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Abstract

Pre-trained language models such as BERT
have exhibited remarkable performances in
many tasks in natural language understand-
ing (NLU). The tokens in the models are usu-
ally fine-grained in the sense that for lan-
guages like English they are words or sub-
words and for languages like Chinese they are
characters. In English, for example, there
are multi-word expressions which form natural
lexical units and thus the use of coarse-grained
tokenization also appears to be reasonable.
In fact, both fine-grained and coarse-grained
tokenizations have advantages and disadvan-
tages for learning of pre-trained language mod-
els. In this paper, we propose a novel pre-
trained language model, referred to as AM-
BERT (A Multi-grained BERT), on the basis
of both fine-grained and coarse-grained tok-
enizations. For English, AMBERT takes both
the sequence of words (fine-grained tokens)
and the sequence of phrases (coarse-grained
tokens) as input after tokenization, employs
one encoder for processing the sequence of
words and the other encoder for processing
the sequence of the phrases, utilizes shared
parameters between the two encoders, and fi-
nally creates a sequence of contextualized rep-
resentations of the words and a sequence of
contextualized representations of the phrases.
Experiments have been conducted on bench-
mark datasets for Chinese and English, includ-
ing CLUE, GLUE, SQuAD and RACE. The
results show that AMBERT can outperform
BERT in all cases, particularly the improve-
ments are significant for Chinese. We also de-
velop a method to improve the efficiency of
AMBERT in inference, which still performs
better than BERT with the same computational
cost as BERT.

1 Introduction

Pre-trained models such as BERT, RoBERTa, and
ALBERT (Devlin et al., 2018; Liu et al., 2019; Lan

et al., 2019) have shown great power in natural
language understanding (NLU). The Transformer-
based language models are first learned from a
large corpus in pre-training, and then learned from
labeled data of a downstream task in fine-tuning.
With Transformer (Vaswani et al., 2017), pre-
training technique, and big data, the models can
effectively capture the lexical, syntactic, and se-
mantic relations between the tokens in the input
text and achieve state-of-the-art performance in
many NLU tasks, such as sentiment analysis, text
entailment, and machine reading comprehension.

In BERT, for example, pre-training is mainly
conducted based on masked language modeling
(MLM) in which about 15% of the tokens in the
input text are masked with a special token [MASK],
and the goal is to reconstruct the original text from
the masked tokens. Fine-tuning is separately per-
formed for individual tasks as text classification,
text matching, text span detection, etc. Usually, the
tokens in the input text are fine-grained; for exam-
ple, they are words or sub-words in English and
characters in Chinese. In principle, the tokens can
also be coarse-grained, that is, for example, phrases
in English and words in Chinese. There are many
multi-word expressions in English such as ‘New
York’ and ‘ice cream’ and the use of phrases also
appears to be reasonable. It is more sensible to use
words (including single character words) in Chi-
nese, because they are basic lexical units. In fact,
all existing pre-trained language models employ
single-grained (usually fine-grained) tokenization.

Previous work indicates that the fine-grained ap-
proach and the coarse-grained approach have both
pros and cons. The tokens in the fine-grained ap-
proach are less complete as lexical units but their
representations are easier to learn (because there
are less token types and more tokens in training
data), while the tokens in the coarse-grained ap-
proach are more complete as lexical units but their
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representations are more difficult to learn (because
there are more token types and less tokens in train-
ing data). Moreover, for the coarse-grained ap-
proach there is no guarantee that tokenization (seg-
mentation) is completely correct. Sometimes am-
biguity exists and it would be better to retain all
possibilities of tokenization. In contrast, for the
fine-grained approach tokenization is carried out at
the primitive level and there is no risk of ‘incorrect’
tokenization.

For example, (Li et al., 2019) observe that fine-
grained models consistently outperform coarse-
grained models in deep learning for Chinese lan-
guage processing. They point out that the reason is
that low frequency words (coarse-grained tokens)
tend to have insufficient training data and tend to
be out of vocabulary, and as a result the learned
representations are not sufficiently reliable. On the
other hand, previous work also demonstrates that
masking of coarse-grained tokens in pre-training
of language models is helpful (Cui et al., 2019;
Joshi et al., 2020). That is, although the model
itself is fine-grained, masking on consecutive to-
kens (phrases in English and words in Chinese)
can lead to learning of a more accurate model. In
Appendix A, we give examples of attention maps
in BERT to further support the assertion.

In this paper, we propose A Multi-grained
BERT model (AMBERT), which employs both
fine-grained and coarse-grained tokenizations. For
English, AMBERT extends BERT by simultane-
ously constructing representations for both words
and phrases in the input text using two encoders.
Specifically, AMBERT first conducts tokenization
at both word and phrase levels. It then takes the em-
beddings of words and phrases as input to the two
encoders with the shared parameters. Finally it ob-
tains a contextualized representation for the word
and a contextualized representation for the phrase
at each position. Note that the number of parame-
ters in AMBERT is comparable to that of BERT, be-
cause the parameters in the two encoders are shared.
There are only additional parameters from multi-
grained embeddings. AMBERT can represent the
input text at both word-level and phrase-level, to
leverage the advantages of the two approaches of
tokenization, and create richer representations for
the input text at multiple granularity.

AMBERT consists of two encoders and thus its
computational cost is roughly doubled compared
with BERT. We also develop a method for im-

proving the efficiency of AMBERT in inference,
which only uses one of the two encoders. One
can choose either the fine-grained encoder or the
coarse-grained encoder for a specific task using a
development dataset.

We conduct extensive experiments to make a
comparison between AMBERT and the baselines
as well as alternatives to AMBERT, using the
benchmark datasets in English and Chinese. The re-
sults show that AMBERT significantly outperforms
single-grained BERT models with a large margin
in both Chinese and English. In English, com-
pared to Google BERT, AMBERT achieves 2.0%
higher GLUE score, 2.5% higher RACE score, and
5.1% more SQuAD score. In Chinese, AMBERT
improves average score by over 2.7% in CLUE.
Furthermore, AMBERT with only one encoder can
preform much better than the single-grained BERT
models with a similar amount of inference time.

We make the following contributions.
• Study of multi-grained pre-trained language

models,
• Proposal of a new pre-trained language model

called AMBERT as an extension of BERT,
• Empirical verification of AMBERT on the En-

glish and Chinese benchmark datasets GLUE,
SQuAD, RACE, and CLUE,

• Proposal of an efficient inference method for
AMBERT.

2 Related work

There has been a large amount of work on pre-
trained language models. ELMo (Peters et al.,
2018) is one of the first pre-trained language mod-
els for learning contextualized representations of
words in the input text. Leveraging the power of
Transformer (Vaswani et al., 2017), GPTs (Rad-
ford et al., 2018, 2019) are developed as unidirec-
tional models to make predictions on the input text
in an auto-regressive manner, and BERT (Devlin
et al., 2018) is developed as a bidirectional model
to make predictions on the whole or part of the
input text. Masked language modeling (MLM) and
next sentence prediction (NSP) are the two tasks
in pre-training of BERT. Since the inception of
BERT, a number of new models have been pro-
posed to further enhance the performance of it. XL-
Net (Yang et al., 2019) is a permutation language
model which can improve the accuracy of MLM.
RoBERTa (Liu et al., 2019) represents a new way
of training more reliable BERT with a very large
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amount of data. ALBERT (Lan et al., 2019) is
a light-weight version of BERT, which shares pa-
rameters across layers. StructBERT (Wang et al.,
2019) incorporates word and sentence structures
into BERT to learn better representations of tokens
and sentences. ERNIE2.0 (Sun et al., 2020) is a
variant of BERT pre-trained on multiple tasks with
coarse-grained tokens masked. ELECTRA (Clark
et al., 2020) has a GAN-style architecture for effi-
ciently utilizing all tokens in pre-training.

It has been found that the use of coarse-grained
tokens is beneficial for pre-trained language mod-
els. (Devlin et al., 2018) point out that ‘whole
word masking’ is effective for training of BERT.
It is also observed that whole word masking is
useful for building a Chinese BERT (Cui et al.,
2019). In ERNIE (Sun et al., 2019b), entity level
masking is employed as a strategy for pre-training
and proved to be effective for language understand-
ing tasks (see also (Zhang et al., 2019)). In Span-
BERT (Joshi et al., 2020), text spans are masked
in pre-training and the learned model can substan-
tially enhance the accuracies of span selection tasks.
It is indicated that word segmentation is especially
important for Chinese and a BERT-based Chinese
text encoder is proposed with n-gram representa-
tions (Diao et al., 2019). All existing work focuses
on the use of single-grained tokens in learning and
utilization of pre-trained language models. In this
work, we propose a general technique of exploit-
ing multi-grained tokens for pre-trained language
models and apply it to BERT.

3 Our Method: AMBERT

In this section, we present the model, pre-training,
and fine-tuning of AMBERT. We also present a
discussion on alternatives to AMBERT.

3.1 Model

Figure 1 gives an overview of AMBERT. AMBERT
takes a text as input. Tokenization is conducted on
the input text to obtain a sequence of fine-grained
tokens and a sequence of coarse-grained tokens.
AMBERT has two encoders, one for processing the
fine-grained token sequence and the other for pro-
cessing the coarse-grained token sequence. Each
of the encoders has exactly the same architecture
as that of BERT (Devlin et al., 2018). The two
encoders share the same parameters at each corre-
sponding layer, except that each has its own token
embedding parameters. The fine-grained encoder

generates contextualized representations from the
sequence of fine-grained tokens through its layers.
In parallel, the coarse-grained encoder generates
contextualized representations from the sequence
of coarse-grained tokens through its layers. AM-
BERT outputs a sequence of contextualized rep-
resentations for the fine-grained tokens and a se-
quence of contextualized representations for the
coarse-grained tokens.

AMBERT is expressive in that it learns and uti-
lizes contextualized representations of the input
text at both fine-grained and coarse-grained levels.
The model retains all possibilities of tokenizations
and learns the attention weights (importance) of
representations of multi-grained tokens. AMBERT
is also efficient through sharing of parameters be-
tween the two encoders. The parameters represent
the same ways of combining representations, no
matter whether representations are those of fine-
grained tokens or coarse-grained tokens.

3.2 Pre-Training
Pre-training of AMBERT is mainly conducted on
the basis of masked language modeling (MLM), at
both fine-grained and coarse-grained levels. Next
sentence prediction (NSP) is not essential as in-
dicated in many studies after BERT (Lan et al.,
2019; Liu et al., 2019). We only use NSP in our
experiments for comparison purposes. Let x̂ de-
note the sequence of fine-grained tokens with some
of them being masked, and x̄ denote the masked
fine-grained tokens. Let ẑ denote the sequence of
coarse-grained tokens with some of them being
masked, and z̄ denote the masked coarse-grained
tokens. Pre-training is defined as optimization of
the following function,

min
θ
− log pθ(x̄, z̄|x̂, ẑ) ≈

min
θ
−

M∑
i=1

mi log pθ(xi|x̂)−
n∑
j=1

nj log pθ(zj |ẑ),

where mi takes 1 or 0 as values and mi = 1 in-
dicates that fine-grained token xi is masked, m
denotes the total number of fine-grained tokens;
nj takes 1 or 0 as values and nj = 1 indicates
that coarse-grained token zj is masked, n denotes
the total number of coarse-grained tokens; and θ
denotes parameters.

3.3 Fine-Tuning
In fine-tuning of AMBERT for classification, the
fine-grained encoder and coarse-grained encoder
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Fine-grained Encoder

Output : Contextualized representations of fine-grained and coarse-grained tokens.

rx1 rx2rx0

[CLS]
… york min … [SEP]

Coarse-grained Encoder

[CLS]
a new

york minste
r

…
… [SEP]

rxm… rz1 rz2 rz3rz0 rzn…

Input : A new chapel in York Minster was built in 1154. 

Figure 1: An overview of AMBERT, showing the process of creating multi-grained representations. The input
is a sentence in English and output is the overall representation of the sentence. There are two encoders for
processing the sequence of fine-grained tokens and the sequence of coarse-grained tokens respectively. The final
contextualized representations of fine-grained tokens and coarse-grained tokens are denoted as rx0, rx1, · · · , rxm
and rz0, rz1, · · · , rzn respectively.

create special [CLS] representations, and both rep-
resentations are used for classification. Fine-tuning
is defined as optimization of the following function,
which is a regularized loss of multi-task learning,
starting from the pre-trained model,

min
θ
− log pθ(y|x)

= min
θ
− log pθ(y|rx0)− log pθ(y|rz0)

− log pθ(y|[rx0, rz0]) + λ‖ỹx − ỹz‖2,

where x is the input text, y is the classification
label, rx0 and rz0 are the [CLS] representations of
fine-grained encoder and coarse-grained encoder,
[a, b] denotes concatenation of vectors a and b,
λ is a regularization coefficient, and ‖‖2 denotes
L2 norm. The last term is based on agreement
regularization (Brantley et al., 2019), which forces
agreement between the predictions (ỹx and ỹz).

Similarly, fine-tuning of AMBERT for span de-
tection can be carried out, in which the repre-
sentations of fine-grained tokens are concatenated
with the representations of corresponding coarse-
grained tokens. The concatenated representations
are then utilized in the task.

3.4 Inference
We propose two ways of using AMBERT in infer-
ence. One is to utilize the AMBERT itself and the

other to utilize only one encoder of AMBERT. The
former performs better but needs more computa-
tion and the latter performs slightly worse but only
needs computation comparable to BERT. One can
choose either drop the fine-grained encoder or the
coarse-grained encoder in AMBERT through eval-
uation using a development dataset, which makes
the computational cost close to that of BERT.

3.5 Alternatives

We can consider two alternatives to AMBERT,
which also rely on multi-grained tokenization. We
refer to them as AMBERT-Combo and AMBERT-
Hybrid and make comparisons of them with AM-
BERT in our experiments.

AMBERT-Combo has two individual encoders,
an encoder (BERT) working on the fine-grained to-
ken sequence and the other encoder (BERT) work-
ing on the coarse-grained token sequence, without
parameter sharing between them. In learning and
inference AMBERT-Combo simply combines the
output layers of the two encoders. Its fine-tuning is
similar to that of AMBERT.

AMBERT-Hybrid has only one encoder (BERT)
working on both the fine-grained token sequence
and the coarse-grained token sequence. It creates
representations on the concatenation of two se-
quences and lets the representations of the two
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Table 1: Performance on classification tasks in CLUE in terms of accuracy (%). The numbers in boldface denote
the best results of tasks. Average accuracies of models are also given. Numbers of parameters (param) and time
complexities (cmplx) of models are also shown, where l, n, and d denote layer number, sequence length, and
hidden representation size respectively. The tasks with mark † are those with data augmentation.

Model Param. Cmplx. Avg. TNEWS† IFLYTEK CLUEWSC2020† AFQMC CSL† CMNLI
Google BERT 108M O(ln2d) 72.53 66.99 60.29 71.03 73.70 83.50 79.69

Our BERT (char) 108M O(ln2d) 71.90 67.48 57.50 70.69 71.80 83.83 80.08
Our BERT (word) 165M O(ln2d) 73.72 68.20 59.96 75.52 73.48 85.17 79.97
AMBERT-Combo 273M O(2ln2d) 73.61 69.60 58.73 71.03 75.63 85.07 81.58
AMBERT-Hybrid 176M O(4ln2d) 73.80 69.04 56.42 76.21 74.41 85.60 81.10

AMBERT 176M O(2ln2d) 74.67 68.58 59.73 78.28 73.87 85.70 81.87

Table 2: Performances on MRC tasks in CLUE in terms of F1, EM (Exact Match) and accuracy. The numbers in
boldface denote the best results of tasks. Average scores of models are also given.

Model Avg. CMRC2018 ChID C3

DEV(F1,EM) TEST(EM) DEV(Acc.) TEST(Acc.) DEV(Acc.) TEST(Acc.)
Google BERT 73.76 85.48 64.77 71.60 82.20 82.04 65.70 64.50

Our BERT (char) 74.46 85.64 65.45 71.50 83.44 83.12 66.43 65.67
Our BERT (word) 65.77 81.87 41.69 41.30 80.89 80.93 66.72 66.96
AMBERT-Combo 75.26 86.12 65.11 72.00 84.53 84.64 67.74 66.70
AMBERT-Hybrid 75.53 86.71 68.16 72.45 83.37 82.85 67.45 67.75

AMBERT 77.47 87.29 68.78 73.25 87.20 86.62 69.52 69.63

sequences interact with each other at each layer. Its
pre-training is formalized in the following function,

min
θ
− log pθ(x̄, z̄|x̂, ẑ)

≈ min
θ
−

m∑
i=1

mi log pθ(xi|x̂, ẑ)

−
n∑
j=1

nj log pθ(zj |x̂, ẑ),

where the notations are the same as in (1). Its fine-
tuning is the same as that of BERT.

4 Experiments

We make comparisons between AMBERT and the
baselines including fine-grained BERT and coarse-
grained BERT, as well as the alternatives includ-
ing AMBERT-Combo and AMBERT-Hybrid, using
benchmark datasets in both Chinese and English.
The experiments on the alternatives can also be
seen as ablation study on AMBERT. The ablation
studies for the regularization term λ are given in
the Appendix E.

4.1 Data for Pre-Training

For Chinese, we use a corpus consisting of 25 mil-
lion documents (57G uncompressed text) from Jinri
Toutiao1. Note that there is no common corpus
for training of Chinese BERT. For English, we

1Jinri Toutiao is a popular news app. in China.

use a corpus of 13.9 million documents (47G un-
compressed text) from Wikipedia and OpenWeb-
Text (Gokaslan and Cohen, 2019)2.

The characters in the Chinese texts are naturally
taken as fine-grained tokens. We conduct word seg-
mentation on the texts and treat the words as coarse-
grained tokens. We employ a word segmentation
tool based on a n-gram model. Both tokenizations
exploit WordPiece embeddings (Wu et al., 2016).
There are 21,128 characters and 72,635 words in
the vocabulary of Chinese.

The words in the English texts are naturally
taken as fine-grained tokens. We perform coarse-
grained tokenization on the English texts in the
following way. First, we calculate the n-grams in
the Wikipedia documents using KenLM (Heafield,
2011). We next build a phrase-level dictionary
consisting of phrases whose frequencies are suffi-
ciently high and whose last words highly depend
on their previous words. We then employ a left-
to-right search algorithm to perform phrase-level
tokenization on the texts. There are 30,522 words
and 77,645 phrases in the vocabulary of English.

4.2 Experimental setup

We make use of the same parameter settings for
the AMBERT and BERT models. All models in
this paper are ‘base-models’ having 12 layers of
encoder. It is too computationally expensive for

2Unfortunately, BookCorpus, one of the two corpora in
the original paper for English BERT, is no longer publicly
available.
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Table 3: State-of-the-art results of Chinese base models in CLUE.

Model Params Avg. TNEWS† IFLYTEK WSC.† AFQMC CSL† CMNLI CMRC. ChID C3

Google BERT 108M 72.59 66.99 60.29 71.03 73.70 83.50 79.69 71.60 82.04 64.50
XLNet-mid 200M 73.00 66.28 57.85 78.28 70.50 84.70 81.25 66.95 83.47 67.68

ALBERT-xlarge 60M 73.05 66.00 59.50 69.31 69.96 84.40 81.13 76.30 80.57 70.32
ERNIE 108M 74.20 68.15 58.96 80.00 73.83 85.50 80.29 74.70 82.28 64.10

RoBERTa 108M 74.38 67.63 60.31 76.90 74.04 84.70 80.51 75.20 83.62 66.50
AMBERT 176M 75.28 68.58 59.73 78.28 73.87 85.70 81.87 73.25 86.62 69.63

Table 4: Performances on the tasks in GLUE. Average score over all the tasks is slightly different from the official
GLUE score, since we exclude WNLI. CoLA uses Matthew’s Corr. MRPC and QQP use both F1 and accuracy
scores. STS-B computes Pearson-Spearman Corr. Accuracy scores are reported for the other tasks. Results of
MNLI include MNLI-m and MNLI-mm. The other settings are the same as Table 1.

Model Param Cmplx Avg. CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE
Google BERT 110M O(ln2d) 80.7 52.1 93.5 88.9/81.9 81.5/85.8 71.2/88.5 84.6/83.4 90.5 66.4

Our BERT (word) 110M O(ln2d) 81.6 53.7 93.8 88.8/84.8 84.3/86.0 71.6/89.0 85.0/84.5 91.2 66.8
Our BERT (phrase) 170M O(ln2d) 80.7 54.8 93.8 87.4/82.5 82.9/84.9 70.1/88.8 84.1/83.8 90.6 65.1
AMBERT-Combo 280M O(2ln2d) 81.8 57.1 94.5 89.2/84.8 84.4/85.8 71.8/88.6 84.7/84.2 90.4 66.2
AMBERT-Hybrid 194M O(4ln2d) 81.7 50.9 93.4 89.0/85.2 84.7/87.6 71.0/89.2 84.6/84.7 91.2 68.5

AMBERT 194M O(2ln2d) 82.7 54.3 94.5 89.7/86.1 84.7/87.1 72.5/89.4 86.3/85.3 91.5 70.5

us to train the models as ‘large models’ having 24
layers. To retain consistency, the masked spans in
the coarse-grained encoder are also masked in the
fine-grained encoder. The details of pre-training
and fine-tuning are the same as those in the original
BERT paper (Devlin et al., 2018), which are given
in Appendix C.

4.3 Chinese Tasks

4.3.1 Benchmarks
We use the benchmark datasets, Chinese Language
Understanding Evaluation (CLUE) (Xu et al., 2020)
for experiments in Chinese. CLUE contains six
classification tasks, that are TNEWS, IFLYTEK
and CLUEWSC2020, AFQMC, CSL and CMNLI3,
and three Machine Reading Comprehension (MRC)
tasks which are CMRC2018, ChID and C3. The
details of all the benchmarks are shown in Ap-
pendix B. Data augmentation is also performed
for all models in the tasks of TNEWS, CSL and
CLUEWSC2020 to achieve better performance
(see Appendix D for detailed explanation).

4.3.2 Experimental Results
We compare AMBERT with the BERT baselines,
including the BERT model released from Google,
referred to as Google BERT, and the BERT model
trained by us, referred to as Our BERT, including
fine-grained (character) and coarse-grained (word)
models. Case study is given in Appendix F.

Table 1 shows the results of the classification
tasks. AMBERT improves average scores of the

3The task is introduced at the CLUE website.

BERT baselines by about 1.0% and also works bet-
ter than AMBERT-Combo and AMBERT-Hybrid.
The results of MRC tasks are shown in Table 2.
AMBERT improves average scores of the BERT
baselines by over 3.0%. Our BERT (word) per-
forms poorly in CMRC2018. This is probably
because the results of word segmentation are not
accurate enough for the task. AMBERT-Combo
and AMBERT-Hybrid are on average better than
single-grained BERT models. AMBERT further
outperforms both of them.

We also compare AMBERT with the state-of-
the-art models such as RoBERTa and ALBERT in
CLUE benchmark. The base models are trained
with different datasets and procedures, and thus the
comparisons should only be taken as references.
Note that the settings of the base models are the
same as that of Xu et al. (2020). Table 3 shows the
results. The average score of AMBERT is higher
than all the other models. We conclude that multi-
grained tokenization is very helpful for pre-trained
language models and the design of AMBERT is
reasonable.

4.4 English Tasks

4.4.1 Benchmarks
The General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2018) is a collec-
tion of nine NLU tasks. Following BERT (Devlin
et al., 2018), we exclude the task WNLI for the
reason that results of different models on this task
are undifferentiated. In addition, three MRC tasks
are also included, i.e., SQuAD v1.1, SQuAD v2.0,
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Table 5: Performances on three English MRC tasks. We use EM and F1 to evaluate the performance of text
detection, and report accuracies for RACE, on both development set and test set.

Model Avg. SQuAD 1.1 SQuAD 2.0 RACE
DEV(EM, F1) DEV(EM, F1) TEST(EM, F1) DEV TEST

Google BERT 74.0 80.8 88.5 70.1 73.5 73.7 76.3 64.5 64.3
Our BERT (word) 76.7 83.8 90.6 76.6 79.6 77.3 80.3 62.4 62.6

Our BERT (phrase) - 67.4 82.3 55.4 62.6 - - 66.9 66.1
AMBERT-Combo 77.2 84.0 90.9 76.4 79.6 76.6 79.8 66.6 63.7
AMBERT-Hybrid 77.3 83.6 90.3 76.4 79.4 76.7 79.7 67.1 65.1

AMBERT 78.6 84.2 90.8 77.6 80.6 78.6 81.4 68.9 66.8

Table 6: State-of-the-art results of English base models in GLUE. Each task only reports one score following Clark
et al. (2020), and we report the average EM of SQuAD1.1 and SQuAD2.0 on development set. AMBERT‡ is
pre-trained with a corpora with size comparable to that of RoBERTa (160G uncompressed text). Scores with ? are
reported from the published papers.

Model Params Avg. CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE SQuAD RACE
Google BERT 110M 78.7 52.1? 93.5? 84.8? 85.8? 89.2? 84.6? 90.5? 66.4? 75.5 64.3?

XLNet 110M 78.6 47.9 94.3 83.3 84.1 89.2 86.8 91.7 61.9 79.9? 66.7?

SpanBERT 110M 79.1 51.2 93.5 87.0 82.9 89.2 85.1 92.7 69.7 81.8 57.4
ELECTRA 110M 81.3 59.7? 93.4? 86.7? 87.7? 89.1? 85.8? 92.7? 73.1? 74.8 69.9
ALBERT 12M 80.1 53.2 93.2 87.5 87.2 87.8 85.0 91.2 71.1 78.7 65.8
RoBERTa 135M 82.7 61.5 95.8 88.7 88.9 89.4 87.4 93.1 74.0 78.6 69.9

AMBERT‡ 194M 82.8 60.0 95.2 88.9 88.2 89.5 87.2 92.6 72.6 82.5 71.2

and RACE. The details of English benchmarks can
be found in Appendix B.

4.4.2 Experimental Results
We compare AMBERT with the BERT models on
the tasks in GLUE. The results of Google BERT
are from the original paper (Devlin et al., 2018),
and the results of Our BERT are obtained by us.
From Table 4 we can see the following trends, 1)
Multi-grained models, particularly AMBERT, can
achieve better results than single-grained models.
2) Among the multi-grained models, AMBERT
performs best with fewer parameters and less com-
putation. Case study is given in Appendix F.

We also make comparison on the MRC tasks.
The results of Google BERT are either from the
papers (Devlin et al., 2018; Yang et al., 2019) or
from our runs with the official code. From Table 5
we make the following conclusions. 1) in SQuAD,
AMBERT outperforms Google BERT with a large
margin. Our BERT (word) generally performs well
and Our BERT (phrase) performs poorly in the span
detection tasks. 2) In RACE, AMBERT performs
best among all the baselines for both development
set and test set. 3) AMBERT is the best multi-
grained model.

We compare AMBERT with the state-of-the-art
models in both GLUE and MRC benchmarks. The
results of baselines, in Table 6, are either reported
in published papers or re-implemented by us with
HuggingFace’s Transformer (Wolf et al., 2019). We
use the provided implementation in HuggingFace’s

Transformer, without additional data augmentation,
question-answering module4 and other tricks. Note
that AMBERT outperforms all the models on av-
erage without using training techniques such as
bigger batches and dynamic masking.

4.5 Enhancement of Inference Speed

We also conduct experiments on the effi-
cient inference method of AMBERT on
CLUE/GLUE/SQuAD/RACE. We choose
the fine-grained encoder for the span detection
tasks (CMRC2018 and SQuAD) because it
performs much better in the tasks. We choose
the coarse-grained encoder for the other Chinese
tasks and the fine-grained encoder for the other
English tasks because they perform better on
average. All the decisions are made based on the
results from the Dev datasets. The detailed results
are shown in Table 7. We conclude that, a) for
the English tasks, AMBERT with one chosen
encoder achieves similar results as AMBERT with
two encoders and outperforms the single-grained
“Our BERT” models with a large margin; b) for
the Chinese tasks, AMBERT with one chosen
encoder performs slightly worse than AMBERT
but performs much better than the single-grained
“Our BERT” models. Therefore, in practice, one
can train an AMBERT with two encoders and use
only one of the encoders in inference.

4For that reason, we cannot use the results for SQuAD 2.0
in Clark et al. (2020).
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Table 7: Performances on the development sets of CLUE, GLUE, SQuAD and RACE with different ways for
inference. CN-Models and EN-Models denote Chinese and English pre-trained models respectively. CoLA uses
Matthew’s Corr. We report EM of CMRC2018 and average EM of SQuAD1.1 and SQuAD2.0. The other metrics
are all accuracies. We report the better results among single-grained models as “Our BERT”.

CN-Models Speedup Avg. TNEWS IFLYTEK CLUEWSC2020 AFQMC CSL CMNLI CMRC2018 ChID C3 -
AMBERT 1.0 75.3 68.1 60.1 81.6 74.7 85.6 82.3 68.8 87.2 69.5 -

AMBERT (one encoder) 2.0x 74.8 68.0 59.5 81.3 74.2 85.5 82.1 67.4 86.6 68.5 -
Our BERT 2.0x 73.4 67.8 58.7 79.0 74.1 84.5 80.8 65.5 83.4 66.7 -
EN-Models Speedup Avg. CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE SQuAD RACE
AMBERT 1.0 79.2 61.7 94.3 92.3 55.0 91.2 86.2 91.3 70.2 80.9 68.9

AMBERT (one encoder) 2.0x 79.1 62.2 93.2 92.5 55.0 91.2 86.1 91.4 70.6 80.3 68.0
Our BERT 2.0x 77.5 56.6 92.4 89.7 54.2 90.4 85.1 90.6 69.1 80.2 66.9

Our BERT (char) Our BERT (word) AMBERT-Hybrid AMBERT

Our BERT (word) Our BERT (phrase) AMBERT-Hybrid AMBERT

Figure 2: Attention weights of first layers of Our BERT (word/phrase), AMBERT-Hybrid and AMBERT, for
English and Chinese sentences.
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Figure 3: Distances between representations of fine-
grained and coarse-grained encoders (representations
of [CLS]) in AMBERT-Combo and AMBERT. CD and
ED stand for cosine distance (one minus cosine similar-
ity) and normalized Euclidean distance respectively.

4.6 Discussions

We further investigate the reason that AMBERT is
superior to AMBERT-Combo. Figure 3 shows the
distances between the [CLS] representations of the
fine-grained encoder and coarse-grained encoder in
AMBERT-Combo and AMBERT after pre-training,
in terms of cosine distance (one minus cosine sim-
ilarity) and normalized Euclidean distance. One
can see that the distances in AMBERT-Combo are
larger than the distances in AMBERT. We perform
the assessment using the data in different tasks and
find similar trends. The results indicate that the
representations of fine-grained encoder and coarse-

grained encoder are closer in AMBERT than in
AMBERT-Combo. These are natural consequences
of using AMBERT and AMBERT-Combo, whose
parameters are respectively shared and unshared
across encoders. It implies that the higher perfor-
mances by AMBERT is due to its parameter shar-
ing, which can learn and represent similar ways of
combining tokens no matter whether they are fine-
grained or coarse-grained. An intuitive explanation
is that the ways of combining representations of
fine-grained tokens and the ways of combining rep-
resentations of coarse-grained tokens “in the same
contexts” are exactly the same.

We also examine the reasons that AMBERT
works better than AMBERT-Hybrid, while both
of them exploit multi-grained tokenization. Fig-
ure 2 shows the attention weights of first layers in
AMBERT and AMBERT-Hybrid, as well as the
single-grained BERT models, after pre-training. In
AMBERT-Hybrid, the fine-grained tokens attend
more to the corresponding coarse-grained tokens
and as a result the attention weights among fine-
grained tokens are weakened. In contrast, in AM-
BERT the attention weights among fine-grained



429

tokens and those among coarse-grained tokens are
intact. It appears that attentions among single-
grained tokens (fine-grained ones or coarse-grained
ones) play important roles in downstream tasks.

To answer the question why the improvements
by AMBERT on Chinese are larger than on English
in the same pre-training settings, we further make
an analysis. We respectively tokenize 10,000 ran-
domly selected Chinese sentences from five tasks in
CLUE with our Chinese word tokenizer. The aver-
age proportion of words is 51.5%, which indicates
that about half of the tokens are fine-grained and
half are coarse-grained in Chinese. Similarly, we to-
kenize 10,000 randomly selected English sentences
from five different tasks in GLUE with our En-
glish phrase tokenizer. The average proportion of
phrases is only 13.1%, which means that there are
much less coarse-grained tokens than fine-grained
tokens in English. (Please refer to Table 10 in
the Appendix for more details of the experiments.)
Therefore, we postulate that for Chinese it is nec-
essary for a model to process the language at both
fine-grained and coarse-grained levels. AMBERT
indeed has the capability.

5 Conclusion

In this paper, we have proposed a novel pre-trained
language model called AMBERT, as an extension
of BERT. AMBERT employs multi-grained tok-
enization, that is, it uses both words and phrases in
English and both characters and words in Chinese.
With multi-grained tokenization, AMBERT learns
in parallel the representations of the fine-grained
tokens and the coarse-grained tokens using two en-
coders with shared parameters. We also develop an
alternative way of using AMBERT in inference to
save computation cost. Experimental results have
demonstrated that AMBERT significantly outper-
forms BERT and other models in NLU tasks in
both English and Chinese. AMBERT increases
average score of Google BERT by about 2.7% in
Chinese benchmark CLUE. AMBERT improves
Google BERT by over 3.0% on a variety of tasks in
English benchmarks GLUE, SQuAD (1.1 and 2.0),
and RACE.

As future work, we plan to study the follow-
ing issues: 1) to investigate model acceleration
methods in learning of AMBERT, such as sparse
attention (Child et al., 2019; Kitaev et al., 2020; Za-
heer et al., 2020) and synthetic attention (Tay et al.,
2020); 2) to apply the technique of AMBERT into

other pre-trained language models such as XLNet;
3) to employ AMBERT in other NLU tasks.
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A Attention maps for single-grained
models

We construct fine-grained and coarse-grained
BERT models for English and Chinese, and ex-
amine the attention maps of the models using the
BertViz tool (Vig, 2019). Figure 4 shows the at-
tention maps of the first layer of fine-grained mod-
els for several sentences in English and Chinese.
One can see that there are tokens that improperly
attend to other tokens in the sentences. For exam-
ple, in the English sentences, the words “drawing”,
“new”, and “dog” have high attention weights to
“portrait”, “york”, and “food”, respectively, which
are not appropriate. For example, in the Chinese
sentences, the chars “拍”, “北”, “长” have high
attention weights to “卖”, “京”, “市”, respectively,
which are also not reasonable. (It is verified that the
bottom layers at BERT mainly represent lexical in-
formation, the middle layers mainly represent syn-
tactic information, and the top layers mainly repre-
sent semantic information (Jawahar et al., 2019).)
Ideally a token should only attend to the tokens
with which they form a lexical unit at the first layer.
This cannot be guaranteed in the fine-grained BERT
model, however, because usually a fine-grained to-
ken may belong to multiple lexical units (i.e., there
is ambiguity).

Figure 5 shows the attention maps of the first
layer of coarse-grained models for the same sen-
tences in English and Chinese. In the English sen-
tences, the words are combined into the phrases of
“drawing room”, “york minister”, and “dog food”.
The attentions are appropriate in the first two sen-
tences, but it is not in the last sentence because of
the incorrect tokenization. Similarly, in the Chi-
nese sentences, the high attention weights of words
“ 球拍(bat)” and “京城(capital)” are reasonable,
but that of word “市长(mayor)” is not. Note that
incorrect tokenization is inevitable.

B Detailed descriptions for the
benchmarks

B.1 Chinese Tasks

TNEWS is a text classification task in which ti-
tles of news articles in TouTiao are to be clas-
sified into 15 classes. IFLYTEK is a task of
assigning app descriptions into 119 categories.
CLUEWSC2020, standing for the Chinese Wino-
grad Schema Challenge, is a co-reference resolu-
tion task. AFQMC is a binary classification task

that aims to predict whether two sentences are
semantically similar. CSL uses the Chinese Sci-
entific Literature dataset containing abstracts and
their keywords of papers and the goal is to identify
whether given keywords are the original keywords
of a paper. CMNLI is based on translation from
MNLI (Williams et al., 2017), which is a large-
scale, crowd-sourced entailment classification task.
CMRC2018 (Cui et al., 2018) makes use of a span-
based dataset for Chinese machine reading compre-
hension. ChID (Zheng et al., 2019) is a large-scale
Chinese IDiom cloze test. C3 (Sun et al., 2019a) is
a free-form multiple-choice machine reading com-
prehension for Chinese.

B.2 English Tasks

CoLA (Warstadt et al., 2019) contains English ac-
ceptability judgments drawn from books and jour-
nal articles on linguistic theory. SST-2 (Socher
et al., 2013) consists of sentences from movie re-
views and human annotations of their sentiment.
MRPC (Dolan and Brockett, 2005) is a corpus of
sentence pairs automatically extracted from online
news sources, and the target is to identify whether
a sentence pair is semantically equivalent. STS-
B (Cer et al., 2017) is a collection of sentence
pairs and the task is to predict similarity scores.
QQP is a collection of question pairs and requires
models to recognize semantically equivalent ones.
MNLI (Williams et al., 2017) is a crowd-sourced
collection of sentence pairs with textual entail-
ment annotations. QNLI (Wang et al., 2018) is a
question-answering dataset consisting of question-
paragraph pairs, where one of the sentences in the
paragraph contains the answer to the corresponding
question. RTE (Bentivogli et al., 2009) comes from
a series of annual textual entailment challenges.

C Hyper-parameters

C.1 Hyper-parameters in pre-training

In pre-training of the AMBERT models, in to-
tal 15% of the coarse-grained tokens are masked,
which is the same proportion for the BERT models.
We adopt the standard hyper-parameters of BERT
in pre-training of the models except batch sizes
which are tuned to make our fine-grained BERT
models comparable to the Google BERT models.
Table 8 shows the hyper-parameters in our Chi-
nese AMBERT and English AMBERT. Our BERT
models and alternatives of AMBERT (AMBERT-
Combo and AMBERT-Hybrid) all use the same
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Figure 4: Attention maps of first layers of fine-grained BERT models for English and Chinese sentences. The
Chinese sentences are “商店里的兵乓球拍卖完了 (Table tennis bats are sold out in the shop)”, “北上京城
施展平生报复 (Go north to Beijing to fulfill the dream)”, “南京市长江大桥位于南京 (The Nanjing Yantze
River bridge is located in Nanjing)”. Different colors represent attention weights in different heads and darkness
represents weight.

hyper-parameters in pre-training. The optimizer is
Adam (Kingma and Ba, 2014). To enhance effi-
ciency, we use mixed precision for all the models.
Training is carried out on Nvidia V-100. The num-
bers of GPUs used for training are from 32 to 64,
depending on the model sizes.

Table 8: Hyper-parameters for pre-trained AMBERT.

Hyperparam Chinese AMBERT English AMBERT
Number of Layers l 12 12

Hidden Size d 768 768
Sequence Lengh n 512 512

FFN Inner Hidden Size 3072 3072
Attention Heads 12 12

Attention Head Size 64 64
Dropout 0.1 0.1

Attention Dropout 0.1 0.1
Warmup Steps 10,000 10,000

Peak Learning Rate 1e-4 1e-4
Batch Size 512 1024

Weight Decay 0.01 0.01
Max Steps 1m 500k

Learning Rate Decay Linear Linear
Adam ε 1e-6 1e-6

Adam β1 0.9 0.9
Adam β2 0.999 0.999

C.2 Hyper-parameters in Fine-tuning
For the Chinese tasks, since all the original pa-
pers do not report detailed hyper-parameters in
fine-tuning of the baseline models, we uniformly
use the same hyper-parameters as shown in Ta-

ble 11 except training epoch, because AMBERT
and AMBERT-Combo have more parameters and
need more training to get converged. We choose
the training epochs for all models when the per-
formances on development sets stop to improve.
Table 11 also shows all the hyper-parameters in
fine-tuning of the English models. We adopt the
best hyper-parameters in the original papers for
the baselines. Moreover, for AMBERT‡, we also
tune learning rate ([1e-5, 2e-5, 3e-5]) and batch
size ([16, 32]) for GLUE with the same method in
RoBERTa (Liu et al., 2019).

D Data Augmentation

To enhance the performance, we conduct data
augmentation for the three Chinese classification
tasks of TNEWS, CSL, and CLUEWSC2020. In
TNEWS, we use both keywords and titles. In CSL,
we concatenate keywords with a special token “ ”.
In CLUEWSC2020, we duplicate a few instances
having pronouns in the training data such as “她
(she)”.

E Regularization in Fine-tuning

Table 9 shows the results of using different values
as regularization coefficients in fine-tuning on the
development sets of CLUE, GLUE and RACE. It
appears that for most tasks the use of regularization
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Figure 5: Attention maps of first layers of coarse-grained BERT models for English and Chinese sentences. Note
that tokenizations may have errors.

Table 9: Performances on the development sets of CLUE, GLUE and RACE with different regularization coeffi-
cients in fine-tuning. CN-Models and EN-Models stand for Chinese and English pre-trained models respectively.
CoLA uses Matthew’s Corr. The other metrics are accuracies.

CN-Models λ TNEWS IFLYTEK CLUEWSC2020 AFQMC CSL CMNLI ChID C3 -
AMBERT 1.0 68.1 60.1 81.6 74.7 85.6 82.3 87.1 69.2 -
AMBERT 0.0 67.9 60.3 80.9 75.4 85.0 81.1 86.5 69.2 -

EN-Models λ CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE RACE
AMBERT 1.0 61.7 94.3 92.3 55.0 91.2 86.2 91.3 70.2 66.6
AMBERT 0.0 61.5 93.4 90.1 54.5 91.1 85.5 91.2 70.2 66.8

Table 10: The rate of coarse-grained tokens (not in-
cluded in fine-grained vocabulary) in coarse-grained to-
kenization.

Datasets Chinese words Chinese total tokens word rate (%)
CMNLI 157,511 335,187 47.0
TNEWS 71,636 137,965 51.9
TNEWS 94,439 165,847 56.9

CSL 836,976 1,739,954 48.1
CHID 958,893 1,763,507 53.4
Avg. - - 51.5

Datasets English phrases English total tokens phrase rate (%)
MNLI 43,661 318,985 13.7
QNLI 59,506 395,681 15.0
QNLI 35,256 237,731 14.8
SST-2 9,757 103,048 9.47
CoLA 10,491 82,353 12.7
Avg. - - 13.1

is necessary. For simplicity, we did not use the best
value of coefficient for each task and instead we
adopt 0.0 for RACE and 1.0 for the other tasks.

F Case study

We also qualitatively study the results of BERT and
AMBERT, and find that they support our claims
(cf., Section 1) very well. Here, we give some ran-
dom examples from the entailment tasks (QNLI
and CMNLI) in Table 12. One can have the follow-
ing observations. 1) The fine-grained models (e.g.,

Our BERT word) cannot effectively use complete
lexical units such as “Doctor Who” and “打死”
(sentence pairs 1 and 5), which may result in in-
correct predictions. 2) The coarse-grained models
(e.g., Our BERT phrase), on the other hand, cannot
effectively deal with incorrect tokenizations, for
example, “the blind” and “格式” (sentence pairs
2 and 6). 3) AMBERT is able to make effective
use of complete lexical units such as “sister station”
in sentence pair 4 and “员工/ 工人” in sentence
pair 7, and robust to incorrect tokenizations, such
as “used to” in sentence pair 3. 4) AMBERT can in
general make more accurate decisions on difficult
sentence pairs with both fine-grained and coarse-
grained tokenization results.
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Table 11: Hyper-parameters for fine-tuning of both Chinese and English tasks.

Dataset Modes Batch Size Max Length Epoch Learning Rate λ

TNEWS/IFLYTEK/AFQMC/CSL/CMNLI Our BERT, AMBERT-Hybrid 32 128 5 2e-5 -

AMBERT, AMBERT-Combo 32 128 8 2e-5 1.0

CLUEWSC2020 Our BERT, AMBERT-Hybrid 8 128 50 2e-5 -

AMBERT, AMBERT-Combo 8 128 80 2e-5 1.0

CMRC2018 All the models 32 512 2 2e-5 -

ChID Our BERT, AMBERT-Hybrid 24 64 3 2e-5 -

AMBERT, AMBERT-Combo 24 64 3 2e-5 1.0

C3 Our BERT, AMBERT-Hybrid 24 512 8 2e-5 -

AMBERT, AMBERT-Combo 24 512 8 2e-5 1.0

SST-2/MRPC/QQP/MNLI/QNLI Our BERT, AMBERT-Hybrid 32 512 4 2e-5 -

AMBERT, AMBERT-Combo 32 512 6 2e-5 1.0

CoLA/STS-B Our BERT, AMBERT-Hybrid 32 512 10 2e-5 -

AMBERT, AMBERT-Combo 32 512 20 2e-5 1.0

RTE Our BERT, AMBERT-Hybrid 32 512 20 2e-5 -

AMBERT, AMBERT-Combo 32 512 50 2e-5 1.0

SQuAD (1.1 and 2.0) All the models 32 512 3 2e-5 -

RACE All except the following two 16 512 4 1e-5 -

AMBERT, AMBERT-Combo 32 512 6 1e-5 0.0

Table 12: Case study for sentence matching tasks in both English and Chinese (QNLI and CMNLI). The value “0”
denotes entailment relation, while the value “1” denotes no entailment relation. WORD/PHRASE represents Our
BERT word/phrase. In English the tokens in the same phrase are concatenated with “ ”, and in Chinese phrases
are split with “/”.

Sentence1 Sentence2 Label WORD PHRASEAMBERT

What Star Trek episode has a nod to Doctor Who?
(What Star Trek episode has a nod to Doctor Who?)

There have also been many references to Doctor Who in popular culture and
other science fiction, including Star Trek: The Next Generation (”The Neutral
Zone”) and Leverage.
(There have also been many references to Doctor Who in popular culture
and other science fiction, including Star Trek: the next generation (”the neu-
tral zone”) and leverage.)

0 1 0 0

What was the name of the blind date concept program debuted by
ABC in 1966?
(What was the name of the blind date concept program debuted
by ABC in 1966?)

In December of that year, the ABC television network premiered The Dating
Game, a pioneer series in its genre, which was a reworking of the blind date
concept in which a suitor selected one of three contestants sight unseen based
on the answers to selected questions.
(In December of that year, the ABC television network premiered the dating
game, a pioneer series in its genre, which was a reworking of the blind date
concept in which a suitor selected one of three contestants sight unseen
based on the answers to selected questions.)

0 0 1 0

What are two basic primary resources used to guage complexity?
(What are two basic primary resources used to guage complexity?)

The theory formalizes this intuition, by introducing mathematical models of
computation to study these problems and quantifying the amount of resources
needed to solve them, such as time and storage.
(The theory formalizes this intuition, by introducing mathematical models of
computation to study these problems and quantifying the amount of resources
needed to solve them, such as time and storage.)

0 1 1 0

What is the frequency of the radio station WBT in North Carolina?
(What is the frequency of the radio station WBT
in north carolina?)

WBT will also simulcast the game on its sister station WBTFM (99.3 FM),
which is based in Chester, South Carolina.
(WBT will also simulcast the game on its sister station WBTFM (99.3 FM),
which is based in Chester, South Carolina.)

1 0 0 1

只打那些面对我们的人，乔恩告诉阿德林。

(只/打/那些/面对/我们/的/人/，/乔恩/告诉/阿/德/林/。)
“打死那些面对我们的人，”阿德林对乔恩说。

(“/打死/那些/面对/我们/的/人/，/”/阿/德/林/对/乔恩/说/。。)
1 0 1 1

教堂有一个更精致的巴洛克讲坛。

(教堂/有/一个/更/精致/的/巴洛克/讲坛/。)
教堂有一个巴罗格式的讲坛。

(教堂/有/一个/巴/罗/格式/的/讲坛/。)
0 0 1 0

我们已经采取了一系列措施来增强我们员工的能力，并对
他们进行投资。

(我们/已经/采取/了/一/系列/措施/来/增强/我们/员工/的/能
力/，/并/对/他们/进行/投资/。)

我们一定会投资在我们的工人身上。

(我们/一定/会/投资/在/我们/的/工人/身上/。)
0 1 1 0

科技行业的故事之所以活跃起来，是因为现实太平淡了。

(科技/行业/的/故事/之所以/活跃/起来/，/是/因为/现实/太
平/淡/了/。)

现实是如此平淡，以致于虚拟现实技术业务得到了刺激。

(现实/是/如此/平淡/，/以致/于/虚拟/现实/技术/业务/得到/了/刺激/。)
1 0 0 1


