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Abstract

Pre-trained language models (PTLMs) ac-
quire domain-independent linguistic knowl-
edge through pre-training with massive textual
resources. Additional pre-training is effective
in adapting PTLMs to domains that are not
well covered by the pre-training corpora. Here,
we focus on the static word embeddings of
PTLMs for domain adaptation to teach PTLMs
domain-specific meanings of words. We pro-
pose a novel fine-tuning process: task-adaptive
pre-training with word embedding regulariza-
tion (TAPTER). TAPTER runs additional pre-
training by making the static word embeddings
of a PTLM close to the word embeddings
obtained in the target domain with fastText.
TAPTER requires no additional corpus except
for the training data of the downstream task.
We confirmed that TAPTER improves the per-
formance of the standard fine-tuning and the
task-adaptive pre-training on BioASQ (ques-
tion answering in the biomedical domain) and
on SQuAD (the Wikipedia domain) when their
pre-training corpora were not dominated by in-
domain data.

1 Introduction

Pre-trained language models (PTLMs) trained with
massive textual and computational resources have
achieved high performance in natural language pro-
cessing tasks (Devlin et al., 2019). Additional pre-
training often is used to tackle domain discrep-
ancies between the downstream task and the pre-
training corpora. Additional pre-training with a
large corpus in the domain of the downstream task,
such as BioBERT (Lee et al., 2020), improves the
performance on the task (Alsentzer et al., 2019;
Beltagy et al., 2019; Chalkidis et al., 2020). How-
ever, this approach requires large corpora in the tar-
get domain and entails a high computational cost.

Gururangan et al. (2020) proposed task-adaptive
pre-training (TAPT), which is additional pre-

training using only the training data of the down-
stream task. TAPT can be regarded as a new fine-
tuning process in which the standard fine-tuning is
preceded by low-cost additional pre-training.

In this study, we focus on the static word em-
beddings of PTLMs (i.e., non-contextualized 0-th
layer representations) for domain adaptation. Our
method is designed to teach PTLMs the domain-
specific meanings of the words as static word em-
beddings. We are motivated by the observation
that the middle BERT layers capture the syntac-
tic information (Hewitt and Manning, 2019; Jawa-
har et al., 2019; Liu et al., 2019a). We consider
that we can adapt the models without harming
the domain-independent linguistic knowledge con-
tained in higher layers by learning the static word
embeddings directly.

We propose a novel fine-tuning process called
task-adaptive pre-training with word embedding
regularization (TAPTER). First, TAPTER obtains
word embeddings in the target domain by adapt-
ing a pre-trained fastText model (Bojanowski et al.,
2017) to the target domain using the training data of
the downstream task. Next, TAPTER runs the task-
adaptive pre-training by making the static word
embeddings of the PTLM close to the word em-
beddings obtained with the fastText model. Finally,
TAPTER runs the standard fine-tuning process.

We found that TAPTER achieves higher scores
than the standard fine-tuning and TAPT on ques-
tion answering tasks in the biomedical domain,
BioASQ (Tsatsaronis et al., 2015), and Wikipedia
domain, SQuAD1.1 (Rajpurkar et al., 2016). Our
key findings are: (i) Word embedding regulariza-
tion in task-adaptive pre-training enhances domain
adaptation when the initial pre-training corpora do
not contain a high proportion of in-domain data.
(ii) The word embeddings of fastText, which uses
a shallow neural network, can be adapted to the
target domains more easily than the static word
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embeddings of PTLMs.

2 Preliminaries

2.1 Pre-trained Language Models

We focus on the static word embeddings of PTLMs.
Let VLM be the vocabulary. We input a token se-
quence X ∈ V l

LM to the model, where l is the
length of the sequence. The embedding layer of
the model has a word embedding matrix E ∈
RVLM×dLM as trainable parameters, where dLM is
the embedding dimension. The word embedding
of the i-th token is Exi .

The vocabulary of PTLMs consists of subword
units; for example, 30K WordPiece tokens (Wu
et al., 2016) are used in BERT (Devlin et al., 2019)
and 50K byte-level BPE tokens (Sennrich et al.,
2016) are used in RoBERTa (Liu et al., 2019b).

2.2 fastText

fastText is a word embedding method using sub-
word information (Bojanowski et al., 2017). The
skipgram model (Mikolov et al., 2013) of fast-
Text learns word embeddings by predicting the
surrounding words xj (j ∈ Ci) from a word xi,
where Ci is the set of the indices within a given
window size. Specifically at position i, we use
the surrounding words as positive examples and
randomly sample negative words Ni from the vo-
cabulary VFT. The loss function is

∑
i

∑
j∈Ci

log(1 + e−s(xi,xj)) +
∑
x∈Ni

log(1 + es(xi,x))

 .

That is, the model learns to score higher for positive
examples and lower for negative examples.

fastText uses subword information to model the
score function s. Let Sv be the set of substrings of
the word v ∈ VFT. The score of the input word xi
and the output word xj is

s(xi, xj) =
∑

w∈Sxi

W>in,wWout,xj .

Here, Win ∈ RN×dFT consists of the word em-
beddings of the input layer and Wout ∈ RVFT×dFT

consists of the word embeddings of the output layer.
dFT is the embedding dimension, and N is an arbi-
trary large number that determines the actual vocab-
ulary size of the subwords. In the implementation
of fastText, the model does not restrict the vocabu-
lary size by hashing a subword w into an index less

than N . The model has limits on the minimum and
maximum lengths of subwords.

At inference time, the embedding of a word w is∑
w∈Sv

Win,w. Bojanowski et al. (2017) reported
that fastText learns word similarity with less train-
ing data than other methods do by utilizing the
subword information.

2.3 Related Work
Static word embeddings in PTLMs have attracted
attention in the areas of domain adaptation and
cross-lingual transfer learning. Artetxe et al.
(2020) proposed to replace word embeddings in the
PTLMs trained in the source or target languages.
Poerner et al. (2020) proposed a vocabulary ex-
pansion using Word2Vec (Mikolov et al., 2013)
trained in the target domain for domain adaptation
on a CPU. However, our preliminary experiments
showed that simple replacement or vocabulary ex-
pansion harms performance in our setting because
of the limited amount of data. Unlike the previous
studies, the proposed method requires no additional
corpus by incorporating regularization of the word
embeddings in the additional pre-training frame-
work with the training data of the downstream task.

3 Proposed Method

The proposed method consists of three stages.

Additional Training of fastText First, we train
a fastText model using the training data of the
downstream task, where the model is initialized
with publicly available fastText embeddings1.

Our method introduces the embeddings of the
PTLM vocabulary inferred by using the fastText
model F ∈ RVLM×dFT as the word embeddings in
the target domain. Unlike other word embedding
methods such as GloVe (Pennington et al., 2014),
fastText retains subword information. Therefore,
we can obtain the embeddings of the PTLM vocab-
ulary containing subword units2. The additional
training of fastText runs much faster than the addi-
tional training of the PTLMs. Note that TAPTER
does not make any changes to the original vocabu-
lary of the PTLMs.

Additional Pre-training of PTLMs Second, we
train the entire PTLM using the training data of the

1https://fasttext.cc/
2We cannot obtain the embeddings of subwords shorter

than the minimum length configured in fastText. The proposed
method ignores such subwords in the additional training of
the PTLMs.

https://fasttext.cc/
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Training Evaluation Corpus Size
SQuAD1.1 87,599 10,570 2.62M
BioASQ5 4,950 150 1.38M

Table 1: Statistics of the datasets. Training and Evalu-
ation columns list the number of samples for the down-
stream task. Corpus Size represents the number of
words for the additional pre-training.

downstream task. We input a token sequence X ∈
V l
LM to the model. We train the model with the

loss function of language modeling LLM(X) with
l2-norm regularization on the difference between
the word embeddings. That is, the loss function is

LLM(X) +
1

|R(X)|
∑

xi∈R(X)

‖f(Exi
)− Fxi

‖22, (1)

where R(X) is the set of the target tokens of the
regularization. The target tokens R(X) exclude
stop words and subwords shorter than the minimum
length configured in fastText.

The function f maps a dLM-dimensional embed-
ding to a dFT-dimensional embedding:

f(z) = LN(Wfz + bf ).

LN denotes layer normalization (Ba et al., 2016).
Wf ∈ RdFT×dLM , bf ∈ RdFT are trainable parame-
ters. The loss function of Eq. (1) is designed to al-
leviate the catastrophic forgetting problem with the
first term and to adapt the word embeddings to the
target domain with the second term. Miceli Barone
et al. (2017); März et al. (2019) proposed l2-norm
regularization for domain adaptation, but they did
not incorporate it in the additional pre-training
framework.

Fine-Tuning Finally, we run the standard fine-
tuning process (Devlin et al., 2019) without any
regularization.

4 Evaluation

4.1 Dataset

We evaluated the proposed method on two question
answering datasets. Table 1 shows the statistics.
The experimental setup is shown in Appendix A.

SQuAD SQuAD1.1 is a task to answer a ques-
tion with information from a textual source (Ra-
jpurkar et al., 2016). The dataset provides pairs of
a question and a related passage from Wikipedia
as the textual source. The input of the model is a

token sequence that is a concatenation of the ques-
tion and the passage. The ground-truth answer is
a span in the passage. The output of the model
consists of the indices of the answer start and end
positions. The indices are calculated from the two-
dimensional linear layer on top of the PTLM. The
official evaluation metrics are exact matching (EM)
and partial matching (F1).

BioASQ BioASQ5 is a question answering
dataset in the biomedical domain (Tsatsaronis et al.,
2015). Following Lee et al. (2020), we used the fac-
toid questions pre-processed into SQuAD format.
We used three official evaluation metrics. Strict
accuracy (SACC) is the rate at which the top-1
prediction is correct. Lenient accuracy (LACC) is
the rate at which the top-5 predictions include the
ground-truth answer. Mean reciprocal rank (MRR)
is the average of the reciprocal of the rank of the
ground-truth answer. We trained the models with
ten random seeds and report the average perfor-
mance. In the fine-tuning stage, as in Wiese et al.
(2017), we first trained the model with SQuAD and
then trained it with BioASQ.

4.2 Compared Models

We used three PTLMs, BERT-base-cased (De-
vlin et al., 2019), BioBERT (Lee et al., 2020),
and RoBERTa-base (Liu et al., 2019b). BERT-
base-cased was pre-trained with English Wikipedia
(2.5B words) and BookCorpus (800M words) (Zhu
et al., 2015). BioBERT was initialized with BERT-
base-cased and pre-trained with PubMed abstracts
and PMC articles (18B words). RoBERTa-base was
pre-trained with 160GB corpora including news
and Web articles as well as Wikipedia and Book-
Corpus (used to train BERT). We compared three
fine-tuning methods: standard fine-tuning, TAPT,
and TAPTER.

4.3 Results and Discussion

Is TAPTER effective at adaptation to the
biomedical domain? Table 2 shows the results
in BioASQ. We evaluated the performance of the
domain adaptation with BERT-base-cased because
the model does not use a biomedical corpus in the
original pre-training.

TAPTER improved BERT’s performance by
3.05/0.27/2.01 points (SACC/LACC/MRR) over
the simple fine-tuning. As well, TAPTER sta-
tistically significantly outperformed TAPT in the
SACC (top-1 accuracy) and MRR metrics. We
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SACC LACC MRR
BERT-base-cased 37.88 54.00 43.87
+TAPT 39.47 54.27 44.69
+TAPTER 40.93** 54.27 45.88**
BioBERT 43.53 59.67 49.81
+TAPT 45.67 57.87 50.46
+TAPTER 44.60 58.33 50.02

Table 2: Performance on the development set of
BioASQ5. Shown are the results of a paired t-test
on the ten runs between TAPTER and TAPT (** :
p < .01).

EM F1
BERT-base-cased 79.12 87.55
+TAPT 78.42 87.12
+TAPTER 78.68 87.19
RoBERTa-base 82.76 90.40
+TAPT 83.01 90.45
+TAPTER 83.55 90.86

Table 3: Performance on the development set of
SQuAD1.1.

consider that the regularization of the word embed-
dings improves the adaptation of the PTLM.

Appendix B shows the word embeddings of the
models with principal component analysis. The
scatter plots show that the word embeddings of
BERT-base-cased and TAPT resemble each other,
though TAPTER and BioBERT have dissimilar
word embeddings distributions to that of BERT-
base-cased. This indicates that the additional pre-
training of language modeling alone does not adapt
the static word embeddings to the biomedical do-
main unlike TAPTER.

Is additional pre-training effective with the
model pre-trained in the target domain? The
additional pre-training from BioBERT did not im-
prove the overall performance, although some of
the scores slightly increased. There was no signif-
icant difference between TAPTER and TAPT in
each metric (p < .05). We consider that BioBERT
has already learned the knowledge in the biomedi-
cal domain because it was pre-trained with a mas-
sive biomedical text. Therefore, the additional pre-
training had little effect on performance.

Is TAPTER effective in the general domain?
Table 3 shows the results for SQuAD. In the ex-
periments with BERT neither of the additional pre-

Figure 1: Learning curve. The left axis shows the first
term in the loss. The right side shows the second term.

training methods improved performance. On the
other hand, in the experiments with RoBERTa,
TAPTER improved performance by 0.79/0.46
points (EM/F1). This was the best performance
among the compared models on SQuAD.

We consider that TAPTER and TAPT improve
performance when the corpora of the original pre-
training were not dominated by in-domain data. A
large part of the pre-training corpora of BERT is
Wikipedia. Therefore, the additional pre-training
was not effective. However, the pre-training cor-
pora of RoBERTa cover broader topics. Although
the corpora include Wikipedia, the additional pre-
training can adapt the model to the Wikipedia do-
main.

It is known that the performance of PTLMs tends
to improve as the amount of pre-training corpora in-
creases (Baevski et al., 2019; Lan et al., 2019). Our
results show that TAPTER can improve the perfor-
mance of PTLMs that were pre-trained with very
large corpora even if the domain of the downstream
task is included in the pre-training corpora.

How well does TAPTER learn the language
modeling and the word embeddings? Figure 1
shows the learning curve of the additional pre-
training in BioASQ from BERT. We can see that
the second term in Eq. (1) representing the word
embeddings decreased more sharply than the first
term in Eq. (1) representing the language modeling.
Since the BERT model is huge and complicated,
we must learn the model slowly with a small learn-
ing rate over a large number of steps. However,
the regularization term decreases quickly without
corrupting the model. This is one of the advantages
of TAPTER in low-resource settings.

In addition, the decrease in the first term on the
development data stopped on the way. However,
the word embeddings were trained with less dis-
crepancy between the training and development
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data. We consider that the training data of BioASQ
is too small to represent the distribution of the text
in the biomedical domain. Since MLM takes a
document-level sequence X as input, the search
space of the true distribution Pr(X) is huge, and
MLM is a very difficult task to train with limited
training data. On the other hand, the regulariza-
tion term depends on the word-level distribution
Pr(xi). Therefore, the model can decrease the
regularization term on the evaluation data even in
low-resource settings without overfitting.

5 Conclusion

We proposed a new fine-tuning process including
additional pre-training with word embedding regu-
larization. TAPTER learns the meanings of words
in the target domain by making the static word
embeddings of the PTLM close to the word embed-
dings obtained in the target domain with fastText.
TAPTER improves the performance of BERT in
the biomedical domain. Moreover, it improves the
performance of RoBERTa even in the Wikipedia
domain although the original pre-training corpora
of RoBERTa contain Wikipedia.

Many PTLMs with more parameters and trained
with more data have been published (Raffel et al.,
2020; Shoeybi et al., 2019). We believe that
TAPTER is an important method to teach such
largely pre-trained language models knowledge in
the target domain.
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Pre-Training Fine-Tuning
batch size 256 128

epochs 100 5 / 2 / 10
max seq. length 512 384

max query length – 64
learning rate 5e-5

warmup proportion 0.06
weight decay 0.01

Table 4: Hyperparameters for the PTLMs. The num-
bers separated by slashes represent SQuAD / the first
stage of BioASQ / the second stage of BioASQ.

SQuAD BioASQ
min count 5 2

epochs 5 10
dim 300

Table 5: Hyperparameters for fastText. We used the
default values for the hyperparameters not listed.

B Visualization of Word Embeddings

Here, we show the word embeddings of the mod-
els with principal component analysis. Figures 2,
3, 4, and 5 are scatter plots of the word embed-
dings of BERT-base-cased, the model additionally
pre-trained with TAPT, the model additionally pre-
trained with TAPER, and BioBERT.

The figures show that the word embeddings of
BERT-base-cased and TAPT resemble each other.
The average distance between the embeddings of
BERT-base-cased and TAPT among all words is
0.0576, although the distance between the em-
beddings of BERT-base-cased and TAPTER is
0.172. Therefore, the additional pre-training of
language modeling alone does not adapt the static
word embeddings to the biomedical domain unlike
TAPTER. TAPTER and BioBERT have dissimilar
word embedding distributions to that of BERT-base-
cased.
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Figure 2: Word embeddings of BERT-base-cased Figure 3: Word embeddings of model additionally pre-
trained with TAPT

Figure 4: Word embeddings of model additionally pre-
trained with TAPTER Figure 5: Word embeddings of BioBERT


