it lacks the generaliza-
tion ability required to correct errors from pro-
vided training examples.

1 Introduction

Grammatical Error Correction (GEC) is the task
of automatically correcting grammatical errors in
a text. GEC’s mainstream approach is to con-
sider the task as machine translation (MT) from
an ungrammatical text to a grammatical text due
to their structural similarity (Brockett et al., 2006;
Junczys-Dowmunt et al., 2018). Therefore, many
neural encoder-decoder models (EncDec), which
are common in MT, have been proposed for GEC,
and Transformer-based models have become stan-
dard (Grundkiewicz and Junczys-Dowmunt, 2018;
Zhao et al., 2019; Kaneko et al., 2020). More
recently, there has been an increased interest in
data generation approaches to GEC using pseudo
data, i.e., improving performance by increasing the

Train: 

Test 1:
(Known Setting)

Every polite cow  *smile / smiles awkwardly
Test 2:
(Unknown Setting)

Every white fox *run / runs quickly

Every dog *run / runs quickly

That slimy duck smiles / smiles awkwardly

Some slimy cows smile / smile dramatically

Figure 1: Overview of our proposed method for evalu-
ating the generalization capability of GEC models. In
the Known setting, the model must correct previously
seen patterns. In the Unknown setting, the model is
presented with an unseen pattern but with familiar vo-
cabulary. We found significantly lower performance in
the unknown setting, indicating that the model failed to
generalize its grammatical knowledge.

amount of training data using pseudo data with-
out making any modifications to the model archi-
tecture (Grundkiewicz et al., 2019; Kiyono et al.,
2019).

However, these approaches suffer from several
issues that make them inconvenient for real-world
deployment, including a demand for large amounts
of training data. For example, Kiyono et al. (2019)
reported that it was necessary to add about 60 mil-
lion samples of pseudo-data to improve a standard
measure of GEC, F0.5, by only two points. If GEC
models can realize grammatical generalization, as
humans do not need to memorize individual error
correction patterns (target terms and its correc-
tions) as long as they have learned grammatical
rules, some errors based on grammatical rules (e.g.,
subject-verb agreement errors) do not necessarily
require large amounts of data.

In this study, we explore to what extent GEC
models are able to generalize their grammatical
knowledge to correct unseen error correction pat-
terns but with familiar vocabulary. We propose
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Error Type Synthetic data Real data

VERB:SVA Every white dog *run/runs quickly My mother and father *is/are really an affectionate couple
VERB:FORM Some white dogs *running/ran quickly I am interested in *work/working with you
WO *White every/Every white dog ran quickly I’ve never seen it *before like this/like this before
MORPH Some white dogs ran *quick/quickly We have a good *relation/relationship , she is my main friend
NOUN:NUM Every *dogs/dog ran You know that I love action *film/films like this

Table 1: Examples of automatically constructed synthetic and real data.

an analysis method using both synthetic and real
datasets, each with controlled vocabularies, to eval-
uate whether models can generalize to unseen er-
rors (Figure 1). Experimental results demonstrate
that a current standard Transformer-based GEC
model does not sufficiently generalize its grammat-
ical knowledge even in simple settings with limited
vocabulary and syntax.

2 Related Work

Recent studies of probing the syntactic abilities of
neural language models have examined whether
the models can detect correctness in syntacti-
cally challenging tasks such as subject-verb agree-
ment (Linzen et al., 2016; Gulordava et al., 2018;
Marvin and Linzen, 2018). In contrast, our study
focuses on EncDec-based GEC models that not
only require a generalized ability to detect errors,
but also the ability to correct them using informa-
tion from language modeling and error correction
patterns.

In addition, previous studies of probing language
models (Gulordava et al., 2018; Marvin and Linzen,
2018, i.a.) often only used synthetic datasets to test
models with controlled vocabulary and grammar.
Since GEC models are created to correct data “in
the wild”, we also use real data in our evaluation
and compare performance between data types.

3 Proposed Method

Figure 1 shows an overview of the proposed
method. To evaluate the generalization capabil-
ity of GEC models, we compare the performance
when correcting previously seen error correction
patterns (Known setting) to correcting unseen pat-
terns of the same error type (Unknown setting).
Here, an error correction pattern is a pair of terms
consisting of a target term (the term with an error
that the GEC system needs to correct) and its cor-
rection. For example, in Figure 1, “*run/runs” is an
error correction pattern that appears in “Every dog
*run/runs quickly” and “Every white fox *run/runs

quickly”. The contexts are different, but both exam-
ples need “run” to be corrected to “runs”. Here, in
the known setting, GEC models must correct other
occurrences of “run” into “runs” as seen during
training, while in the unknown setting, it must also
correct unseen error correction patterns such as
“*smile/smiles” that are not appeared in the training
data. If a model’s performance significantly drops
in the unknown setting, it indicates a lack of ability
to generalize its grammatical knowledge.

We use two types of GEC data: synthetic data
and real data (Table 1). The synthetic data is a
fully generated dataset using a set of context-free
grammar (CFG) rules and the real data is created
by processing existing GEC data. The purpose of
the evaluation using synthetic data is to system-
atically analyze to what extent the current model
achieves the grammatical knowledge generaliza-
tion required for correcting errors at the architec-
tural level to build the setting with complete control
over vocabulary. While the synthetic dataset offers
a fully-controlled environment for precise evalua-
tion, its samples are not representative of data that
GEC models are expected to be used for. To create
a more “natural” testing environment for compari-
son, we loosened the strict vocabulary requirement,
which is difficult to fulfill with highly varied real
data, and recreated the evaluation setup by restruc-
turing existing GEC data. Note that, due to its
softer control, this setting should only be taken as
a supplementary comparison for additional insight.

In this study, we investigate standard five error
types defined by Bryant et al. (2017), which are
errors based on grammatical rules: subject-verb
agreement errors (VERB:SVA), verb forms errors
(VERB:FORM), word order errors (WO), morpho-
logical errors (MORPH), and noun number errors
(NOUN:NUM). We created each version of the
data as follows.

Synthetic data We provide a vocabulary-
controlled dataset using CFG inspired by the data
generation process in (Yanaka et al., 2020). More
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Dataset VERB:SVA VERB:FORM WO MORPH NOUN:NUM

Synthetic data
Known 99.61 99.17 99.09 98.44 97.47
Unknown 46.05 56.93 84.00 29.35 65.55
∆ -53.56 -42.24 -15.09 -69.09 -31.92

Real data
Known 87.84 86.36 74.89 87.77 83.75
Unknown 6.28 6.28 9.25 3.83 12.49
∆ -81.56 -80.08 -65.64 -83.94 -71.26

Table 2: Generalization performance for unseen errors. Each number represents an F0.5 score.

specifically, we design two kinds of generation
rules for each of the five error types to be ana-
lyzed, one generating grammatical sentences and
the other ungrammatical ones1. For example, for
VERB:SVA, the rule S → NPpl VPsg can gen-
erate ungrammatical sentences containing “*dogs
smiles”, and S → NPsg VPsg can generate gram-
matical sentences containing “dog smiles”. To pro-
duce natural sentences, we selected 15 lexical items
for nouns, intransitive verbs, transitive verbs, ad-
jectives, and adverbs, respectively. We can adjust
the data size by changing the number of sentences
generated by the CFG. In this paper, we automat-
ically constructed 50,000 sentence pairs for each
error type.

Real data To provide real data, we first perform
an automatic annotation of error type labels and er-
ror correction patterns on an existing learner dataset
using ERRANT (Bryant et al., 2017) 2. Here, we
used approximately 2 million sentence pairs as the
learner dataset, which is a combination of training
and development data distributed by the BEA-2019
Shared Task3. Then, we split the data while pre-
serving error types and error correction patterns so
that there is one error correction pattern per sen-
tence. The unknown setting can be constructed
by sorting the entire dataset based on the retained
error correction patterns and classifying those with
duplicates into training data and those without du-
plicates into test data. We constructed the known
setting by sampling a small amount of data from
training data as test data such that the same error
correction patterns are included in both training and
test sets. Using the above procedure, we obtained
25,889 sentence pairs for VERB:SVA, 41,592 sen-
tence pairs for VERB:FORM, 18,779 sentence
pairs for WO, 26,345 sentence pairs for MORPH,

1Appendix A provides some CFG rules and lexical entries.
2https://github.com/chrisjbryant/

errant
3https://www.cl.cam.ac.uk/research/nl/

bea2019st/

and 68,002 sentence pairs for NOUN:NUM. Com-
pared to the synthetic data, real data has a wide
variety of vocabulary and syntax ranging from sim-
ple to complex.

4 Experiments

4.1 Experimental Settings

We evaluated the grammatical generalization ca-
pability of a vanilla Transformer-based EncDec
model. Specifically, we used the fairseq
toolkit (Ott et al., 2019) implementation of the
“Transformer (big)” setting (Vaswani et al., 2017)4,
and used the F0.5 score calculated by ERRANT
as the evaluation metric. We do not evaluate
current state-of-the-art (SOTA) systems for the
following two reasons. First, the top system in
BEA2019 (Grundkiewicz et al., 2019) and the cur-
rent SOTA systems (Omelianchuk et al., 2020;
Kaneko et al., 2020) use pre-trained models such
as pre-trained Masked LMs or use pseudo-data
during pre-training. A key point of our study is
controlling for seen/unseen patterns. This becomes
difficult with pre-trained models since we cannot
know whether a particular pattern is seen during
pre-training. Second, we believe that evaluating a
standard model’s architecture, which is commonly
used at the core of rapidly evolving SOTA sys-
tems, allows for a more accurate analysis by elim-
inating factors that make analysis more complex,
and a more general analysis since our findings can
be transferred to most current models, including
SOTA systems.

4.2 Results

Table 2 shows the evaluation results. The evalua-
tion using the synthetic data shows that the model’s
correction performance drops significantly in the
unknown setting compared to the known setting, ex-
cept for WO. One reason for the relatively high gen-

4See Appendix B and C for details of the datasets and
hyperparameters we used, respectively.

https://github.com/chrisjbryant/errant
https://github.com/chrisjbryant/errant
https://www.cl.cam.ac.uk/research/nl/bea 2019st/
https://www.cl.cam.ac.uk/research/nl/bea 2019st/


4557

0

20

40

60

80

100

VERB:SVA VERB:FORM WO MORPH NOUN:NUM

F
0.
5

Correction
(known)

Detection
(unknown)

Correction
(unknown)

Figure 2: Comparison of detection and correction per-
formance.

eralization ability of WO for unseen errors could
be its relative simplicity. Namely, WO can be cor-
rected just by identifying the word’s position (Ta-
ble 1). In contrast, other errors need to be corrected
while recognizing differences in the surface form
of words and dependencies between specific words,
which increases the complexity of the correction
task.

On the other hand, evaluation using real data
show a significant performance drop on all errors,
including WO, in the unknown setting, suggesting
that generalization is more difficult in more prac-
tical settings where the vocabulary and syntax are
diverse.

5 Analysis

Detection vs. Correction To analyze whether
the model failed to generalize due to an inability
to detect errors or an inability to predict the cor-
rect word, we compare the error detection and cor-
rection performance in the unknown setting. The
detection performance is measured by evaluating
whether the GEC model makes any edit in the error
location. We evaluated both the detection and the
correction performance using ERRANT. Figure 2
shows the evaluation result using synthetic data.
The result shows the model successfully detected
all error types, suggesting that the model can gener-
alize its grammatical knowledge at least enough to
detect errors, but not enough to predict the correct
word.

We can also consider the generalization perfor-
mance reported in Table 2 as a kind of ablation
study: distinguishing, for each error type, how
much the language modeling information and the
error correction pattern information contribute to
improving its correction performance, respectively.
We can assume a model can learn accurate language
model information in the unknown setting, but not
the error correction patterns. Therefore, we can see
that WO, which has a lower drop in correction per-

noiseless noisy

VERB:SVA 9.95 5.78
VERB:FORM 12.33 5.47
WO 7.89 9.35
MORPH 6.32 3.90
NOUN:NUM 24.16 12.49

Table 3: Effect of the complexity of errors in a sentence.
Each number represents an F0.5 score.
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Figure 3: Relationship between sentence length and
performance.

formance in the unknown setting compared to the
others, can be corrected with language modeling
information alone. This result is consistent with
the report (Futrell and Levy, 2019) that language
models are robust to word order.

Complexity in real data To better understand
the relationship between complexity and perfor-
mance, we observed the effect of two contribut-
ing factors: error complexity and sentence length.
Specifically, we compared the performance when
the target error is the only error in the sentence
(noiseless), and when the sentence contains other
errors besides the target error (noisy). Table 3
shows the effect of the complexity of errors in a
sentence. The results show that the performance
of WO is constant with and without noise, while
the other errors are affected by noise. Also, we
analyzed the relationship between sentence length
and performance (Figure 3) and confirmed that the
difficulty of corrections on WO does not depend
on the sentence length. These results suggest that
the reason why the drop in correction performance
of WO was relatively low compared to the others,
even with real data, is due to its robustness to the
complexity of input sentences.

Can a few error correction patterns improve
model performance? We have found that the
current model is vulnerable to unseen errors, but
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#seen patterns 0 1 2

Precision 43.31 47.16 57.65
Recall 47.92 52.52 63.70
F0.5 44.16 48.14 58.77

Table 4: Performance change when we expose the
model to a few error correction patterns.

how does its performance change if we expose the
model to a few error correction patterns? Table 4
shows the performance change when a few error
corretion patterns are added to the training data for
the pattern “*smile/smiles” in VERB:SVA. As test
data, we used the test data used in Section 4, ex-
cluding sentence pairs other than the target pattern.
From the results, we can see that adding even just
one or two samples to the training data can sig-
nificantly improve the model’s performance. This
suggests that when preparing training data for GEC,
it is important to sample even one or two seen pat-
terns for each word to improve the performance.

6 Conclusion

This study explored to what extent GEC models
generalize grammatical knowledge required for cor-
recting errors. We introduce an analysis method
using synthetic and real GEC datasets with con-
trolled vocabularies to evaluate whether models
can generalize to unseen errors. We found that the
current standard Transformer-based GEC model
can generalize error detection to some extent in a
simple synthetic setting, while it cannot general-
ize correction to a greater extent in both synthetic
and real settings, suggesting that it lacks the gen-
eralization ability required to correct errors from
provided training examples. Therefore, methods to
incorporate grammatical knowledge as rules into
the current models can be expected to be necessary
to implement a lightweight GEC model requiring
less training data, which we plan to investigate in
our future work.
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A CFG rules used to construct synthetic data

Generation rules
S → NP VP
S-SVA → NPsg VPpl | NPpl VPsg

VP → IV | IV ADV | TV NP
VP-FORM → IVing | IVing ADV | TVing NP
VP-MORPH → IV ADJ

NP → Q N | Q ADJ N
NP-WO → ADJ Q N
NP-NUM → Qsg Npl | Qpl Nsg | Qsg ADJ Npl | Qpl ADJ Nsg

Lexical items
Q → {a, every, no, some, many}
N → {dog, rabbit, cat, bear, tiger}
IV → {run, walk, come, dance, leave}
TV → {kicked, hit, cleaned, touched, accepted}
ADJ → {white, gray, big, small, large, old}
ADV → {quickly, slowly, gracefully, seriously, happily}

Table 5: Examples of CFG rules used for synthetic data construction. The generation rules with errors for each
error type are shown by VP-error type for instance.

B Details of the datasets used in the experiments

VERB:SVA VERB:FORM WO MORPH NOUN:NUM

Known 50,000 / 2,000 / 18,562 50,000 / 2,000 / 10,125 50,000 / 2,000 / 8,438 50,000 / 2,000 / 10,125 50,000 / 2,000 / 8,438
Unknown 50,000 / 2,000 / 13,749 50,000 / 2,000 / 7,500 50,000 / 2,000 / 6,250 50,000 / 2,000 / 7,500 50,000 / 2,000 / 6,250

Table 6: Details of the data split in the synthetic data setting (training/development/test).

VERB:SVA VERB:FORM WO MORPH NOUN:NUM

Known 23,889 / 2,000 / 2,000 39,592 / 2,000 / 2,000 16,779 / 2,000 / 2,000 24,345 / 2,000 / 2,000 66,002 / 2,000 / 2,000
Unknown 23,889 / 2,000 / 633 34905 / 2,000 / 2000 16,779 / 2,000 / 9,199 24,345 / 2,000 / 5227 66,002 / 2,000 / 3,111

Table 7: Details of the data split in the real data setting (training/development/test).
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C Hyper-parameter settings

Configurations Values

Model Architecture Transformer (Vaswani et al., 2017)
Optimizer Adam (Kingma and Ba, 2015)
Learning Rate Schedule Same as described in Section 5.3 of (Vaswani et al., 2017)
Number of Epochs 30 for synthetic data and 150 for real data
Dropout 0.3
Stopping Criterion Train model for 30 epochs (synthetic data) and 150 epochs (real

data).
Gradient Clipping 1.0
Loss Function Label smoothed cross entropy (Szegedy et al., 2016)
Beam Search Beam size 5 with length normalization

Table 8: Detailed hyper-parameters used for the base GEC model.


