
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 4340–4352
August 1–6, 2021. ©2021 Association for Computational Linguistics

4340

Effective Batching for Recurrent Neural Network Grammars

Hiroshi Noji
Artificial Intelligence Research Center

AIST
hiroshi.noji@aist.go.jp

Yohei Oseki
Graduate School of Arts and Sciences

University of Tokyo
oseki@g.ecc.u-tokyo.ac.jp

Abstract

As a language model that integrates traditional
symbolic operations and flexible neural repre-
sentations, recurrent neural network grammars
(RNNGs) have attracted great attention from
both scientific and engineering perspectives.
However, RNNGs are known to be harder to
scale due to the difficulty of batched training.
In this paper, we propose effective batching for
RNNGs, where every operation is computed in
parallel with tensors across multiple sentences.
Our PyTorch implementation effectively em-
ploys a GPU and achieves x6 speedup com-
pared to the existing C++ DyNet implemen-
tation with model-independent auto-batching.
Moreover, our batched RNNG also acceler-
ates inference and achieves x20-150 speedup
for beam search depending on beam sizes.
Finally, we evaluate syntactic generalization
performance of the scaled RNNG against the
LSTM baseline, based on the large training
data of 100M tokens from English Wikipedia
and the broad-coverage targeted syntactic eval-
uation benchmark.1

1 Introduction

Neural language models have an excellent word
prediction ability, which motivates researchers to
develop several analysis methods for fine-grained
evaluation, aiming at understanding which linguis-
tic abilities the models have acquired during train-
ing (Linzen et al., 2016; Wilcox et al., 2018; Mar-
vin and Linzen, 2018; Warstadt et al., 2020). So
far, many efforts have been made on the evalua-
tion of syntactic performance of models, including
the abilities to resolve distant subject-verb num-
ber agreement in English. Since neural language
models are the foundation of contemporary NLP
systems, building a language model having robust
sentence processing abilities like humans is an

1Our RNNG implementation is available at
https://github.com/aistairc/rnng-pytorch/.

important goal, especially toward a system with
human-like syntactic generalization abilities, not
relying on the data-specific superficial cues found
in the training data (McCoy et al., 2019; Linzen,
2020).

Past work has revealed that while sequential and
unstructured models, such as LSTM and Trans-
former language models (Hochreiter and Schmid-
huber, 1997; Vaswani et al., 2017), can induce sev-
eral interesting syntactic behaviors, there is also
a notable advantage in explicitly modeling syntax
with specific architectures (Kuncoro et al., 2018;
Wilcox et al., 2019; Hu et al., 2020). The repre-
sentative of such models is the recurrent neural
network grammars (RNNGs; Dyer et al., 2016),
the top-down, left-to-right generative models of a
parse tree and sentence.

While these results may suggest that RNNGs
are a better modeling choice for language, unfor-
tunately, they have a practical drawback in terms
of scalability, due to their structure-sensitive com-
putation mechanism (Kuncoro et al., 2019). Since
the computational graphs of RNNGs depend on the
tree structures of the sentences, training cannot be
mini-batched easily. This is in contrast to LSTMs
and Transformers, for which token-wise operations
can be batched across sentences, allowing efficient
computation on GPUs, which is the key to the data
scalability. Although RNNGs are claimed to be a
fascinating language model, in practice, they still
do not replace the unstructured, computationally
favorable models like LSTMs.

In this paper, we directly address the data scala-
bility issue of RNNGs by showing that most com-
putations during training can be batched across
sentences. At the computational core of RNNGs
is stack LSTMs (Dyer et al., 2015). In past work,
Ding and Koehn (2019) have already shown that
stack LSTM update operations can be reduced to a
tensor operation by implementing the stack as a sin-

4341

gle tensor with predefined maximum stack depth.
Our work is built on this idea but with a few ad-
ditional techniques to bridge the gap between the
simple stack LSTMs and RNNGs. Importantly, we
devise the efficient batching method for composi-
tion operations on the arbitrary number of stack
items, which is unsolved in previous work.

The existing RNNG implementation is based on
DyNet that supports the mechanism called Auto-
batch (Neubig et al., 2017), which automatically
finds mini-batch units from the independent com-
putational graphs over multiple sentences with lazy
computation. While this mechanism is model-
independent and allows intuitive implementation,
the utility of this method rapidly plateaus as we
increase the batch size. On the other hand, our
present method allows effective parallel computa-
tion, increasing the training speed almost linearly
as we increase the batch size.

In addition to this new batching mechanism for
improved scalability, we also provide a new analy-
sis on the role of the strong syntactic inductive bias
for models that can access the larger amount of data.
For syntactic generalization abilities, while Hu et al.
(2020) suggest that the model inductive bias plays
a more important role than data scale, they also
report that LSTMs or Transformers such as the off-
the-shelf large-scale models (e.g., GPT-2 or JRNN)
perform much better than their scale-controlled
LSTMs. Does an RNNG, which already works
relatively well on a modest amount of data, still
benefit from the data scale to further strengthen its
syntactic ability? We train a new RNNG on about
100M tokens in Wikipedia and evaluate its syntactic
performance on SyntaxGym test circuits (Gauthier
et al., 2020), finding that the data scale generally
brings further performance gains, while the model
tends to lose some heuristics on surface patterns
that LSTMs seem to find. Our result suggests that
RNNGs’ reliance on structures will be strength-
ened with more data, motivating future research on
developing better syntactic representation itself as
supervision to structured language models.

A related approach to our work is adding the syn-
tactic bias into sequential language models, such
as LSTMs, with knowledge distillation from RN-
NGs (Kuncoro et al., 2019, 2020). While motiva-
tions are similar, we provide a rather direct solution
to resolve the scalability issue of RNNGs, opening
up a new possibility of directly using them as an
alternative to LSTMs.

From another perspective, our work can be com-
plementary to this work, because knowledge dis-
tillation requires a teacher RNNG model, which
itself is costly to obtain. For example, Kuncoro
et al. (2020) trained an RNNG on a relatively large
dataset of 3.6M sentences, which is approximately
similar to the training data we use. While the de-
tail is missing, they report that training takes three
weeks on a GPU. On the other hand, our models
get almost converged in three days. This direct
improvement in training time greatly expands the
applicability of RNNGs including a teacher of se-
quential models, and more direct use in computa-
tional psycholinguistics (Hu et al., 2020) and NLP
applications such as syntactic neural machine trans-
lation (Eriguchi et al., 2017).

2 Preliminaries

2.1 Recurrent neural network grammars
RNNGs are joint generative models of a sentence
and constituency tree. While RNN language mod-
els assign a next token probability, RNNGs assign
a probability to next action, by which the parse
state (stack LSTM) changes dynamically. In this
work, we focus on the stack-only RNNG (Kuncoro
et al., 2017), which has some resemblance to RNNs
in that a single state vector ht defines next action
probability at:

at ∼ softmax(WaMLP(ht) + ba)

At each step, ht is obtained from the top ele-
ment of stack LSTM, which preserves intermediate
LSTM states up to ht. As a preparation for our
batched RNNGs (Section 3), we try to formalize
how this stack LSTM states change with each ac-
tion. An RNNG internally preserves two different
stacks: Sh and Se. Sh is a stack LSTM, keeping
the LSTM hidden states h0 · · ·ht.2 Se keeps stack
elements, each of which is a word embedding ew,
an open nonterminal embedding ex, or a closed
constituent embedding ec obtained by REDUCE
action.

At each step, the number of candidate actions is
|N | + 2 given the set of nonterminal symbols N .
Each action changes Sh and Se as follows:

• NT(x): Push open nonterminal embedding ex
onto Se, getting a new LSTM state by hnew =
LSTM(top(Sh), ex), and then push hnew onto

2Precisely, we also have to keep LSTM cell states. We
omit this part for brevity.

4342

Sh. This action corresponds to generating an
open nonterminal, e.g, “(VP” (when x=VP),
which will be closed later.

• GEN: First, generate a next token by sampling
from w ∼ softmax(WwMLP(ht) + bw).
Then, as in NT, push ew onto Se, getting a new
LSTM state hnew = LSTM(top(Sh), ew),
and push hnew onto Sh.

• REDUCE: First, repeatedly pop from Se k-
times until we find ex, an open nontermi-
nal embedding. Letting et−k = ex, then,
apply a composition function, which is BiL-
STM (Dyer et al., 2016) by default, to obtain
a composed phrase representation ec:

ec = BiLSTM([et−k, · · · , et]).

ec is then pushed onto Se. To synchro-
nize two stacks, we also pop k-times from
Sh and update the LSTM state by hnew =
LSTM(top(Sh), ec), pushing it onto Sh.

By declaring the operations as above, we notice
that the main reasons to prevent mini-batching are
twofold: (1) the stacks have variable length, which
varies at each step for each sentence; and more
crucially, (2) internal operations in an action, espe-
cially in REDUCE and others, are largely different.

As we describe next, the issue regarding (1) has
been largely solved in previous work. For (2), our
strategy is essentially not joining different action
types, but trying to improve the efficiency of each
action as much as possible after grouping by action
types. We find that in practice this strategy works
quite well (Section 5.2), allowing models to benefit
from a large batch size effectively.

2.2 Batched stack LSTMs
Ding and Koehn (2019) propose a sentence-level
batched training algorithm for a restricted class of
stack LSTMs designed for unlabeled dependency
parsing without composition operations (Dyer
et al., 2015). More specifically, Ding and Koehn
(2019) deal with the parsing models defined by the
following two operations only:3

• PUSH: Push LSTM(top(Sh), ew) to Sh. ew
is the embedding of the next token.

3A restricted model of an arc-eager system (Nivre, 2004),
which just POPs when LEFT-ARC occurs, can be achieved
with these operations. RIGHT-ARC is modeled by PUSH.
Essentially, this stack LSTM can only models the right spine
of a tree at each step.

• POP: Pop the top element from Sh.

At each step, the next action is either PUSH or
POP for each sentence. This model still suffers
from the problem (1) above. However, they show
that by changing the data structure of stack, next
PUSH and POP across sentences can be performed
in batch. Given B sentences in a batch, let Si

h be a
stack for i-th sentence. What we need to do is to
access all top elements of Si

h(i ∈ [0, · · · , B − 1])
jointly, and this is possible by summarizing all
stacks into a single stack tensor, denoted by Sh, for
which Sh[i, p] denotes p-th element (LSTM state)
on the stack for i-th sentence.

The core idea behind achieving PUSH and POP
jointly is that we perform LSTM updates for all
stack top elements in a batch, but only proceed
top stack pointers for PUSH batches. Given next
actions a =[PUSH, PUSH, POP, · · ·] of length
B, we get a vector op = [+1,+1,−1, · · ·], de-
noting whether next stack pointer is +1 (PUSH)
or -1 (POP). By keeping stack top pointer vector
ph, each step can be batched as the following two
operations:

Sh[(0,ph[0] + 1) · · · (B − 1,ph[B − 1] + 1)]←
LSTM(Sh[(0,ph[0]) · · · (B − 1,ph[B − 1])],Ew),

ph ← ph + op,

in which Ew is the next token embeddings.
Unfortunately, this batching relies on a strong

assumption about models that one action (PUSH)
involves all operations (LSTM update and pointer
move by op). This is not the case for RNNGs, for
which any action cannot be reduced to a subset of
other actions, necessitating a different strategy.

3 Batched RNNGs

Our batching algorithm for RNNGs is built on the
following two observations:

(a) For all at ∈ {NT,GEN,REDUCE}, the last
step is common and corresponds to PUSH op-
eration for stack LSTM above with newly cre-
ated embeddings {ex, ew, ec}. This final step
can be batched if we get all new embeddings
as a single tensor Enext (with size of (B, |e|)).

(b) Then, the main problem is reduced to getting
Enext efficiently. This is possible by separately
filling Enext for each action, using a few addi-
tional pointer vectors to keep track of a stack
state for each sentence.

4343

Algorithm 1 One training step for batched RNNG
Input Next action vector at a;

index vector for each action: igen, int, ired

1: Enext ← new tensor of size (B, |ex|)
2: Enext[igen]← word emb(x[(igen,b[igen])])
3: b[igen] = b[igen] + 1 . Move to next word.
4: Enext[int]← nt emb(a[int])
5: pq[int]← pq[int] + 1
6: q[(int,pq[int])]← ph[int] + 1 . Keep new NT depth.
7: pprev nt ← q[(ired,pq[ired])]
8: Ered ← gather children(pprev nt,ph[ired],Se)
9: Enext[ired]← BiLSTM(Ered) . Composition.

10: pq[ired]← pq[ired]− 1 . Forget about reduced nts.
11: ph[ired]← pprev nt − 1
12: ph ← ph + 1
13: Sh[ph]← LSTM(Sh[ph − 1],Enext)
14: Se[ph]← Enext

To obtain Enext, for NT and GEN, we just need
to lookup embeddings for next words and nonter-
minal symbols. We need an additional effort to
obtain multiple ecs at once. Assuming a stack ten-
sor as in Ding and Koehn (2019), we wish to pop
k elements, up to ec, for multiple stacks by a sin-
gle operation. Now the stack top positions can be
accessed by ph (Section 2.2), which will be the
end indices. To obtain the last open nonterminal
positions across a batch, just keeping the last non-
terminal positions is insufficient because there are
multiple open nonterminals in general. The follow-
ing matrix and vector allow this operation:

• q: A matrix of size (B,D) given a predefined
stack depth bound D. q[b, d] denotes the po-
sition of d-th nonterminal on the b-th stack.

• pq: A B-dimensional vector, pointing to the
last index of q (similar to ph for Sh).

For example, by q[(0,pq[0]) · · · (B − 1,pq[B −
1])], we can retrieve all the top open nonterminal
positions in a batch. Note that for each q[b], the
index beyond pq[b] will not be accessed, so we can
signify the remove of top nonterminals just by a
decrement of pq without updating q.

We need a few additional tensors to achieve fully
batched stack tensor operations. Figure 1 shows an
example.

• Sh: A tensor of size (B,D,L,H) when the
stack LSTM has L layers with H hidden di-
mensions. The core of batched stack LSTMs.

• Se: A tensor of size (B,D, |e|), correspond-
ing to Se in non-batched models (Section 2.1).

• b: A B-dimensional vector, keeping the next
token index in the sentence.

Stack Next action
|0 (S |1 So |2 (NP it) |3 (VP
|0 (S |1 (NP he) |2 (VP |3 said
|0 (S |1 (NP |2 (NP |3 A |4 branch |5)

b = [1, 1, 2]

ph = [3, 3, 5]

pq = [0, 1, 2]

q =

 1 3 0 · · ·
1 3 0 · · ·
1 2 3 · · ·

Figure 1: Example batched stack configuration. x|d
means that x is at depth d. For example, “(NP it)” in
the first sentence is closed so constitutes a single item
on the stack. pq points to the top positions of q, which
are underlined.

• ph: A B-dimensional vector, pointing to the
top elements of Sh.

Full algorithm Algorithm 1 describes operations
in each step given next actions a. Action index
vector ia, keeps the indices of action a in a; in Fig-
ure 1, igen = [1] and int = [0]. The operations are
mainly categorized into filling Enext for each action
(in red), pointer updates according to action defini-
tions (3, 5, 6, 10, 12), and finally stack updates (13,
14), corresponding to the observed common opera-
tions (a).4 gather children is a function that returns
a tensor summarizing reduced children node em-
beddings. Since the number of reduced children
differs across batch, we implement this to return a
padded tensor, using gather function in PyTorch.

Deviated from Ding and Koehn (2019), we sep-
arately perform each action, as indicated by the
use of ia. This can be seen as a deficiency of our
algorithm; however, this separation is necessary be-
yond very simple models, which are practically less
attractive. Rather, our strategy can be applied to
broader classes of structured neural models, includ-
ing dependency parsing with composition, and we
believe that our empirical success (Section 5) en-
courages further exploration of the presented strat-
egy to various models.

How to set D? As in Ding and Koehn (2019),
we need to specify the stack depth bound D for
each batch. Increasing this value incurs more GPU
memory. For training, we can precompute the min-
imum value of each sentence by simulating oracle
transitions beforehand and use it. For inference, we
fix D = 100, since we find that even for very long

4By A[(x,y)] for vectors x and y, both with length l, we
mean A[(x[0], y[0]) · · · (x[l− 1], y[l− 1])], corresponding to
advanced indexing in PyTorch. We regard that Sh[0] is fixed
by initial hidden vectors while Se[0] is kept empty. ph[b] = 0
means that b-th stack is empty.

4344

sentences (more than 150 words), the stack depth
will never exceed 80 for English sentences.

A note on extra memory with stack tensors At
first sight, our approach seems to suffer from the
limitation in scalability due to fixed stack tensors
(Sh and Se). The sizes of these tensors grow by
model size, implying that we may not be able to
employ a large batch size for a large model. In
practice, however, this extra memory will not be a
bottleneck in the total memory for training. This
is because the main cause of required memory dur-
ing training is rather a computational graph itself,
which keeps all intermediate hidden states at each
step. Our stack tensors can be seen as a “storage”
to allow computing these intermediate values effec-
tively with tensor operations. The extra memory
for this storage is smaller than the total memory in
a computational graph because the former depends
on D while the latter depends on the total action
length A, and D � A in general.5

4 Other Improvements

Batched beam search For inference as a lan-
guage model or as an incremental parser, RN-
NGs typically employ word-synchronous beam
search (Stern et al., 2017; Hale et al., 2018), which
is although known to be very slow (Crabbé et al.,
2019) because it often requires large beam sizes,
such as 100 or 1000, and operations are not batched.
As a by-product of our batched training, we suc-
ceed at implementing fully batched beam search
for RNNGs, excluding any for loops, by which we
drastically improve the search speed (Section 5.3).
This is possible by adding the “beam” dimension
to all state tensors (Sh, q, etc.).

Subwords Given an increased amount of train-
ing data, the vocabulary size naturally increases.
To suppress this effect, using subwords (Sennrich
et al., 2016) now becomes a standard technique.
We thus incorporate subword modeling into our

5Our preliminary experiment suggests that our RNNG im-
plementation can be scaled at least comparable model and
data sizes to ELMo (Peters et al., 2018), a large-scale LSTM-
based model, given a similar amount of computing resources.
We examine the maximum allowable batch size for a model
with 1,256 hidden dimensions, amounting to 94M parameters,
which are comparable to ELMo (93M), and find that the batch
size can be increased to 256, with the maximum action size
in a batch of 16,000 (see Section 5.1) on a single V100 GPU
(16GB). Transformer-level scalability (Devlin et al., 2019)
would still be infeasible because of the RNNG’s limited par-
alellism that is only on sentence-level, not token-level as in
Transformers.

RNNGs and employ it for our largest experiment
in Section 6. Kuncoro et al. (2020) recently incor-
porate subwords in RNNGs, in which, each word
is regarded as a new constituent with WORD label,
e.g., (WORD cu| r| ry). This means that models al-
ways need to perform additional NT(WORD) and
REDUCE for each token, even for unsegmented
ones, e.g., (WORD I), greatly increasing the aver-
age action sequence length, which in turn affect the
training time. In this work, we model subwords by
a simpler method of just segmenting each token.
For example, an NP looks like (NP Th| ai cu| r| ry).
While Kuncoro et al. (2020) note that this simple
modeling is less effective, our experiments suggest
that this is a good enough strategy, considering
the added computational costs with NT(WORD)
actions.6

5 Evaluating Efficiency of Batching

The main focus of this section is a comparative
evaluation of our PyTorch RNNG implementation
with the existing DyNet implementation.7 We show
that: (1) with a large batch size training speed dras-
tically improves, and models will tend to find better
parameters (Section 5.2); and (2) our batched beam
search hugely speeds up inference (Section 5.3).

5.1 Setting
While Penn Treebank (PTB; Marcus et al., 1993)
has often been used to train RNNGs (Wilcox et al.,
2019, 2020), it is too small and here we use a larger
dataset of BLLIP corpus (Charniak et al., 2000), ex-
pecting that the effects of large batch size become
clearer by this modestly sized dataset.

Preprocessing For preprocessing, we largely fol-
low Hu et al. (2020), which also train an RNNG on
this dataset. We partition the data according to their
LG size, the largest training setting, amounting to
42 million tokens for training and 1,500 sentences
for development. One difference we make is the
handling of unknown tokens. We limit the vocabu-
lary by the top frequent 50,000 word types in the
training data. Hu et al. (2020) use all word types

6We provide a pilot study about this method in Appendix B.
Using BLLIP corpus and Penn Treebank, we explore the re-
lationship between a suitable number of subword units and
model sizes. The main result is that large subword units are
effective for larger models, and also subword modeling almost
always improves parsing accuracy.

7https://github.com/cpllab/rnng-incremental. This imple-
mentation supports word-synchronous beam search. For the
training part, this is not implemented to use DyNet Autobatch
so we modified it to enable that.

4345

0 100 200 300 400 500
Batch size

0

200

400

600

se

nt
s /

 se
c.

implementation
PyTorch
DyNet

Figure 2: Training speed comparison (number of pro-
cessed sentences / sec.) when increasing batch sizes to
[1, 2, 4, · · · , 512]. Shade denotes standard deviation.

that appear at least twice; however, this method
vastly increases the vocabulary size and hence the
model size. Unknown tokens are created in the
same way with the Berkeley parser’s surface fea-
ture rule (Petrov et al., 2006). The way to annotate
parse trees is the same as well; we run Berkeley
neural parser (Kitaev et al., 2019), a state-of-the-art
constituency parser to assign accurate parses.

Model size and parameters We experiment
with the most common model size of RNNG in the
literature: 256 dimensions for input and LSTM hid-
den dimensions, with 2 layer LSTMs (Dyer et al.,
2016; Hu et al., 2020). The total number of pa-
rameters is about 15M. The hyperparameters are
summarized in Appendix A.

Other settings We employ some additional tech-
niques to improve the efficiency of our batching
mechanism. First, before training, we group sen-
tences by their number of gold actions so that ex-
amples in each mini-batch have similar numbers of
actions. Specifically, we first sort the sentences by
action lengths, divide by every 4096 sentences, and
then sample each batch from a single group.

Second, we predefine the maximum value for
the total number of actions across sentences in a
batch, which we set to 26,000. This is inspired by
a similar mechanism in fairseq (Ott et al., 2019) for
the maximum number of tokens. Using this means
that the number of sentences in a batch will be
adjusted to be smaller than the batch size when the
action sequences (or sentences) are long, allowing
us to interpret given batch size as the maximum
that is fully exploited only for shorter sentences,
which are in practice dominant in the data.8

8To reduce the memory further, we also employ mixed-
precision training in PyTorch. Inference is performed with

0 25 50 75 100 125 150
Wall clock (seconds, x1000)

155.0

157.5

160.0

162.5

165.0

167.5

170.0

Va
lid

at
io

n
lo

ss
 (x

10
00

)

batch_size
64
128
256
512

Figure 3: Training wall clock time vs. total validation
loss for different batch sizes. X-value of i-th point is
an averaged duration time to i-th validation step across
three random seeds. Shade denotes standard deviation.

Every experiment is run on a single V100 GPU
with 16GB memory. Unless otherwise noted, we
perform every experiment three times with differ-
ent random seeds, reporting an average score with
standard deviation.

5.2 Effects of batch sizes

Although our batched training involves action-
specific operations (Section 3), to our surprise,
the efficiency improvement for our RNNG with
large batch sizes is almost linear up to 256 (Fig-
ure 2). The improvement is narrow at 512, though
this is mainly due to the restriction of the maxi-
mum number of actions in a batch (Section 5.1),
which reduces the actual batch size for longer in-
puts. DyNet’s Autobatch is quite effective up to 16,
running much faster than ours due to the speed of
C++, but further improvement is not obtained prob-
ably because of the increased overhead of finding
mini-batch units themselves from a large computa-
tional graph.

Though this result clearly demonstrates the effi-
ciency of our batching mechanism, it is only mean-
ingful when the large batch size in fact leads to
a faster model convergence. This is the case, as
shown in Figure 3, where we compare the total
validation losses as a function of actual wall clock
time during training. The loss is calculated every
1000 batches. The model with batch size 512 con-
verges fastest, and importantly, to better parameters.
This result suggests that we can safely benefit from
large batch size as long as memory permits. In the
following experiments, we fix the batch size to 512.

half-precision (fp16). We find that this does not change the
results of beam search at all.

4346

5.3 Beam search speed improvement

As we discuss in Section 4, we have also improved
the efficiency of word-synchronous beam search,
a standard technique to calculate incremental pre-
fix probabilities (Hale, 2001) and a parse tree for
RNNGs. Now, we evaluate the impact of this im-
provement. For PyTorch, we run it on V100 GPU;
for DyNet, we find that it runs faster on CPUs so
we instead use CPUs (Intel Xeon 6148, 20 cores
x2), with Intel MKL. DyNet beam search is still too
slow with this environment so we limit the number
of tested sentences to 300 from the BLLIP develop-
ment set. For PyTorch, we try two different batch
sizes {1, 10}, with a restriction on the number of
tokens in a batch, similarly to the total action size
in training (Section 5.1). We fix this value to 250,
with which the model can safely parse with the
largest beam size of 1000.

Word-synchronous beam search employs two
types of beam widths, action beam size (k) and
word beam size (kw), along with fast-tracked can-
didate size, denoted as ks (see Stern et al. 2017).
k is most akin to the standard beam size. Table 1
summarizes the results when increasing k (others
are in the caption). The beam search of DyNet be-
comes prohibitively slow when k ≥ 50. Strikingly,
the increase in average runtime is more than linear
against the beam size, especially for 10→50 and
50→100. The time increases, 0.5→11.3 (x22.6)
and 11.3→48.6 (x4.3) are roughly quadratic to the
increase of k (x5 and x2). This result is reasonable
because in addition to the complexity of each step,
which depends on k, the length of searched action
sequence could also linearly grow by k.9 The naı̈ve
DyNet implementation directly suffers from this
computational cost.

Our batched beam search largely resolves this
issue and now the average runtime only gradually
increases by k. We note that as a parser or a lan-
guage model, this speed is still not very fast, con-
sidering that this is on a GPU.10 For the research
purpose, including psycholinguistic assessments as

9For a sentence of length N , the runtime of beam search is
O(k ×N ×Mw), where Mw denotes the maximum number
of actions between two tokens (until choosing next SHIFT).
The expected number of actions between two tokens (bound
by Mw) grows by k because at each step, with a large k the
chance that non-shift beam items remain in the next beam
increases; hence, the runtime becomes quadratic to k in the
worst case. We conjecture that this inefficiency is bounded at
some k (see k = 200), though is severe for smaller ks.

10For smaller k, we can increase the batch size and the
maximum number of tokens in a batch to further speedup.

Action beam size k 10 50 100 200 400 1000

DyNet 0.5 11.3 48.6 100.6 201.3 NA
PyTorch (B=1) 1.7 2.1 2.3 2.5 2.9 4.1
PyTorch (B=10) 0.4 0.5 0.7 0.9 1.3 2.8

Table 1: Word-synchronous beam search speed (aver-
age seconds per sentence) comparison on the first 300
sentences in BLLIP development set. B denotes the
batch size. Word beam sizes (kw) / fast track sizes (ks)
are 10/1, 10/1, 10/1, 20/2, 40/4, and 100/10, respec-
tively.

done in Section 6, however, this improvement is
significant, making experiments much easier even
with large beam sizes. We still need to work on
improving efficiency further, possibly by modify-
ing learning methods to replace word-synchronous
search (Stanojević and Steedman, 2020).

6 Syntactic Generalization Ability of
Scaled RNNG

Finally, we evaluate the syntactic generalization
abilities of the scaled RNNG. For this purpose, we
adopt the test circuits used in Hu et al. (2020) via
SyntaxGym (Gauthier et al., 2020). Here, a test
circuit is a collection of test suites; e.g., “Long-
Distance Dependencies” circuit contains a suite
on a specific type of “filler-gap dependencies” as
well as a suite on (pseudo) “cleft”. For each exam-
ple in a suite, a model succeeds if it can assign a
higher likelihood on a grammatically critical po-
sition in the correct sentence. For example, given
“The farmer near the clerks knows/*know many
people.” in the “Agreement” circuit, a model is cor-
rect if it assigns p(knows|h) > p(know|h). Note
that for subword models the total likelihoods on
subwords (not averaged) are compared.

In the previous literature, Hu et al. (2020) trained
an RNNG on BLLIP (42M tokens). Here, we train
subword RNNGs on 100M tokens from English
Wikipedia, to which we assign parse trees with
Berkeley neural parser. The model size is 35M
with 30k subword units, following the experiment
in Appendix B, which assesses the suitable num-
ber of subword units for different model sizes. We
train this RNNG for three days (with three different
seeds), and at inference fix the beam size k to 100
(kw = 10, ks = 1). We also train an RNNG with
the subset of this data (42M tokens) to separate
the effects of data size. Our LSTM baseline is the
one used in Noji and Takamura (2020), which is
basically an AWD-LSTM-LM (Merity et al., 2018)

4347

Agreement Center Embedding Garden-Path Effects Gross Syntactic State Licensing Long-Distance Dependencies
Circuit

0

20

40

60

80

100
Sy

nt
ac

tic
 g

en
er

al
iza

tio
n

sc
or

e

GPT2-XL RNNG (H20) RNNG (42M wiki) RNNG (100M wiki) LSTM-LM (100M wiki)

Figure 4: Circuit-level accuracies on SyntaxGym. For each circuit, suite-level accuracies are averaged across
different test suites and random seeds to compute “Syntactic generalization score” of each model. Note that
RNNG (H20) is a model trained on BLLIP (about 40M tokens) in Hu et al. (2020) but diverged from their results,
because their suite-level accuracies are averaged across different models trained on various data sizes.

extended to be sentence-level and, on the Marvin
and Linzen (2018) benchmark, shown to work bet-
ter than GRNN (Gulordava et al., 2018), one of the
models used in Hu et al. (2020).11

The main result on circuit-level accuracies is
summarized in Figure 4. On the effects of the data
scale, we observe a consistent improvement from
“RNNG (42M wiki)“ to “RNNG (100M wiki)”.
This result suggests that this amount of increase
in training data is still beneficial for structural lan-
guage models to strengthen their syntactic gener-
alization ability. For some circuits, only RNNG
(100M) outperforms GPT-2 (Radford et al., 2019)
on average (“Agreement” and “Licensing”).

Comparing LSTM (100M) and RNNG (100M),
RNNG generally outperforms LSTM, but with an
exception on “Long-Distance Dependencies”. In
order to inspect this, we break down this circuit into
suites, (Figure 5), finding that this deficiency of
RNNG is due to its poor performance on (pseudo)
“cleft”, including the following example:

(1) a. What he did was prepare the meal .

b. *What he ate was prepare the meal .

On underlined tokens, models should assign a
higher likelihood for (1a). Our LSTM performs
nearly perfectly on these cases while our RNNGs
perform badly. We conjecture that given more data
and/or parameters, RNNGs will tend to strengthen

11Our LSTM implementation is available at
https://github.com/aistairc/lm syntax negative. We train this
LSTM on our subword-segmented Wikipedia (30k units). The
model size is adjusted so that the total number of parameters
becomes 35M, the same size as our RNNGs (3 layer LSTMs
with 1150 hidden and 450 input dimensions).

cleft cleft_modifier fgd-*
Long-Distance Dpendencies

0

20

40

60

80

100

Sy
nt

ac
tic

 g
en

er
al

iza
tio

n
sc

or
e

RNNG (H20)
RNNG (42M wiki)
RNNG (100M wiki)
LSTM-LM (100M wiki)

Figure 5: Suite-level accuracies on the “Long-Distance
Dependencies” circuit. fgd-* is averaged across differ-
ent test suites of filler-gap dependencies.

their commitment to provided syntactic supervi-
sion, and hence may lose some lexical heuristics
which LSTMs can exploit from surface patterns
(e.g., an association of did→ prepare). In fact, the
ability of LSTM on cleft is rather brittle, as shown
in a huge drop on “cleft modifier”, which include
cleft constructions with intervening modifiers.

To rigorously handle these cases, models should
notice that (1b) is a free relative clause and do not
have an antecedent. However, the currently em-
ployed PTB annotation, which is limited to local
structures, does not provide a distinction between
these clause types, analyzing both as “(SBAR
(WHNP What) (S (NP he) (VP did/ate)))”, which
our RNNGs predict correctly. We also notice that
Hu et al. (2020)’s RNNG (H20) performs rather
similarly to our LSTM, while our RNNG (42M),
trained on the comparable size of data to H20, is
more similar to our RNNG (100M), suggesting that
RNNG’s poor performance on cleft is not just due
to the data scale. One possible explanation of the
discrepancy between H20 and our 42M RNNG is

4348

that our RNNG might be better optimized thanks
to improved training, or due to the sizes of hidden
layers (256 for H20 and 656 for ours).

This problem poses a new interesting challenge.
While RNNGs have been compared to LSTMs sev-
eral times, the provided syntactic structures are
fixed and effects of different annotations (formal-
ism, quantity, etc.) are not explored. For such
investigation, the training cost of RNNGs has been
a practical burden, but that problem largely goes
away with the current study. We expect that our
new implementation and batching strategy provide
fruitful future research opportunities on structured
neural language models.

7 Conclusion

A large computational cost of training structured
neural language models was a main practical bur-
den for employing these models in applications and
analyses. With special focus on RNNGs, we have
provided a direct solution to this problem by show-
ing that batched effective training is in fact possible.
On the large scale experiments with SyntaxGym
test circuits, we found that the data quantity further
strengthens the syntactic generalization abilities
of RNNGs, while the annotation quality or quan-
tity will also be of practical importance towards a
language model with human-like strong syntactic
performance.

Acknowledgement

This paper is based on results obtained from a
project, JPNP20006, commissioned by the New
Energy and Industrial Technology Development Or-
ganization (NEDO). This work was also supported
by JSPS KAKENHI Grant Numbers 20K19877 and
19H04990, and the National Institute for Japanese
Language and Linguistics (NINJAL) Collaborative
Research Project “Computational Psycholinguis-
tics of Language Processing with Large Corpora.”

References
Eugene Charniak, Don Blaheta, Niyu Ge, Keith Hall,

John Hale, and Mark Johnson. 2000. BLLIP 1987-
89 WSJ Corpus Release 1 LDC2000T43. Linguistic
Data Consortium.

Benoit Crabbé, Murielle Fabre, and Christophe Pallier.
2019. Variable beam search for generative neural
parsing and its relevance for the analysis of neuro-
imaging signal. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language

Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1150–1160, Hong Kong, China. As-
sociation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Shuoyang Ding and Philipp Koehn. 2019. Paralleliz-
able stack long short-term memory. In Proceedings
of the Third Workshop on Structured Prediction for
NLP, pages 1–6, Minneapolis, Minnesota. Associa-
tion for Computational Linguistics.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 334–343, Beijing, China. Associa-
tion for Computational Linguistics.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 199–209, San Diego, California.
Association for Computational Linguistics.

Akiko Eriguchi, Yoshimasa Tsuruoka, and Kyunghyun
Cho. 2017. Learning to parse and translate improves
neural machine translation. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
72–78, Vancouver, Canada. Association for Compu-
tational Linguistics.

Jon Gauthier, Jennifer Hu, Ethan Wilcox, Peng Qian,
and Roger Levy. 2020. SyntaxGym: An online
platform for targeted evaluation of language models.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics: System
Demonstrations, pages 70–76, Online. Association
for Computational Linguistics.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave,
Tal Linzen, and Marco Baroni. 2018. Colorless
green recurrent networks dream hierarchically. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1195–1205, New
Orleans, Louisiana. Association for Computational
Linguistics.

https://catalog.ldc.upenn.edu/LDC2000T43
https://catalog.ldc.upenn.edu/LDC2000T43
https://doi.org/10.18653/v1/D19-1106
https://doi.org/10.18653/v1/D19-1106
https://doi.org/10.18653/v1/D19-1106
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/W19-1501
https://doi.org/10.18653/v1/W19-1501
https://doi.org/10.3115/v1/P15-1033
https://doi.org/10.3115/v1/P15-1033
https://doi.org/10.3115/v1/P15-1033
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/P17-2012
https://doi.org/10.18653/v1/P17-2012
https://doi.org/10.18653/v1/2020.acl-demos.10
https://doi.org/10.18653/v1/2020.acl-demos.10
https://doi.org/10.18653/v1/N18-1108
https://doi.org/10.18653/v1/N18-1108

4349

John Hale. 2001. A probabilistic Earley parser as a psy-
cholinguistic model. In Second Meeting of the North
American Chapter of the Association for Computa-
tional Linguistics.

John Hale, Chris Dyer, Adhiguna Kuncoro, and
Jonathan Brennan. 2018. Finding syntax in human
encephalography with beam search. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2727–2736, Melbourne, Australia. Associa-
tion for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Jennifer Hu, Jon Gauthier, Peng Qian, Ethan Wilcox,
and Roger Levy. 2020. A systematic assessment
of syntactic generalization in neural language mod-
els. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
pages 1725–1744, Online. Association for Compu-
tational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Multi-
lingual constituency parsing with self-attention and
pre-training. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3499–3505, Florence, Italy. Associa-
tion for Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, Graham Neubig, and Noah A.
Smith. 2017. What do recurrent neural network
grammars learn about syntax? In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
1, Long Papers, pages 1249–1258, Valencia, Spain.
Association for Computational Linguistics.

Adhiguna Kuncoro, Chris Dyer, John Hale, Dani Yo-
gatama, Stephen Clark, and Phil Blunsom. 2018.
LSTMs can learn syntax-sensitive dependencies
well, but modeling structure makes them better. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1426–1436, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Adhiguna Kuncoro, Chris Dyer, Laura Rimell, Stephen
Clark, and Phil Blunsom. 2019. Scalable syntax-
aware language models using knowledge distillation.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
3472–3484, Florence, Italy. Association for Compu-
tational Linguistics.

Adhiguna Kuncoro, Lingpeng Kong, Daniel Fried,
Dani Yogatama, Laura Rimell, Chris Dyer, and Phil
Blunsom. 2020. Syntactic structure distillation pre-
training for bidirectional encoders. Transactions
of the Association for Computational Linguistics,
8:776–794.

Tal Linzen. 2020. How can we accelerate progress to-
wards human-like linguistic generalization? In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5210–
5217, Online. Association for Computational Lin-
guistics.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. Transactions of the
Association for Computational Linguistics, 4:521–
535.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1192–1202,
Brussels, Belgium. Association for Computational
Linguistics.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019.
Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3428–3448,
Florence, Italy. Association for Computational Lin-
guistics.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2018. Regularizing and optimizing LSTM
language models. In International Conference on
Learning Representations.

Sabrina J. Mielke. 2019. Can you compare perplexity
across different segmentations?

Sabrina J. Mielke, Ryan Cotterell, Kyle Gorman, Brian
Roark, and Jason Eisner. 2019. What kind of lan-
guage is hard to language-model? In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4975–4989, Florence,
Italy. Association for Computational Linguistics.

https://www.aclweb.org/anthology/N01-1021
https://www.aclweb.org/anthology/N01-1021
https://doi.org/10.18653/v1/P18-1254
https://doi.org/10.18653/v1/P18-1254
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://www.aclweb.org/anthology/E17-1117
https://www.aclweb.org/anthology/E17-1117
https://doi.org/10.18653/v1/P18-1132
https://doi.org/10.18653/v1/P18-1132
https://doi.org/10.18653/v1/P19-1337
https://doi.org/10.18653/v1/P19-1337
https://doi.org/10.1162/tacl_a_00345
https://doi.org/10.1162/tacl_a_00345
https://doi.org/10.18653/v1/2020.acl-main.465
https://doi.org/10.18653/v1/2020.acl-main.465
https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.1162/tacl_a_00115
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
https://doi.org/10.18653/v1/D18-1151
https://doi.org/10.18653/v1/D18-1151
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://openreview.net/forum?id=SyyGPP0TZ
https://openreview.net/forum?id=SyyGPP0TZ
https://sjmielke.com/comparing-perplexities.htm
https://sjmielke.com/comparing-perplexities.htm
https://doi.org/10.18653/v1/P19-1491
https://doi.org/10.18653/v1/P19-1491

4350

Graham Neubig, Yoav Goldberg, and Chris Dyer. 2017.
On-the-fly operation batching in dynamic computa-
tion graphs. In Advances in Neural Information Pro-
cessing Systems, volume 30, pages 3971–3981. Cur-
ran Associates, Inc.

Joakim Nivre. 2004. Incrementality in deterministic de-
pendency parsing. In Proceedings of the Workshop
on Incremental Parsing: Bringing Engineering and
Cognition Together, pages 50–57, Barcelona, Spain.
Association for Computational Linguistics.

Hiroshi Noji and Hiroya Takamura. 2020. An anal-
ysis of the utility of explicit negative examples to
improve the syntactic abilities of neural language
models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3375–3385, Online. Association for Computa-
tional Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 48–53, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. In Proceedings of the 21st
International Conference on Computational Linguis-
tics and 44th Annual Meeting of the Association for
Computational Linguistics, pages 433–440, Sydney,
Australia. Association for Computational Linguis-
tics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Miloš Stanojević and Mark Steedman. 2020. Max-
margin incremental CCG parsing. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4111–4122, On-
line. Association for Computational Linguistics.

Mitchell Stern, Daniel Fried, and Dan Klein. 2017. Ef-
fective inference for generative neural parsing. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
1695–1700, Copenhagen, Denmark. Association for
Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30, pages 5998–6008. Cur-
ran Associates, Inc.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2020. BLiMP: The benchmark of linguis-
tic minimal pairs for English. Transactions of the As-
sociation for Computational Linguistics, 8:377–392.

Ethan Wilcox, Roger Levy, Takashi Morita, and
Richard Futrell. 2018. What do RNN language
models learn about filler–gap dependencies? In
Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 211–221, Brussels, Belgium.
Association for Computational Linguistics.

Ethan Wilcox, Peng Qian, Richard Futrell, Miguel
Ballesteros, and Roger Levy. 2019. Structural super-
vision improves learning of non-local grammatical
dependencies. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3302–3312, Minneapolis, Minnesota.
Association for Computational Linguistics.

Ethan Wilcox, Peng Qian, Richard Futrell, Ryosuke
Kohita, Roger Levy, and Miguel Ballesteros. 2020.
Structural supervision improves few-shot learning
and syntactic generalization in neural language mod-
els. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 4640–4652, Online. Associa-
tion for Computational Linguistics.

https://proceedings.neurips.cc/paper/2017/file/c902b497eb972281fb5b4e206db38ee6-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/c902b497eb972281fb5b4e206db38ee6-Paper.pdf
https://www.aclweb.org/anthology/W04-0308
https://www.aclweb.org/anthology/W04-0308
https://doi.org/10.18653/v1/2020.acl-main.309
https://doi.org/10.18653/v1/2020.acl-main.309
https://doi.org/10.18653/v1/2020.acl-main.309
https://doi.org/10.18653/v1/2020.acl-main.309
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.3115/1220175.1220230
https://doi.org/10.3115/1220175.1220230
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/2020.acl-main.378
https://doi.org/10.18653/v1/2020.acl-main.378
https://doi.org/10.18653/v1/D17-1178
https://doi.org/10.18653/v1/D17-1178
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.18653/v1/W18-5423
https://doi.org/10.18653/v1/W18-5423
https://doi.org/10.18653/v1/N19-1334
https://doi.org/10.18653/v1/N19-1334
https://doi.org/10.18653/v1/N19-1334
https://doi.org/10.18653/v1/2020.emnlp-main.375
https://doi.org/10.18653/v1/2020.emnlp-main.375
https://doi.org/10.18653/v1/2020.emnlp-main.375

4351

A Hyperparameters

We use the defualt parameter setting for the DyNet
implementation. For our implementation, we use
Adam optimizer (Kingma and Ba, 2015), which is
found to be superior, while SGD has been used for
DyNet implementation (Dyer et al., 2016; Wilcox
et al., 2019). We set the learning rate and dropout
rate to 0.001 and 0.1, respectively, which we find
achieve lower validation loss robustly across differ-
ent batch sizes.

B Effect of Number of Subword Units

We perform an experiment to understand the behav-
iors of our simple subword modeling (Section 4).
We use the BLLIP corpus as preprocessed in Sec-
tion 5.1 except the setting about vocabulary. We
compare the fixed vocabulary models, which we
train in the experiment of Section 5.2 (batch size
512), and several subword vocabulary models. The
hyperparameters are the same as the fixed vocabu-
lary models.

Subword units The number of subwords can be
seen as a hyperparameter. To understand the effects
of this size for RNNGs, we prepare three different
subword vocabularies: 10k (10,240), 20k (20,480),
and 30k (30,720). We use byte-pair encoding (Sen-
nrich et al., 2016) implemented in sentencepiece
(Kudo and Richardson, 2018).

Model sizes We prepare two different model
sizes, 15M and 35M, to see the interaction between
the suitable size of subword units and model size,
by adjusting the number of two dimensions so that
the total number of parameters becomes compara-
ble to these numbers. For 15M parameter models,
the dimensions are 528 for 10k units; 432 for 20k;
and 336 for 30k. For 35M parameter models, these
are 864, 752, and 656, respectively. The number of
LSTM layers is fixed to 2.

Results We investigate (1) the effectiveness of
our simple subword modeling itself, and (2)
whether the optimal number of subword units de-
pends on model sizes. For (1), one way of evalua-
tion is to compare the perplexities of subword mod-
els and fixed vocabulary models (see Section 5.1).
However, they are not directly comparable because
the fixed vocabulary models replace many tokens
with unknown tokens, which are easy to predict and
make the comparison unfair (Mielke et al., 2019).

V (# params.) / beam k 100 200 400 1000

Vfix = 50k (15M) 92.34 93.70 94.26 94.59

Vsb = 10k (15M) 92.74 93.85 94.37 94.64
Vsb = 20k (15M) 92.77 93.95 94.48 94.80
Vsb = 30k (15M) 92.33 93.76 94.38 94.72

Vsb = 10k (35M) 92.67 93.87 94.37 94.59
Vsb = 20k (35M) 92.84 93.93 94.50 94.79
Vsb = 30k (35M) 92.92 93.84 94.44 94.72

Hale et al. (2018) 87.1 88.96 90.48 90.96

Table 2: PTB development set parsing accuracy (F1)
when changing beam size, averaged on three models
with different random seeds. Vfix is the vocabulary
size for fixed vocabulary models while Vsb is that for
subword models. Hale et al. (2018) is trained only on
PTB training set and is not directly comparable. Word
beam kw = k/10 and ks = k/100.

V (# params.) / beam k 100 200 400 1000

Vfix = 50k (15M) 52.34 49.53 48.26 47.53

Vsb = 10k (15M) 69.09 65.34 63.74 62.81
Vsb = 20k (15M) 67.52 64.15 62.41 61.36
Vsb = 30k (15M) 70.43 66.41 64.50 63.41

Vsb = 10k (35M) 67.66 64.13 62.41 61.47
Vsb = 20k (35M) 63.60 60.33 58.78 57.90
Vsb = 30k (35M) 60.80 57.91 56.28 55.45

Table 3: Perplexity on BLLIP validation set for each
setting described in Table 2, averaged on three models
with different seeds. For Vsb, perplexity is not subword-
level but token-level, by summing subword likelihoods
for each token.

We instead validate the effectiveness of our sub-
word modeling by not language modeling, but pars-
ing performance. Note that the text in the BLLIP
corpus is Wall Street Journal, the same as Penn
Treebank (PTB). Thus, we expect that the quality
of auto parses provided to our training data is high,
allowing us to assume that a good model should
parse the gold PTB data more accurately. We run
beam search on the PTB development (section 22)
for each model and the results are summarized in
Table 2. We can see that F1 scores consistently im-
prove by subword modeling compared to the fixed
vocabulary setting. The effects of model size (15M
vs. 35M) are negligible, suggesting that the upper
bound parsing performance using the current silver
quality data can be reached with smaller models.

For (2) above, while comparing perplexities
across subword and fixed-vocabulary models is
impossible, comparing different subword units is
possible by casting the subword-level likelihoods

4352

to token-level likelihoods (Mielke, 2019). Table 3
summarizes those values along with the results by
fixed vocabulary models as reference. The effects
of the number of subword units (Vsb) are clearer.
For 15M models, the optimal Vsb is 20k, while for
larger 35M models, the optimal size is 30k. This
suggests that more parameters are needed to obtain
better results for large models.

