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Abstract

Semantic roles are a key component of linguis-
tic predicate-argument structure, but develop-
ing ontologies of these roles requires signifi-
cant expertise and manual effort. Methods ex-
ist for automatically inducing semantic roles
using syntactic representations, but syntax can
also be difficult to define, annotate, and pre-
dict. We show it is possible to automatically
induce semantic roles from QA-SRL, a scal-
able and ontology-free semantic annotation
scheme that uses question-answer pairs to rep-
resent predicate-argument structure. By asso-
ciating arguments with distributions over QA-
SRL questions and clustering them in a mix-
ture model, our method outperforms all previ-
ous models as well as a new state-of-the-art
baseline over gold syntax. We show that our
method works because QA-SRL acts as sur-
rogate syntax, capturing non-overt arguments
and syntactic alternations, which are central
motivators for the use of semantic role label-
ing systems.1

1 Introduction

Semantic role labeling (SRL) requires extracting
propositional predicate-argument structure from
language, i.e., who is doing what to whom. Ap-
plications of SRL include information extraction
(Christensen et al., 2011), machine reading (Wang
et al., 2015), and model analysis (Tenney et al.,
2019; Kuznetsov and Gurevych, 2020), and seman-
tic roles form the backbone of many more general
meaning representations (Banarescu et al., 2013;
Abend and Rappoport, 2013).

The primary challenge, and promise, for SRL
systems is to distill syntactically variable surface
structures into semantic predicate-argument struc-
tures from an ontology (Palmer et al., 2005; Baker

1Code, models, and a web interface to explore
the results are available at https://github.com/
julianmichael/qasrl-roles.

Labels Questions

A1 (98%) What is given? .30
What does something give something? .21
What does something give? .20
What is something given? .11

A0 (98%) What gives something? .44
What gives something something? .27
What gives something to something? .08

A2 (94%) What is given something? .28
What does something give something to? .18
What does something give something? .14
What is given? .09
What is something given to? .07

TMP (46%), When does something give something? .20
ADV (22%), How does something give something? .09
MNR (12%) When is something given? .09

When is something given something? .09

PNC (30%), Why does something give something? .18
ADV (22%), Why does something give up something? .07
TMP (14%) Why is something given something? .07

Table 1: Roles for give produced by our final model.
Core arguments are captured almost perfectly, exhibit-
ing both passive and dative alternations.

et al., 1998). However, ontologies and their as-
sociated training data require time and expertise
to annotate and do not readily generalize to new
domains, limiting their broad-coverage applicabil-
ity. Prior work towards mitigating this problem
includes unsupervised induction of semantic roles
from syntactic representations (Lang and Lapata,
2010). However, the need for formal syntactic
supervision retains some of the annotation and gen-
eralization difficulties of supervised SRL, and it
has proven difficult to do much better than a simple
syntactic baseline (Lang and Lapata, 2011). An
alternative is to use an ontology-free annotation
scheme like QA-SRL (He et al., 2015), which repre-
sents roles with natural language questions. While
QA-SRL can be annotated at large scale (FitzGer-
ald et al., 2018), many different QA-SRL questions
may correspond to the same role, making it more

https://github.com/julianmichael/qasrl-roles
https://github.com/julianmichael/qasrl-roles
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The plane was diverting around weather formations over the Java Sea when
contact with air traffic control (ATC) in Jakarta was lost.

wh aux subj verb obj prep obj2 ? Answer

What was being diverted around ? weather formations
What was diverting ? The plane
What was being diverted ? The plane
What was lost ? contact with air traffic control

Where was something lost ? over the Java Sea

Table 2: Example QA-SRL question-answer pairs from the development set of the QA-SRL Bank 2.0 (FitzGerald
et al., 2018). Questions may be represented in a verb-agnostic way by recording the form of the verb in the verb
slot (e.g., stem, past participle). Note that the syntax used in questions may differ from the syntax in the source
sentence, for example in the above questions using diverted in its passive form.

difficult to use in downstream tasks.
We show how to overcome this difficulty, by

automatically inducing an ontology of semantic
roles corresponding to clusters of QA-SRL ques-
tions (see Table 1 for an example clustering). We
use a model to predict a distribution over QA-SRL
questions associated with each argument in a cor-
pus, and cluster them to maximize likelihood under
a simple model we call a Hard Unigram Mixture.
Our model can be effectively optimized both by
EM and greedy methods, which affords the benefits
of tunable hierarchical clustering without sacrific-
ing scalability (Section 3).

Experiments in semantic role induction (Sec-
tion 4) show that our method outperforms all pre-
vious methods in the literature, as well as a new
state-of-the-art baseline over gold syntax. This
is despite requiring no formal syntactic supervi-
sion or theory, where the formalism used by pre-
vious work is highly informative of gold standard
semantic roles (Section 5). We also present a de-
tailed analysis (Section 6) showing why our method
works: QA-SRL acts as surrogate syntax, removing
(role-irrelevant) syntactic variation in the source
text such as that from non-overt arguments (e.g.,
phrases extracted from relative clauses), while it-
self exhibiting (role-relevant) syntactic alternations
which capture the behavior of verbal predicates (Ta-
ble 1). Taken together, these results paint a path
towards on-the-fly, data-driven construction of use-
ful, interpretable ontologies of semantic structure.

2 Task Setting

The input to our task is a set of natural language sen-
tences, where a subset of the tokens are marked as
predicates. Each predicate has a set of arguments,

and each argument x corresponds to a set of spans
x = {s1, . . . , sm} in the predicate’s sentence.2

An ontology of semantic roles is a set of frames
(corresponding to semantic predicates), and each
frame has a set of associated roles (corresponding
to participants in the event or state denoted by its
frame). There may also be a set of modifier roles
(e.g., location or time) which can appear with any
frame. In supervised semantic role labeling, each
predicate in the input data must be assigned to
one of the frames in a given ontology, and each
of a predicate’s arguments must be assigned roles
from its frame (or modifier roles). In semantic role
induction, our task is to produce both the ontology
and these assignments.

We follow prior work (Lang and Lapata, 2010)
in treating semantic role induction as a clustering
problem and assuming a single frame per predicate
lemma.3 Given input data marked with predicates
and their arguments, we cluster the arguments for
each predicate into sets corresponding to semantic
roles. We may then compare these clusters to gold
labels using clustering metrics (Section 4.3).

2Previous work (Lang and Lapata, 2010) assumes a syntac-
tic dependency tree and marks each argument by its syntactic
head, which allows for features based on argument lemmas
and dependency paths. We instead assume sets of argument
spans, but no syntax tree; this allows for features based on
spans (such as QA-SRL questions). Both approaches are ways
of featurizing the same gold arguments.

3Some ontologies, like FrameNet (Baker et al., 1998), de-
fine frames that span multiple lemmas (e.g., buy and sell share
a Commercial Transaction frame), whereas others like Prop-
Bank (Palmer et al., 2005) use frames which are specific to
each lemma, denoting something closer to word sense. In our
case, assuming a single frame per lemma simplifies modeling
and allows us to compare to previous work. However, model-
ing predicate sense is an important problem for future work,
as we will suggest in Section 6.3.
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3 Modeling

Our model treats each argument x as a set of counts
of QA-SRL questions,4 denoted φ(x). We pro-
duce these counts from a trained QA-SRL ques-
tion generator (Section 3.1) and cluster them by
maximizing their likelihood under a mixture model
(Section 3.2) using a hybrid of flat and hierachical
clustering (Section 3.3).

3.1 Generating QA-SRL Features
For each argument x of a predicate, we leverage a
trained QA-SRL parser to generate pseudocounts
φ(x) of simplified QA-SRL questions, which will
form the input features for the clustering step.

Simplified QA-SRL Example QA-SRL ques-
tions are shown in Table 2. These questions con-
tain information which is not directly relevant to
semantic roles, such as tense, aspect, modality, and
negation. Since this creates sparsity for our model,
we remove it as a preprocessing step. In particu-
lar, we replace the aux and verb slot values with
either is and past participle (for passive voice), _
and present (for active voice when subj is blank),
or does and stem (for active voice when subj is
present). We also replace all occurrences of who
and someone with what or something.

Generating Question Counts Let p denote a
predicate, s denote a span, and q denote a sim-
plified QA-SRL question. To generate our question
count vectors φ, we reproduce the QA-SRL ques-
tion generator of FitzGerald et al. (2018), which
generates a distribution P(q | p, s) over QA-SRL
questions conditioned on a predicate p and answer
span s in a sentence. This model uses a BiLSTM
encoder, concatenating the output representations
of span endpoints and feeding them into a custom
LSTM decoder which models the QA-SRL slot val-
ues in sequence. We modify the model to use BERT
(Devlin et al., 2019) features as input embeddings
for the BiLSTM (details in Appendix A).

Recall from Section 2 that an argument x con-
sists of a set of spans from its sentence. We gen-
erate question counts φ(x) ∈ R|q|≥0 by taking the
mean

φ(x) =
1

|x|
∑
s∈x

P(q | p, s),

where R≥0 denotes the nonnegative real numbers
and |q| is the number of possible simplified QA-

4As of now, this model only works for English, as QA-SRL
is only defined and annotated in English.

SRL questions. Since |q| is large, to make this
tractable we approximate P(q | p, s) with beam
search, using a sparse representation and assigning
counts of 0 to questions outside the beam.

3.2 Objective
Let X = {x1, . . . , xn} be the set of input ar-
guments for clustering. Our goal is a clustering
C = {C1, . . . , Ck} which is a partition of X. We
model each argument’s questions φ(x) as being
drawn from a mixture model over latent roles, each
corresponding to a cluster C ∈ C. We maximize
likelihood under this model, which we call a Hard
Unigram Mixture, with the addition of a connectiv-
ity penalty which encourages roles not to appear
twice for the same predicate instance.

The Hard Unigram Mixture (HUM) Recall
that φ : X→ Rd≥0 assigns question pseudocounts
to each x ∈ X. Let π denote a probability dis-
tribution over {1, . . . , k} and θ a distribution over
{1, . . . , d}. We propose the Hard Unigram Mixture
loss

LHUM
λ (C) = − log P(X | C)− λ log P(C),

where

P(X | C) =

k∏
i

max
θ

∏
x∈Ci

P(φ(x) | θ)

is the data likelihood and

P(C) = max
π

k∏
i

π
||Ci||
i

is the clustering likelihood, writing ||C|| for the
sum of the φ counts in a cluster C. The data likeli-
hood prefers more, smaller clusters, the clustering
likelihood prefers fewer clusters, and λ is a hyper-
parameter that trades off between them.5

Connectivity Penalty Let p(x) denote the predi-
cate instance corresponding to an argument x. We
propose a connectivity penalty

Lcp(C) =
1

2

k∑
i

∑
x1,x2∈Ci

δ(p(x1) = p(x2)),

5Here, LHUM
1 is equivalent to the negative log likelihood un-

der the maximum likelihood estimate of a mixture of unigrams
model (Nigam et al., 2000) constrained to hard assignments
C; hence the name Hard Unigram Mixture. Further theoret-
ical and empirical comparison to prior work is provided in
Appendix G.
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where δ is the indicator function, which discour-
ages clusterings where multiple arguments of the
same predicate instance are assigned the same role.
This assumption has also been leveraged by prior
models (Lang and Lapata, 2011; Titov and Klemen-
tiev, 2012).

Loss Function Our full loss is then

Lλ(C) = LHUM
λ (C) + Lcp(C)

with the single hyperparameter λ.

3.3 Hybrid Clustering

We optimize Lλ in three steps: flat pre-clustering,
greedy merging, and tuned splitting. This approach
provides us with both the efficiency benefits of
flat clustering and the relative determinism, inter-
pretability and tunability of hierarchical clustering.

Flat Pre-Clustering For pre-clustering, we min-
imize L0 via hard EM. To avoid likelihoods of 0
in LHUM

0 , we smooth our estimates of θ using a
Dirichlet prior. To optimize Lcp via EM, we draw
x1 from the previous iteration’s clustering in or-
der to compute the contribution of each x2 to the
loss. With sufficiently large k, this can produce a
high-precision clustering in O(nk) time to serve as
input to the merging step.

Greedy Merging After pre-clustering, we pro-
duce a binary cluster tree by iteratively merging
pairs of clusters which greedily minimizeL0. Since
λ = 0, the loss grows monotonically when merging
clusters. The loss at each merge can be efficiently
updated by maintaining maximum likelihood esti-
mates θ for each cluster.

Tuned Splitting Finally, we iteratively split the
cluster tree produced by the merging stage. At each
step, we split the cluster Ci with the lowest log data
likelihood per item log P(Ci|C)

|Ci| . We then choose the
clustering which minimizes Lλ, with λ > 0 tuned
during model development.6

4 Experimental Setup

Data We run experiments on the distribution of
PropBank (Palmer et al., 2005) provided for the
CoNLL 2008 Shared Task (Surdeanu et al., 2008).
We use the same setup as previous work, remov-
ing arguments annotated with reference (R-) and

6A comparison of this method against a constant-k base-
line and oracle upper bound is given in Appendix E.

continuation (C-) roles, keeping only verbal pred-
icates,7 and using the development set for model
development and the training set for testing.

Our one preprocessing difference from previ-
ous work is that instead of using the dependency-
based SRL annotations provided in the CoNLL
2008 dataset, we use full answer spans, which we
reconstruct by aligning the CoNLL 2008 data back
to the original annotations in the Penn Treebank
(Marcus et al., 1993) and PropBank.8

4.1 Models

HUM of QA-SRL Questions (HUM-QQ) We
train a QA-SRL parser on the expanded set of the
QA-SRL Bank 2.0 (FitzGerald et al., 2018) using
the architecture described in Section 3.1. In the pre-
clustering step, we estimate k = 100 clusters. For
tuned splitting, we choose λ to maximize perfor-
mance on the development set. Hyperparameters
are detailed in Appendix B.

SYNTF This model assigns each argument to a
cluster corresponding to the label of its syntactic
dependency to its parent, using the syntactic for-
malism provided in CoNLL 2008 Shared Task data.
Past work has found SYNTF to be a strong baseline
(Lang and Lapata, 2011).

Prior Work We compare to Bayesian generative
modeling (Titov and Klementiev, 2012, BAYES),
which is state-of-the-art on gold syntax, and
an embedding-based method (Luan et al., 2016,
SYMDEP/ASYMDEP) which is state-of-the-art us-
ing automatic syntax. These as well as all other
prior approaches (e.g., Lang and Lapata, 2011;
Titov and Khoddam, 2015; Woodsend and Lapata,
2015) crucially rely on syntactic features.

4.2 Auxiliary Clustering Rules

For SYNTF and HUM-QQ, we experiment with
several auxiliary clustering rules.

Lexical Rules We employ three lexical rules,
each producing a separate cluster for all arguments
whose spans exactly match a phrase contained in
the rule’s lexicon. Our rules are for negation (5

7While we ignore nominal predicates, our method naturally
generalizes to nominalizations, which are provided with QA-
SRL annotations in QANom (Klein et al., 2020).

8Using gold spans is necessary in order to compare to pre-
vious work and use the CoNLL 2008 dataset for evaluation of
role induction. In a more realistic setting where gold argument
spans are not available, we could use the span detector of
FitzGerald et al. (2018) to construct argument spans.
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phrases), modals (23 phrases), and discourse modi-
fiers (55 phrases). These lexica were written to cor-
respond to the AM-NEG, AM-MOD, and AM-DIS
roles on the basis of the PropBank annotation guide-
lines (Babko-Malaya, 2005) and development set.9

Passive to Active Conversion We also propose
a syntactic rule that applies only to SYNTF, where
we the transform the dependencies as follows:

• The LGS label, meaning “logical subject,” is
a dependency label given for by-phrases mod-
ifying a passive verb whose object denotes
what is normally the subject of the verb’s ac-
tive form (Surdeanu et al., 2008). We change
this to SBJ.

• Passive voice can be detected when the pred-
icate verb is in past participle form (part-of-
speech tag VBN) and its syntactic parent is a
be-verb (part of speech VC, lemma “be”). In
these cases, we change the syntactic label of
any SBJ dependents into OBJ.

4.3 Metrics
Purity/Collocation To compare with previous
work, we follow Lang and Lapata (2010) in us-
ing purity and collocation based F1 score for our
main evaluation. Purity measures cluster homo-
geneity: it assigns to each cluster the gold label for
which it has the most points, and then measures
the proportion of points which have their cluster’s
assigned label. Collocation measures cluster con-
centration: it assigns each gold label to the cluster
which contains the most of its points, and then mea-
sures the proportion of points which are in their
gold label’s assigned cluster. These are calculated
independently for each verb and averaged, weigh-
ing each verb by its number of argument instances.
The harmonic mean of the final results is reported
as an F1 score.

B3 For deeper analysis, we use theB3 (B-cubed)
family of clustering metrics (Bagga and Baldwin,
1998). B3 precision and recall are the precision
and recall of each point’s predicted cluster against
its gold cluster, averaging over points. In com-
parison to purity and collocation, these metrics
are tougher and more discriminative between clus-
terings, respecting important constraints like the
cluster completeness constraint of Rosenberg and
Hirschberg (2007), among others (Amigó et al.,

9Full lexica for these rules are provided in Appendix C.

Model PU CO F1 ∆F1

Gold Syntax

SYNTF 81.6 77.8 79.6 0.0
+ lex 85.2 79.8 82.4 +2.8
+ pass→act 83.6 80.8 82.2 +2.6
+ all rules 87.3 83.1 85.2 +5.6

BAYES (SotA) 88.7 78.1 83.0 +3.4
ASYMDEP 85.6 78.3 81.8 +2.2

Automatic Syntax

BAYES 86.2 72.7 78.8 -0.8
SYMDEP (SotA) 81.9 76.6 79.2 -0.4

Automatic QA-SRL

HUM-QQ 80.9 83.4 82.1 +2.5
- conn. penalty 79.0 82.7 80.8 +1.2
+ lex 85.4 88.8 87.1 +7.5

Table 3: Main results. The addition of a few simple
rules to the SYNTF baseline puts it significantly above
existing approaches, and incorporating these rules into
our QA-SRL-based model pushes performance even
further, despite not using gold syntax at all. Evalua-
tion numbers for baselines besides SYNTF are drawn
directly from prior work.

2009). B3 also allows us to reliably report scores
along slices of the data for analysis purposes, as
well as account for each slice’s contribution to the
total error. We report full B3 results for our models
in Appendix F and encourage future work to use
these as the primary metrics.

5 Results

Main results are shown in Table 3. Our auxiliary
rules put SYNTF significantly above the state of
the art for gold syntax (with 85.2 F1 versus 83.0).
HUM-QQ surpasses it with 87.1 F1 in the best
case, despite not using gold syntax at all.

5.1 A Stronger Syntactic Baseline

For SYNTF, the addition of either lexical (negation,
modal, and discourse) rules or the passive-to-active
conversion produce competitive models, covering
over 75% of the gap from baseline to BAYES. Used
together, our rules bring the score to 85.2 F1, sur-
passing BAYES by 2.2 points. Table 5 breaks down
these improvements by measuring B3 performance
on relevant roles.

For the lexical rules, we find that the negation
and modal rules nearly completely capture their
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B3 F1 A0 A1 A2 A3 A4 Args TMP ADV MNR LOC PNC CAU Mods All

SYNTF + lex 78 71 63 55 67 73 87 51 60 81 65 67 74 74
HUM-QQ + lex 90 87 69 54 65 85 78 39 50 55 56 36 61 82

% Err \ Freq .26 .37 .09 .01 .01 .74 .07 .04 .03 .03 .01 .01 .18 1.0

SYNTF + lex .23 .41 .13 .03 .02 .79 .04 .06 .04 .02 .01 .01 .18 1.0
HUM-QQ + lex .15 .26 .14 .04 .02 .61 .08 .12 .07 .06 .02 .02 .38 1.0

Table 4: B3 F1 scores on the training set for the most common labels, excluding NEG, MOD, and DIS.

roles, with the discourse rule providing significant
improvements as well. In contrast, previous mod-
els have struggled with these roles, as reported by
Lang and Lapata (2011, Table 4, NEG and DIS
roles). However, this is better seen as a shortcom-
ing of the evaluation than the models: these roles
are relatively uninteresting from the perspective of
semantic role induction, as they are closed-class,
not specific to particular predicates, and don’t cor-
respond to a semantic argument or modifier of the
event denoted by the predicate. It might have been
reasonable to exclude these arguments from the
task at the outset, but instead, using our rules can
mostly account for them while maintaining some
comparability to prior work.

The passive-to-active conversion also produces
a sizable gain, particularly on the core roles A0
and A1 (Table 5). Titov and Klementiev (2012)
informally note that the BAYES model learns some
syntactic alternations; of these, the passive alterna-
tion is perhaps the most impactful as it can apply
to any transitive verb. What we’ve found is that a
simple rule accounting for the passive construction
in the syntax provided to the BAYES model can
account for a large majority of its gains.

These results provide extra context in which to
interpret the existing literature on semantic role
induction. The fact that our simple auxiliary rules
bring the syntactic baseline beyond the existing
state of the art raises questions about whether the
performance differences between previously pub-
lished models are due to their relative abilities in
capturing their intended phenomena — such as
selectional restrictions and distributions over argu-
ment heads (Lang and Lapata, 2014) — or captur-
ing these rules. It is not clear how much of the 5.2
F1 gain over SYNTF from our auxiliary rules is re-
dundant with previous models. It seems likely that
applying our rules to them would produce a result
competitive with HUM-QQ, but it would still rely
on gold syntax. Our focus is the utility of QA-SRL
as features; indeed, it is also conceivable that apply-

B3 F1 Score

Model NEG MOD DIS A0 A1

SYNTF 41 45 50 78 71
+ all rules 98 98 80 83 78

Frequency .01 .04 .03 .26 .37

Table 5: Breakdown ofB3 F1 scores on the training set
for the labels most relevant to our auxiliary rules. The
lexical rules capture AM-NEG, AM-MOD, and AM-DIS
very well, and the active/passive rule significantly im-
proves performance on A0 and A1, which are by far
the most frequent role labels in the data. A rule-by-rule
performance breakdown is provided in Appendix D.

ing a hierarchical model like BAYES to QA-SRL
features would bring further improvements as well.

5.2 Superiority Without Syntax

HUM-QQ benefits disproportionately from the lex-
ical rules, with a 5 F1 gain as opposed to the 2.8
F1 gain for SYNTF. This is because PropBank’s
NEG, MOD, and DIS arguments almost never occur
in QA-SRL, so they get nonsense questions from
the model (see Appendix J, Table 12).10 However,
even the baseline model with no lexical rules or
connectivity penalty surpasses the performance of
the baselines using automatic syntax, all of which
fall short of SYNTF on gold.11 With these addi-
tions, HUM-QQ sets a new state of the art beyond
our enhanced SYNTF baseline, with 87.1 F1.

Table 4 compares our model to SYNTF + lex
on the most common roles using B3. HUM-QQ
greatly improves over SYNTF on core arguments

10In practice, when using arguments predicted by a QA-
SRL span detector (FitzGerald et al., 2018), we can remove
the lexical rules entirely since the corresponding arguments
will not be present.

11To be fair, these models use the automatic parses provided
with the CoNLL 2008 data, which were produced by Malt-
Parser (Nivre et al., 2006) at the time. Using state-of-the-art
methods to predict the parses today would almost certainly
improve the semantic role induction results, but probably not
past gold parses.
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(73→85 F1), but performs worse on modifiers
(74→61). Since core arguments make up 74% of
arguments in the corpus, HUM-QQ brings a large
improvement overall (74→82) and core arguments
still account for a majority of its error (at 61%).

SYNTF’s high performance on modifiers can
be traced back to representational choices in the
CoNLL 2008 Shared Task syntax (Surdeanu et al.,
2008), which uses several dependency types that
are semantic in nature, such as TMP, LOC, MNR,
and DIR, among others. These often correlate well
with gold modifier role labels, especially TMP (87
F1) and LOC (81 F1).12 This fact has led some
prior work, e.g., Titov and Klementiev (2012), to
use these dependency labels as clusters directly,
so as to avoid the need to model modifier roles
and instead focus on core arguments. Since we
eschew syntactic features, we are forced to recover
PropBank modifier roles from the ground up, mak-
ing the task more difficult (explored more in Sec-
tion 6.2).

6 What does QA-SRL Encode About
Semantic Roles?

Semantic roles are traditionally characterized as
abstractions over syntactic arguments and modi-
fiers (Gruber, 1965; Fillmore, 1968). Despite their
deep entanglement with syntax, we have found that
significant improvements in semantic role induc-
tion are possible without explicit syntactic anal-
ysis of the sentence, instead leveraging distribu-
tions of QA-SRL questions for each argument. In
this section, we show that this is because QA-SRL
questions provide surrogate syntax, recapitulating
the aspects of syntax that are important for seman-
tic roles (Section 6.1). Where QA-SRL questions
fail to capture aspects of PropBank semantic roles,
this arises in part from ontological differences with
PropBank on modifiers (Section 6.2) and limita-
tions of our experimental setup ignoring predicate
sense (Section 6.3).

6.1 Surrogate Syntax

HUM-QQ brings the largest improvement over
SYNTF on core arguments A0 and A1. To inves-
tigate this, we identify the verbs which saw the
greatest increase in B3 F1 score on each role indi-
vidually. What we find is that QA-SRL works by
acting as surrogate syntax: it removes much of the

12See Lang and Lapata (2014, Table 2) for a detailed con-
tingency table.

(role-irrelevant) syntactic variation in the source
text, while still exhibiting (role-relevant) syntactic
alternations which capture the syntactic behavior
of the predicate verb.

Reducing Syntactic Variation For A0, the three
verbs with the greatest improvement from SYNTF
to HUM-QQ are compete, conduct, and connect,
all with gaps of over 40 F1.13 For each of these,
their A0 arguments have a wide range of syntac-
tic functions assigned by SYNTF, with SBJ less
than 50% of the time — despite the fact that where
the A0 role is present, it is designed to correspond
to the grammatical subject (Babko-Malaya, 2005).
We found that this is because these verbs frequently
have non-overt subjects, which are not direct syn-
tactic dependents of the predicate in CoNLL 2008
syntax (74% of a random sample of 30 sentences
with A0 arguments of these three verbs, 10 from
each; see Appendix H.1). They appear in phrases
like ‘two competingcompetingcompetingcompetingcompetingcompetingcompetingcompetingcompetingcompetingcompetingcompetingcompetingcompetingcompetingcompetingcompeting objectives’ (with adjectival
clauses), ‘urging directors to conductconductconductconductconductconductconductconductconductconductconductconductconductconductconductconductconduct a fair auc-
tion’ (with control verbs), or ‘a maze of halls that
connectsconnectsconnectsconnectsconnectsconnectsconnectsconnectsconnectsconnectsconnectsconnectsconnectsconnectsconnectsconnectsconnects film rooms’ (with relative clauses). In
these cases, the SYNTF baseline does poorly, as the
correspondence between the SBJ dependency and
A0 role only holds consistently for overt subjects.

In contrast, HUM-QQ assigns the vast majority
of A0 arguments in these cases with questions that
put the wh-word in subject position, e.g., What com-
petes with something? or What conducts? Here,
QA-SRL removes much of the syntactic variation
from the source text and recovers something close
to the underlying grammatical relation between the
argument and the verb, while also providing infor-
mation about the verb’s subcategorization frames
(e.g., the presence of an object in What connects
something?), aiding in recovery of the semantic
role.

Capturing Syntactic Alternations For A1, The
verbs with the greatest improvement are propose,
prefer, price, and relate, with a gap of >50 F1 be-
tween models. Of the top 50 such verbs, 48 are
transitive with A1 as the transitive object (see Ap-
pendix H.2). In these cases, the passive alternation
allows the argument to be asked about in either
the subject (What is proposed?) or object (What
does something propose?) position. We find that
QA-SRL does this, frequently combining questions

13To reduce variance from low-frequency verbs, we mea-
sure this gap after smoothing their precision and recall with
10 counts of the weighted aggregate for the model.
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(a) Distribution of wh-words for each role. (b) Normalized PMIs between gold roles.

Figure 1: Cooccurrence between gold role labels and wh-words in QA-SRL (left) or each other in HUM-QQ’s
predicted clusters (right). The distributions of wh-words are normalized per role, and NPMI between gold labels
is chance-corrected, where negative values (red) are clustered apart more often than by chance, and positive values
(blue) are preferentially grouped together.

about passive subject and active object into one
role: for 62% of the top 50 verbs, the cluster corre-
sponding to A1 gives greater than 20% probability
each to passive subject and active object questions.
This happens because the Hard Unigram Mixture
objective clusters together distributions whose un-
certainty is spread over the same set of elements,
which here correspond to syntactic alternations. As
an example, Table 1 shows the induced clusters for
give, which exhibit both passive and dative alterna-
tions; give gained 31 F1 on A1 in HUM-QQ.

6.2 Mismatched Modifiers

HUM-QQ struggles to identify PropBank modifier
roles, and it has room for improvement on trailing
arguments like A2 and A3. In QA-SRL, the seman-
tics of these roles are primarily expressed by the
initial wh-word, such as when, where, why, how,
etc. Figure 1a shows the distribution of wh-words
appearing for each role in the training set. To a
large extent, each role is concentrated on a corre-
sponding wh-word, but there are exceptions. A2,
A3, and AM-ADV are widely spread between wh-
words, and how and why account for a significant
portion of questions for several roles each. See
Appendix J, Table 11 for full questions.

To visualize how this affects clustering results,
Figure 1b shows the normalized pointwise mutual
information (NPMI; Bouma, 2009) between gold
labels in HUM-QQ’s predicted clusters (see Ap-
pendix I for how this is calculated). While A0
and A1 are distinguished well from all other roles,
the trailing arguments A2 and A3 are not well dis-

tinguished from modifiers, reflecting the difficulty
of the argument–adjunct distinction for these ar-
guments, which often have similar meanings to
modifiers and form a significant error case for su-
pervised labelers (He et al., 2017). AM-ADV tends
to be confused with other modifier roles, which
reflects its definition in the PropBank guidelines as
a sort of “catch-all” role for meanings not captured
in the other modifiers (Babko-Malaya, 2005). Fi-
nally, AM-CAU (cause) and AM-PNC (purpose, not
cause) tend to be confused with each other, since
they both elicit why questions.

Argument–Adjunct Distinction Scores are sig-
nificantly lower for trailing core arguments A2-4
than for A0 and A1. Since part of the problem
seems to be confusion with modifier roles (Fig-
ure 1b), we conduct an oracle experiment to en-
force the argument–adjunct distinction by doubling
the size of the feature space to φ(x) ∈ R2|q|

≥0 and
projecting gold core arguments and modifiers into
orthogonal subspaces.

Results are shown in Table 6 (+ gold arg/adj).
The oracle boosts performance by 3 points,
with particular focus on trailing arguments A2
(69→78) and A4 (65→78), as well as modi-
fiers AM-ADV (39→47), AM-MNR (50→57), and
AM-LOC (55→61). However, overall performance
on modifiers is still far below the syntactic baseline.
Given the coarse semantics of English wh-words in
comparison to PropBank modifier roles (Figure 1a),
it may be that finer-grained features are necessary
to significantly increase performance on modifiers.
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B3 F1 A0 A1 A2 A3 A4 Args TMP ADV MNR LOC PNC CAU Mods All

SYNTF + lex 78 71 63 55 67 73 87 51 60 81 65 67 74 74
HUM-QQ + lex 90 87 69 54 65 85 78 39 50 55 56 36 61 82

+ gold arg/adj 91 89 78 65 78 88 77 47 57 61 58 35 64 85
+ gold sense 91 90 74 58 75 87 80 43 55 64 63 47 65 84
+ both 92 92 83 70 81 90 81 51 64 69 66 46 69 87

Table 6: Breakdown of B3 F1 scores on the training set for the most common labels in our ablation studies. The
first two rows are repeated from Table 4.

6.3 Scrambled Senses

Despite core arguments significantly improving un-
der HUM-QQ, they remain the largest source of
error. To investigate this, we examine the verbs
with the worst F1 on core arguments. The top
verbs are go, settle, confuse, turn, and follow, with
<60 F1. Half of the top 20 have 4 or more predi-
cate senses annotated in PropBank, where different
senses often manifest their roles differently: for
example, the subject is A0 when settling with the
IRS (sense 2), but A1 when settling into a new job
(sense 3). To quantify this, we run an oracle exper-
iment where we induce roles for each verb sense
separately instead of each verb lemma. Results
are shown in Table 6 (+ gold sense). Performance
improves particularly on trailing arguments A2, A3
and A4, which tend to differ greatly in meaning
and realization for different predicate senses. A
combined oracle (+ both) shows that the gains are
mostly complementary with those from the argu-
ment/adjunct distinction oracle. These results sug-
gest that future work on semantic role induction
should prioritize modeling predicate senses.

7 Conclusion

We have shown that QA-SRL provides a way to
do state-of-the-art semantic role induction without
the need for formal syntax. It works by providing
surrogate syntax: it captures long-distance depen-
dencies to non-overt arguments and exhibits syn-
tactic alternations which allow us to detect varied
ways of expressing the same role. These results
suggest that QA-SRL can provide some of the prac-
tical benefits of sophisticated syntactic formalisms
that have separate layers of functional structure,
like Combinatory Categorial Grammar (Steedman,
1996, 2000), Head-Driven Phrase Structure Gram-
mar (Pollard and Sag, 1994), or Lexical Functional
Grammar (Bresnan et al., 2015) — but without
grammar engineering or expert data annotation.

One challenge is that QA-SRL is currently only

defined for English. Future work may benefit from
our lessons about the utility of surrogate syntax
when designing similar annotation methodologies
for other languages; combining this with insights
from existing work on grammar development for
diverse languages (Bender et al., 2002) may be key.

While formal ontologies of semantic roles and
syntax are difficult to formulate and scale, our re-
sults show how it may be comparatively feasible
to formulate, scale, and build robust models for
the phenomena that such ontologies are meant to
explain. QA-SRL exhibits enough of these phe-
nomena that a relatively simple model over it (the
Hard Unigram Mixture in Section 3) yields state-
of-the-art induced semantic roles which are inter-
pretable and linguistically meaningful. This sug-
gests that identifying and gathering supervision
for more phenomena (e.g., those related to word
sense or modifier semantics) in a relatively theory-
agnostic way, then building models grounded in
linguistic theory, may be a promising avenue for fu-
ture work. This general approach has recently been
applied to syntax as well, for example leveraging
constituency tests (Cao et al., 2020) and naturally-
occurring bracketings (Shi et al., 2021).

The fact that discrete structures can be reliably
derived from ontology-free annotation schemes like
QA-SRL can potentially inform future efforts to
construct large-scale ontologies of semantic struc-
ture. QA-SRL has the further benefit over tradi-
tional SRL of including a broader scope of implicit
arguments than those addressed by supervised sys-
tems, as shown by Roit et al. (2020). Taken to-
gether, our results suggest that with the right kind
of annotation scheme, it should be possible to con-
struct rich semantic ontologies in new domains,
without expert curation and in a data-driven, lin-
guistically motivated way.

Acknowledgements

Thanks to the anonymous reviewers and Victor
Zhong for their helpful comments.



4436

References
Omri Abend and Ari Rappoport. 2013. Universal Con-

ceptual Cognitive Annotation (UCCA). In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 228–238, Sofia, Bulgaria. Association
for Computational Linguistics.

Enrique Amigó, Julio Gonzalo, Javier Artiles, and
Felisa Verdejo. 2009. A comparison of extrinsic
clustering evaluation metrics based on formal con-
straints. Information retrieval, 12(4):461–486.

Olga Babko-Malaya. 2005. Propbank annotation
guidelines.

Amit Bagga and Breck Baldwin. 1998. Entity-
based cross-document coreferencing using the vec-
tor space model. In 36th Annual Meeting of the
Association for Computational Linguistics and 17th
International Conference on Computational Linguis-
tics, Volume 1, pages 79–85, Montreal, Quebec,
Canada. Association for Computational Linguistics.

Collin F. Baker, Charles J. Fillmore, and John B. Lowe.
1998. The Berkeley FrameNet project. In 36th An-
nual Meeting of the Association for Computational
Linguistics and 17th International Conference on
Computational Linguistics, Volume 1, pages 86–90,
Montreal, Quebec, Canada. Association for Compu-
tational Linguistics.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Emily M. Bender, Dan Flickinger, and Stephan Oepen.
2002. The grammar matrix: An open-source starter-
kit for the rapid development of cross-linguistically
consistent broad-coverage precision grammars. In
COLING-02: Grammar Engineering and Evalua-
tion.

Gerlof Bouma. 2009. Normalized (pointwise) mutual
information in collocation extraction. In GSCL.

Joan Bresnan, Ash Asudeh, Ida Toivonen, and Stephen
Wechsler. 2015. Lexical-functional syntax. John Wi-
ley & Sons.

Steven Cao, Nikita Kitaev, and Dan Klein. 2020. Unsu-
pervised parsing via constituency tests. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
4798–4808, Online. Association for Computational
Linguistics.

Janara Christensen, Mausam, Stephen Soderland, and
Oren Etzioni. 2011. An analysis of open informa-
tion extraction based on semantic role labeling. In
K-CAP.

Grzegorz Chrupała. 2012. Hierarchical clustering of
word class distributions. In Proceedings of the
NAACL-HLT Workshop on the Induction of Linguis-
tic Structure, pages 100–104, Montréal, Canada. As-
sociation for Computational Linguistics.

Kenneth Ward Church and Patrick Hanks. 1989. Word
association norms, mutual information, and lexicog-
raphy. In 27th Annual Meeting of the Association
for Computational Linguistics, volume 16, pages
76–83. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Charles J. Fillmore. 1968. The case for case. In Em-
mon Bach and Robert T. Harms, editors, Universals
in Linguistic Theory. Holt, Rinehart & Winston.

Nicholas FitzGerald, Julian Michael, Luheng He, and
Luke Zettlemoyer. 2018. Large-scale QA-SRL pars-
ing. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2051–2060, Melbourne,
Australia. Association for Computational Linguis-
tics.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In NIPS.

Jeffrey S. Gruber. 1965. Studies in Lexical Relations.
Ph.D. thesis, Massachusetts Institute of Technology.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle-
moyer. 2017. Deep semantic role labeling: What
works and what’s next. In Proceedings of the 55th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
473–483, Vancouver, Canada. Association for Com-
putational Linguistics.

Luheng He, Mike Lewis, and Luke Zettlemoyer. 2015.
Question-answer driven semantic role labeling: Us-
ing natural language to annotate natural language.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
643–653, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of ICLR.

Ayal Klein, Jonathan Mamou, Valentina Pyatkin,
Daniela Stepanov, Hangfeng He, Dan Roth, Luke
Zettlemoyer, and Ido Dagan. 2020. QANom:
Question-answer driven SRL for nominalizations.
In Proceedings of the 28th International Conference

https://www.aclweb.org/anthology/P13-1023
https://www.aclweb.org/anthology/P13-1023
https://verbs.colorado.edu/~mpalmer/projects/ace/PBguidelines.pdf
https://verbs.colorado.edu/~mpalmer/projects/ace/PBguidelines.pdf
https://doi.org/10.3115/980845.980859
https://doi.org/10.3115/980845.980859
https://doi.org/10.3115/980845.980859
https://doi.org/10.3115/980845.980860
https://www.aclweb.org/anthology/W13-2322
https://www.aclweb.org/anthology/W13-2322
https://www.aclweb.org/anthology/W02-1502
https://www.aclweb.org/anthology/W02-1502
https://www.aclweb.org/anthology/W02-1502
https://doi.org/10.18653/v1/2020.emnlp-main.389
https://doi.org/10.18653/v1/2020.emnlp-main.389
https://www.aclweb.org/anthology/W12-1914
https://www.aclweb.org/anthology/W12-1914
https://doi.org/10.3115/981623.981633
https://doi.org/10.3115/981623.981633
https://doi.org/10.3115/981623.981633
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-1191
https://doi.org/10.18653/v1/P18-1191
https://doi.org/10.18653/v1/P17-1044
https://doi.org/10.18653/v1/P17-1044
https://doi.org/10.18653/v1/D15-1076
https://doi.org/10.18653/v1/D15-1076
https://doi.org/10.18653/v1/2020.coling-main.274
https://doi.org/10.18653/v1/2020.coling-main.274


4437

on Computational Linguistics, pages 3069–3083,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Ilia Kuznetsov and Iryna Gurevych. 2020. A matter of
framing: The impact of linguistic formalism on prob-
ing results. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 171–182, Online. Association
for Computational Linguistics.

Joel Lang and Mirella Lapata. 2010. Unsupervised
induction of semantic roles. In Human Language
Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics, pages 939–947, Los Angeles,
California. Association for Computational Linguis-
tics.

Joel Lang and Mirella Lapata. 2011. Unsupervised
semantic role induction via split-merge clustering.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 1117–1126, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Joel Lang and Mirella Lapata. 2014. Similarity-driven
semantic role induction via graph partitioning. Com-
putational Linguistics, 40(3):633–669.

Kenton Lee, T. Kwiatkowski, Ankur P. Parikh, and Di-
panjan Das. 2016. Learning recurrent span repre-
sentations for extractive question answering. ArXiv,
abs/1611.01436.

Jianhua Lin. 1991. Divergence measures based on the
shannon entropy. IEEE Transactions on Information
theory, 37:145–151.

Yi Luan, Yangfeng Ji, Hannaneh Hajishirzi, and
Boyang Li. 2016. Multiplicative representations for
unsupervised semantic role induction. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 118–123, Berlin, Germany. Association
for Computational Linguistics.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

Julian Michael, Jan A. Botha, and Ian Tenney. 2020.
Asking without telling: Exploring latent ontologies
in contextual representations. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6792–6812,
Online. Association for Computational Linguistics.

K. Nigam, A. McCallum, S. Thrun, and Tom Michael
Mitchell. 2000. Text classification from labeled and
unlabeled documents using em. Machine Learning,
39:103–134.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006.
MaltParser: A data-driven parser-generator for de-
pendency parsing. In Proceedings of the Fifth In-
ternational Conference on Language Resources and
Evaluation (LREC’06), Genoa, Italy. European Lan-
guage Resources Association (ELRA).

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The Proposition Bank: An annotated cor-
pus of semantic roles. Computational Linguistics,
31(1):71–106.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Fernando Pereira, Naftali Tishby, and Lillian Lee. 1993.
Distributional clustering of English words. In 31st
Annual Meeting of the Association for Computa-
tional Linguistics, pages 183–190, Columbus, Ohio,
USA. Association for Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Carl Pollard and Ivan A Sag. 1994. Head-driven
phrase structure grammar. University of Chicago
Press.

Paul Roit, Ayal Klein, Daniela Stepanov, Jonathan
Mamou, Julian Michael, Gabriel Stanovsky, Luke
Zettlemoyer, and Ido Dagan. 2020. Controlled
crowdsourcing for high-quality QA-SRL annotation.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
7008–7013, Online. Association for Computational
Linguistics.

Andrew Rosenberg and Julia Hirschberg. 2007. V-
measure: A conditional entropy-based external clus-
ter evaluation measure. In Proceedings of the 2007
Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), pages 410–
420, Prague, Czech Republic. Association for Com-
putational Linguistics.
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A QA-SRL Question Generator

We reproduce FitzGerald et al. (2018)’s architec-
ture, encoding sentences with a stacked alternat-
ing LSTM (Zhou and Xu, 2015) with highway
connections (Srivastava et al., 2015) and recurrent
dropout (Gal and Ghahramani, 2016), and repre-
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dings of their endpoints (Lee et al., 2016). The
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and answer span representations are input at each
step of the LSTM decoder. We make two changes
from FitzGerald et al. (2018): 1) As opposed to
GloVe (Pennington et al., 2014) or ELMo (Peters
et al., 2018), We embed the inputs with BERT-base
(Devlin et al., 2019) in the ‘feature’ style with a
learned scalar mix over layers, and 2) we addi-
tionally concatenate the output embedding of the
predicate to the input of the LSTM decoder.

B Hyperparameters
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coder uses a hidden size of 300, 4 layers, 0.1 re-
current dropout probability, and a 100-dimensional
predicate indicator embedding. The LSTM decoder
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QA-SRL slots with 200-dimensional embeddings
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per iteration, and choose the run that yields the
lowest loss.
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Model PU CO F1 ∆F1

SYNTF 81.6 77.8 79.6 0.0
+ negation 82.8 77.8 80.2 +0.6
+ modals 83.0 79.8 81.3 +1.7
+ discourse 82.6 77.8 80.1 +0.5
+ pass→act 83.6 80.8 82.2 +2.6
+ all rules 87.3 83.1 85.2 +5.6

Table 7: Detailed results for auxiliary rules on SYNTF.

Tuned Splitting Our final model (HUM-QQ +
lex) uses λ = 0.35.

C Rule Lexica

Here we list the full lexica for the auxiliary cluster-
ing rules described in Section 4.2.

Negation 5 items: n’t, never, no, no longer, not.
These are drawn directly from the PropBank

guidelines (Babko-Malaya, 2005, p. 32).

Modals 23 items: ’d, ’ll, ’ve, able, ca, can, can’t,
could, going, gon, gonna, have, may, might, must,
ought, shall, should, used, will, wo, won’t, would.

Note the inclusion of have, used, able, and going,
which are parts of phrasal modals (e.g., have to),
which are included in AM-MOD according to the
PropBank guidelines (Babko-Malaya, 2005, p. 32).

Discourse 55 items: after all, ah, also, and, and
so, as a result, as we’ve seen before, as well, but,
certainly, damn, either, for example, for instance,
for one, for one thing, frankly, furthermore, gosh,
hence, however, in addition, in any case, in any
event, in contrast, in fact, in other words, in partic-
ular, in that case, in this case, in turn, indeed, in-
stead, ironically, moreover, nonetheless, of course,
oh gosh, oh my god, oh my gosh, on the other hand,
or, particularly, rather, regardless, similarly, so,
specifically, thereby, therefore, though, thus, too,
uh, um.

Note the inclusion of some interjections, (ah,
oh my gosh, etc.), which are included in AM-DIS
according to the PropBank guidelines (Babko-
Malaya, 2005, p. 31).

D Auxiliary Rule Performance
Breakdown

In Table 7, we provide a more detailed account-
ing of the improvements that arise from our aux-
iliary rules described in Section 4.2 and Table 5.

Tuning Method PU CO F1

Constant k = 6 83.9 86.7 85.3
λ = 0.35 85.4 88.8 87.1
F1 Oracle 87.6 89.6 88.6

Table 8: Comparison of methods to determine the num-
ber of clusters for each verb. All reported numbers are
for HUM-QQ+ lex.

Setting Objective

λ = 1 Mixture of Unigrams Likelihood
λ = 0 Jensen-Shannon Divergence
λ = −1 Mutual Information

Table 9: Objectives reproduced by the HUM loss for
different settings of λ, described in Appendix G.

The negation and discourse rules bring precision
improvements, likely because they mostly have
ADV dependencies outgoing. The modal rule im-
proves both precision and recall because modals
have many different kinds of outgoing dependen-
cies, due to their status as heads of clauses (which
can serve in many syntactic capacities). Finally,
the passive alternation rule aids precision by split-
ting SBJ between active and passive uses, and aids
recall by grouping LGS with the active SBJ and
passive SBJ with active OBJ. This mainly affects
the core argument labels A0 and A1, as shown in
Table 5 — especially A1, as we also find for QA-
SRL questions in Section 6.1.

E Tuned Splitting Evaluation

Our model has a single parameter λ which deter-
mines the number of clusters for each verb via the
tradeoff between the data likelihood and clustering
likelihood. We compare this to a constant base-
line (the same number of clusters for all verbs)
and an oracle upper bound which chooses the split
that maximizes the purity/collocation F1 score for
each verb independently. As shown in Table 8,
we improve on the constant baseline by 1.8 points
(85.3→87.1), but fall short of the oracle by 1.5
points (87.1→88.6). There is room for improve-
ment, but errors in the tuning step may not be the
most significant factor to concern future work.

F B3 Results

Results using B3 metrics on models we tested are
shown in Table 10.
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Model B3P B3R F1 ∆F1

Gold Syntax

SYNTF 74.7 68.3 71.3 0.0
+ lex 79.1 70.4 74.5 +3.2
+ pass→act 77.4 72.1 74.7 +3.4
+ all rules 82.2 74.7 78.3 +7.0

Automatic QA-SRL

HUM-QQ 71.1 79.0 74.8 +3.5
- conn. pen. 71.6 75.7 73.6 +2.3
+ lex 79.8 83.4 81.6 +10.3
+ lex + MI 77.7 82.1 79.9 +8.6

Table 10: B3 Results on models we tested. The gap
between HUM-QQ and SYNTF is larger than for pu-
rity and collocation, as B3 is a tougher metric which
is more discriminative between clusterings. The last
model variant (+MI) is described in Appendix G.

G Related Clustering Algorithms

Recall the Hard Unigram Mixture loss

LHUM
λ (C) = − log P(X | C)− λ log P(C).

Different settings of λ reproduce several objectives
present in the literature, summarized in Table 9.
As written in Section 3, when λ = 1, minimizing
LHUM
1 maximizes likelihood of the data X under a

mixture of unigrams model (Nigam et al., 2000).
When the number of clusters k is fixed, setting

λ = 0 as in our greedy merging step (Section 3.3)
is equivalent to enforcing a uniform prior π over
mixture components. In this case, the gain in loss
on each merge is the Jensen-Shannon Divergence
(JSD) between the merged clusters, scaled by their
total size and using each cluster’s size to deter-
mine its mixing weights in the divergence, as in
the mixture-based definition of JSD by Lin (1991).
JSD is used in the same way by Chrupała (2012),
without the scaling and weighting, as a similarity
measure for agglomerative clustering.

Finally, setting λ = −1 reduces the HUM loss
to the mutual information between the QA-SRL
questions under φ and the cluster assignment C,
which has been used in prior work to encourage
informative clusterings (Michael et al., 2020). This
is related to the distributional clustering paradigm
of Pereira et al. (1993), which aims to identify com-
mon factors that explain distributional data, and
which Slonim and Tishby (1999) frame in terms
of an information bottleneck that maximizes mu-

tual information between the data and a jointly
distributed ‘relevance’ variable (though in our case,
the reference variable is the cluster assignment it-
self). Setting λ = −1 in the greedy merging step,
we find (in Table 10) that using a mutual informa-
tion criterion in this way hurts performance. We
guess this is because the objective incentivizes clus-
ters of uniform size, which does not match the
highly skewed distributions of gold semantic roles.

H Manual Analysis Results

H.1 Improved Verbs on A0

The top 50 verbs by F1 gain on A0 from SYNTF to
HUM-QQ are: compete, conduct, connect, com-
bine, dominate, restore, require, yield, limit, ban,
direct, tie, oversee, contain, identify, increase, eval-
uate, specialize, allow, assist, restrict, found, grant,
feature, propose, detail, force, convert, veto, rate,
bolster, appoint, enact, design, list, lead, resolve,
retire, schedule, reach, analyze, remove, speed,
manage, deliver, underlie, revise, emerge, enable,
block.

We examined 30 sentences containing the top
3 verbs (compete, conduct, and connect). There
were 31 A0 arguments of these verbs in these sen-
tences. Of these, 8 (26%) were overt, 11 (35%)
were extracted subjects of relative clauses, 5 (16%)
were modified by the predicate appearing in an
adjectival clause, 5 (16%) were subjects of open
complements of control verbs, and 2 (6%) were
otherwise implicit (subject of an adverbial clause
or open complement not under a control verb).

H.2 Improved Verbs on A1

We examined the top 50 verbs by their difference
in B3 performance on A1 between SYNTF and
HUM-QQ. 48 of them are transitive; the other two
are bolded. In decreasing order of F1 gain, they
are: propose, prefer, price, relate, involve, help,
choose, consider, design, mention, identify, release,
include, exist, range, value, revise, lead, associate,
need, increase, import, prove, feel, place, deter-
mine, limit, found, enact, control, cancel, dilute,
disclose, select, exclude, force, insure, accrue, dam-
age, calculate, hurt, secure, delay, regard, record,
open, use, concern, weaken, adjust.

I Calculating Normalized PMI

Here we describe some special concerns for our
use of normalized PMI in Section 6.2.
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Pointwise mutual information (PMI) is a mea-
sure of how likely two items (such as tokens in
a corpus) are to occur together relative to chance
(Church and Hanks, 1989). One feature of PMI is
that it tends to be larger for rare events: if two items
x and y always occur together, then their PMI is
− log P(x, y). This can make it difficult to assess
association patterns among items with greatly vary-
ing probabilities (e.g., the AM-CAU role appears
for 1% of arguments, while A1 appears for 27%).
So we use normalized PMI (NPMI; Bouma, 2009),
which factors out the effect of item frequency on
PMI. Formally, the NPMI of x and y is(

log
P(x, y)

P(x) P(y)

)/
− log(P(x, y)) , (1)

taking the limit value of -1 when they never occur
together, 1 when they only occur together, and 0
when they occur independently. We use NPMI to
analyze the co-occurrence of gold labels in pre-
dicted clusters: A pair of gold labels with high
NPMI are preferentially grouped together by the
induced roleset, whereas two labels with low NPMI
are preferentially distinguished. The joint distribu-
tion between gold labels is generated by drawing
one point (x) uniformly at random from the data,
drawing another (y) uniformly at random from x’s
predicted cluster, and reading the gold labels of
both. NPMI has been used to analyze clusters in
this way by Michael et al. (2020).

Calculating NPMI naïvely on our full clustering
has a caveat. The denominator of the PMI term in
Equation 1, P(x) P(y), uses marginal probabilities
of x and y over the corpus to calculate chance co-
occurrence. But our clusters are constrained not to
overlap between verbs, so this does not correctly es-
timate chance cooccurrence in our setting. Instead,
we use the expectation over verbs of within-verb
chance cooccurrence:∑

v

P(x | v) P(y | v) P(v),

where P(v) is proportional to the number of argu-
ments for the verb v.

J Question Distributions by Role

We list the top questions and their probabilities
for modifier roles in Table 11. Questions for core
roles and the ones covered by our lexical rules are
in Table 12. We use verb (or verbs, or verbed)
as a placeholder for the verb, which in practice is
replaced with the predicate for a given instance.

Role Top Questions Prob

TMP When does something verb something? 0.34
When does something verb? 0.21
When is something verbed? 0.18
When does something verb somewhere? 0.03
When does sth. verb to do something? 0.02
How does something verb? 0.01
How is something verbed? 0.01

ADV Why does something verb something? 0.13
How does something verb something? 0.12
When does something verb something? 0.09
How is something verbed? 0.08
How does something verb? 0.08
Why does something verb? 0.05
Why is something verbed? 0.04
When does something verb? 0.04
What does something verb? 0.03
When is something verbed? 0.03

MNR How is something verbed? 0.25
How does something verb? 0.22
How does something verb something? 0.19
What does something verb? 0.02
Where does something verb? 0.02
Why does something verb something? 0.02
How does something verb somewhere? 0.02

LOC Where does something verb something? 0.24
Where is something verbed? 0.22
Where does something verb? 0.21
When does something verb something? 0.04
How does something verb something? 0.03
How does something verb? 0.02
How is something verbed? 0.02

PNC Why does something verb something? 0.29
Why is something verbed? 0.21
Why does something verb? 0.08
Why does something verb somewhere? 0.05
What is something verbed to do? 0.03
How is something verbed? 0.03
What is something verbed for? 0.02

CAU Why does something verb something? 0.32
Why does something verb? 0.16
Why is something verbed? 0.16
Why does something verb somewhere? 0.04
How does something verb? 0.04
Why does sth. verb to do something? 0.03
How does something verb something? 0.02

DIR Where does something verb? 0.40
How does something verb? 0.17
Where is something verbed? 0.10
Where does something verb something? 0.07
How is something verbed? 0.06
How does something verb something? 0.03

Table 11: Top questions in the QA-SRL features on
the training set for modifier roles. Most of the roles
align with a particular wh-word especially well, espe-
cially for when, where, and why. But AM-ADV takes a
variety of wh-words, and how appears often for nearly
all modifier roles. In longer questions, ‘something’ is
abbreviated for space.
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Role Top Questions Prob

A0 What verbs something? .65
What verbs? .14
How is something verbed? .02

A1 What does something verb? .42
What is verbed? .25
What verbs? .09
What verbs something? .03
What does something verb to do? .02

A2 What does something verb? .12
How is something verbed? .07
What verbs something? .07
Where is something verbed? .06
What is verbed? .06
How does something verb? .06
How much does something verb? .04

A3 How does something verb? .15
What does something verb? .09
How is something verbed? .07
Why does something verb something? .06
How does something verb something? .05
When does something verb? .05
Where does something verb? .04

A4 What does something verb to? .17
Where does something verb? .17
How does something verb? .16
How much does something verb? .14
What does something verb something to? .04
How is something verbed? .03

NEG What verbs something? .40
What verbs? .15
What is verbed? .12
How is something verbed? .05
How does something verb? .03
How does something verb something? .03

MOD What verbs something? .22
How does something verb something? .11
What verbs? .09
Why does something verb something? .07
What is verbed? .06
How does something verb? .06
How is something verbed? .06

DIS When does something verb something? .15
How does something verb something? .15
What verbs something? .08
How is something verbed? .07
How does something verb? .07
Why does something verb something? .06
When does something verb? .05

Table 12: Top questions in the QA-SRL features on
the training set for core roles and the ones covered by
our lexical rules. The questions for AM-NEG, AM-MOD,
and AM-DIS often don’t make sense, e.g., asking for
the subject of the verb. No QA-SRL questions are
appropriate or were annotated for many arguments of
these types. On the other hand, the core roles behave
essentially as expected: A0 is dominated by the sub-
ject, A1 has a mix of subjects and objects, with some
complements, and A2 and on have a wider spread of
different expressions. Since the core argument roles
have predicate-specific meanings, the distributions here
can only be interpreted as aggregates across many such
meanings.


