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Abstract

Dataless text classification is capable of classi-
fying documents into previously unseen labels
by assigning a score to any document paired
with a label description. While promising, it
crucially relies on accurate descriptions of the
label set for each downstream task. This re-
liance causes dataless classifiers to be highly
sensitive to the choice of label descriptions
and hinders the broader application of data-
less classification in practice. In this paper, we
ask the following question: how can we im-
prove dataless text classification using the in-
puts of the downstream task dataset? Our pri-
mary solution is a clustering based approach.
Given a dataless classifier, our approach re-
fines its set of predictions using k-means clus-
tering. We demonstrate the broad applicabil-
ity of our approach by improving the perfor-
mance of two widely used classifier architec-
tures, one that encodes text-category pairs with
two independent encoders and one with a sin-
gle joint encoder. Experiments show that our
approach consistently improves dataless clas-
sification across different datasets and makes
the classifier more robust to the choice of label
descriptions.1

1 Introduction

Dataless text classification aims at classifying text
into categories without using any annotated training
data from the task of interest. Prior work (Chang
et al., 2008; Song and Roth, 2014) has shown that
with effective ways to represent texts and labels,
dataless classifiers can perform text classification
on unbounded label sets if suitable descriptions of
the labels are provided.

There have been many previous efforts in data-
less or zero-shot text classification (Dauphin et al.,
2013; Nam et al., 2016; Li et al., 2016; Ma et al.,

1Code and data available at https://github.com/
ZeweiChu/ULR.

2016; Shu et al., 2017; Fei and Liu, 2016; Zhang
et al., 2019; Yogatama et al., 2017; Mullenbach
et al., 2018; Rios and Kavuluru, 2018; Meng et al.,
2019). Several settings have been considered
across this prior work, and some have used slightly
different definitions of dataless classifiers. In this
paper, we use the term “dataless text classification”
to refer to methods that: (1) can assign scores to
any document-category pair, and (2) do not require
any annotated training data from downstream tasks.
A dataless classifier can therefore be immediately
adapted to a particular label set in a downstream
task dataset by scoring each possible label for a
document and returning the label with the highest
score. Dataless classifiers are typically built from
large-scale freely available text resources such as
Wikipedia (Chang et al., 2008; Yin et al., 2019).

A well known problem with dataless classifiers
is that the choice of label names has a significant
impact on performance (Chang et al., 2008). As
dataless classifiers rely purely on the label descrip-
tions in a downstream task, there is typically no
tailoring or fine-tuning of the classifier for a given
dataset. A poor choice of label descriptions could
jeopardize the performance of dataless classifiers
on a particular text classification task, so prior work
has addressed this with modifications to label de-
scriptions. Chang et al. (2008) manually expanded
label names for the 20 newsgroups dataset and Yin
et al. (2019) expanded labels using WordNet.

To illustrate the problem, Table 1 shows various
choices of label names when applying a dataless
classifier to the 4-class AG News dataset. When
we change the descriptions of the four labels, per-
formance of our dataless text classifier2 changes
drastically. The broader application of dataless text
classifiers is hindered by their fragility caused by
the choice of label descriptions. It is unclear how

2A ROBERTA dual encoder architecture (Section 4).

https://github.com/ZeweiChu/ULR
https://github.com/ZeweiChu/ULR
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world international world politics world news world
choice of sports health sports health health and sports
label names business finance business and finance business commerce

science technology technology science and technology science and technology science technology

dataless 69.9 55.9 71.6 49.9 55.0
dataless + ULR 70.7 78.3 78.4 70.2 70.9

Table 1: Accuracy (%) of a ROBERTA dual encoder dataless classifier (details in Section 4) on AG News with
different choices of label names. The original label set (boldfaced) is “world”, “sports”, “business”, and “sci/tech”.
The “dataless + ULR” row shows accuracies after applying unsupervised label refinement (details in Section 3).

practitioners should choose label descriptions for
practical use.

In this paper, we ask the following question:
how can we improve dataless text classification
provided the unlabeled set of input texts for the
downstream task in addition to its label descrip-
tions? Our approach, which we refer to as unsuper-
vised label refinement (ULR), is based on k-means
clustering. We develop variations of our approach
so that it can be applied to different styles of data-
less text classifiers to improve their performance.
Table 1 shows results when applying ULR to our
dataless text classifier. In all cases, accuracies im-
prove after applying ULR, with larger gains when
using weaker label descriptions.

To summarize, our contributions in this paper
are as follows:

• We propose unsupervised label refinement
(ULR), a k-means clustering based approach to
improve dataless classifiers.

• We develop variations of ULR that can be ap-
plied to different model architectures of dataless
classifiers. Experiments on dual encoder and sin-
gle encoder architectures show that ULR almost
always improves performance.

• Experiments show that ULR improves robust-
ness of dataless classification against choices of
label names, making dataless classifiers more
practically useful.

2 Dataless Text Classification

Dataless text classification (Chang et al., 2008;
Chen et al., 2015; Song and Roth, 2014; Yin et al.,
2019) aims at building a single, universal text clas-
sifier that can be applied to any text classification
task with a given set of label descriptions. Data-
less classifiers can be used on an unbounded set
of categories. There is typically no tailoring or
fine-tuning of the classifier for a dataset other than
through specifying the label descriptions.

Since annotated data in the target task is not
available for training, the choice of label descrip-
tions plays a critical role in the performance of
dataless classifiers (Chang et al., 2008; Yin et al.,
2019). With a dataless classifier, a score is pro-
duced for each text-category pair, indicating their
semantic relatedness. Text classification then be-
comes a ranking problem, i.e., picking the category
that has the highest semantic relatedness with the
text.

Several researchers have used EXPLICIT SE-
MANTIC ANALYSIS (ESA) (Gabrilovich and
Markovitch, 2007) as text representations in data-
less text classification (Chang et al., 2008; Song
and Roth, 2014; Wang et al., 2009). Both label
descriptions and text are encoded into ESA vec-
tors. Cosine similarity is used to compute scores
between text and categories. Yin et al. (2019) di-
rectly compute text-category relatedness with a sin-
gle BERT (Devlin et al., 2019) model. Chang
et al. (2008) and Yin et al. (2019) exemplify two
typical modeling choices for dataless classifiers,
namely dual encoder and single encoder architec-
tures, respectively. We will introduce them briefly
and consider both types in our experiments.

Dual encoder model. With the dual encoder
model, the category and text are fed into the en-
coder separately, each producing a vector represen-
tation. The text and category encoders could have
shared or independent parameters. In our experi-
ments, we always share parameters, i.e., we use the
same encoder for both the categories and texts. A
distance function takes both the category and text
vectors and produces a scalar value. In our exper-
iments, this scoring function can be either cosine
distance or Euclidean (L2) distance.

Single encoder model. With a single encoder
model, the category is combined with the text as a
single sequence and fed into an encoder. The out-
put of the encoder is a single vector that contains
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Figure 1: Dual and single encoder architectures.

the information from both the category and the text.
This vector can pass through a linear layer and pro-
duce a score for this particular document-category
pair. Figure 1 demonstrates the architectures of
typical dual and single encoder models for text
classification.

3 Unsupervised Label Refinement (ULR)

In this section, we introduce unsupervised label
refinement (ULR). ULR uses the components of a
dataless classifier and refines representations of la-
bels with a modified k-means clustering algorithm.
While dataless text classifiers are designed to han-
dle an unbounded set of categories, they are used
and evaluated on a particular set of documents with
a set of labels. The idea of our approach is to lever-
age the assumption that the documents in a text
classification dataset are separable according to the
accompanying set of labels. That is, given a strong
document encoder, the documents should be separa-
ble by label in the encoded space. This assumption
is similarly made when performing clustering for
unsupervised document classification (Liang and
Klein, 2009).

We use the set of unlabeled input texts to refine
the predictions of our dataless classifiers via clus-
tering. To better inform the algorithm, we initialize
the clusters by using our dataless classifiers run on
the provided label set for each task. The algorithm
takes on different forms for the dual and single
encoder models. Details are provided below.

3.1 ULR for Dual Encoder Architectures

In the setting of a dual encoder model, we propose
to perform k-means clustering among text represen-
tations, i.e., of vectors produced by the text encoder.
The assumption is that texts falling under the same

Algorithm 1: ULR for dual encoder archi-
tectures
Data: documents T , categories C, encoder

enc, scoring function score
initialize the centroids rc = enc(c) ∀c ∈ C;
while not converged do

for t ∈ T do
stc = score(enc(t), rc)∀c ∈ C;
predt = argmincstc;

end
rc =

(
∑

t:predt=c enc(t)

count({t:predt=c}) + enc(c))/2 ∀c ∈ C;

objective =
∑

t stpredt ;
end
Result: stc, objective, predt, and rc of all

iterations

category will be close in the semantic space. We
want to adapt our dataless classifier’s predictions
based on the natural clustering structure in the en-
codings of the texts.

We show the ULR algorithm for dual encoder
architectures in Algorithm 1. We use one encoder
enc to encode texts and categories. We link cen-
troids to categories and initialize the centroids us-
ing the encodings of the corresponding categories.
The algorithm converges when no data point (text
representation) updates its cluster assignment, i.e.,
the centroids stop updating. In our experiments,
we run a maximum of 100 iterations. We perform
model selection (“early stopping”) based on the
minimum value of objective among iterations.

Our k-means algorithm differs from standard k-
means as our updated centroids are interpolated
with the initial category embeddings. In standard
k-means, the centroids are typically initialized ran-
domly. In our case, since we link centroids to
categories and use our encoder to provide initial
centroids, we want to leverage the information in
our category embeddings across clustering itera-
tions. Therefore, we average the “new centroid”
with the original category vector, which serves as a
kind of regularization. While this update is heuris-
tically motivated, we can reverse-engineer the clus-
tering objective it approximately optimizes (with
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Euclidean distance as score):

min
{rc}c∈C

min
{at}t∈T

∑
t∈T
||enc(t)− rat ||

2

+
∑
c∈C
|c| ||enc(c)− rc||2 (1)

where at ∈ C is the category assignment of docu-
ment t ∈ T and |c| is the size of cluster/category
c. See Appendix A for details. In preliminary
experiments we found this modification to stabi-
lize performance so we use it in our experiments
reported below.

3.2 ULR for Single Encoder Architectures

In our single encoder architecture, a score is pro-
duced for each document-category pair indicating
its relatedness. For each document, after exponenti-
ating and normalizing the score over all categories,
we obtain a distribution indicating the probability
of the document belonging to each category. For
text t and category c, we have a probability ptc,
where

∑
c ptc = 1.

A straightforward way of classifying each doc-
ument is to pick the category of which it has the
highest probability score, i.e., argmaxc ptc. An-
other way of interpreting this classification rule is
to define |C| centroid vectors, each being an iden-
tity distribution one–hot(c),3 and pick the category
having the minimum Jensen-Shannon Divergence
(Lin, 1991) with the document probability vector,
i.e., argminc JS(pt, one–hot(c)), where JS is the
Jensen-Shannon Divergence between two distribu-
tions. Clustering probability distributions based
on KL divergence is a well-known special case
of clustering with Bregman divergences (Banerjee
et al., 2005).4 While JS does not admit such a well-
defined objective to our knowledge, we find that it
works well in practice.

It is natural to represent each category as a dis-
tribution by a one-hot vector. However, in a real
text classification problem, the semantics of a cat-
egory is affected by how the annotators view it.
For instance, a news document could relate to both

3Here we abuse the notation of one–hot(c) to represent a
one-hot vector that has a “1” at the index of category c ∈ C.

4Specifically, if we replace JS(pt, rc) with DKL(pt||rc) in
Algorithm 2, it is an alternating minimization of the following
clustering objective:

min
{rc}c∈C

min
{at}t∈T

∑
t∈T

DKL(pt||rat)

Algorithm 2: ULR for single encoder ar-
chitectures
Data: documents T , categories C, scoring

function score, function to compute
JS divergence JS

initialize the centroids as
rc = one–hot(c)∀c ∈ C;

compute each document’s probability
distribution over categories as
[pt]c ∝ exp(score(t, c)) ∀t ∈ T , c ∈ C;

while not converged do
for t ∈ T do

stc = JS(pt, rc) ∀c ∈ C;
predt = argminc stc;

end

rc =
∑

t:predt=c pt

count({t:predt=c}) ∀c ∈ C;

end
Result: predt of the last iteration

“business” and “science & technology”, though it
will only have a single annotated category in the
downstream task dataset. With this intuition, we
propose to represent each category by a soft distri-
bution over all the categories, but not necessarily a
one-hot vector.

Algorithm 2 describes our k-means clustering
approach applied on the single encoder model. In
this algorithm our predicted categories will be the
clustering assignments of the last iteration. Unlike
with the dual encoder model, we do not do early
stopping. We also do not use interpolated centroids
as one-hot vectors may not necessarily be good
category embeddings in this setting.

4 Experimental Setup

We now introduce the datasets we used for evalua-
tion and the dual encoder and single encoder data-
less classifiers we used to run ULR experiments.

4.1 Evaluation

We use four text classification datasets spanning
different domains for evaluation. They are: AG
News5 (AG), which uses 4 classes and covers the
newswire domain; DBpedia (DBP; Lehmann et al.,
2015), which has 14 classes and is from the do-
main of encyclopedias; Yahoo (Zhang et al., 2015),
which has 10 classes and addresses categorizing

5https://www.di.unipi.it/˜gulli/AG_
corpus_of_news_articles.html

https://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
https://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
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questions in online question fora; and 20 news-
groups (20NG; Lang, 1995), with 20 classes which
are types of newsgroups.

We do not use any data or labels from the training
set in our main experiments, but only rely on label
descriptions. We use the official label names from
these datasets, and only expand them if the original
label name is provided as abbreviations such as
“sci tech”. The exact label names we used are in
the appendix.

4.2 Dataless Classifiers

We experiment with multiple dataless text classi-
fiers that vary in terms of their complexity. Our
simplest classifier uses an encoder that averages
pretrained GloVe (Pennington et al., 2014) word
embeddings. We also fine-tune a ROBERTA model
(Liu et al., 2019) in both single and dual encoder
settings, using ROBERTA-base (110M parame-
ters). We do not run experiments with traditional
dataless classifiers such as ESA (Chang et al., 2008;
Gabrilovich and Markovitch, 2007) as ESA vec-
tors are of extremely high dimension, making it
computationally difficult to apply ULR. GloVe and
ROBERTA produce lower dimensional vectors that
are more computationally amenable to refinement.
Also, we experimented with ESA and found that it
does not perform as well as our ROBERTA based
models (where both are tested without ULR).6 Next
we describe the details of the three dataless classi-
fiers that we use in our experiments.

GloVe dual encoder. We use GloVe (Pennington
et al., 2014) in the dual encoder setting, simply aver-
aging word vectors to represent both the categories
and the documents. We use the 300 dimensional
GloVe vectors7 trained on Common Crawl. We ex-
periment with two distance functions when using
GloVe: cosine and L2.

ROBERTA dual encoder. The category c and
text t are fed separately to ROBERTA using the
formatting “[CLS] c [SEP]” and “[CLS] t [SEP]”.
We use the average of the final-layer hidden states
produced by ROBERTA as category and text vec-
tors. For the scoring function, which computes a
scalar from the category and text vectors, we con-

6As a comparison to the results of the ROBERTA dual
encoder in Table 2, ESA accuracies (%) are 71.2 for AG, 62.5
for DBP, 29.7 for Yahoo, and 25.1 for 20NG.

7http://nlp.stanford.edu/data/glove.
840B.300d.zip

sider dot product8 and L2 distance.

ROBERTA single encoder. The category c and
text t are combined in the form “[CLS] c [SEP] t
[SEP]”, tokenized, and encoded using ROBERTA.
We truncate t to ensure the category-document pair
is within 128 tokens. The vector representation of
the “[CLS]” token (after a linear transformation
and non-linear activation) is then passed to a linear
layer to produce a score.

4.3 Fine-tuning ROBERTA Models

We use the NATCAT dataset (Chu et al., 2020)
to fine-tune the ROBERTA models. NATCAT

comprises document-category pairs from three re-
sources: Wikipedia, Stack Exchange, and Reddit.
Each NATCAT document comes with positive and
negative categories. A positive category describes
the document, and a negative category is randomly
sampled and is irrelevant to the document. The
ROBERTA models are fine-tuned as binary clas-
sifiers to indicate whether a category is positive
for a document. We use the Hugging Face frame-
work (Wolf et al., 2019) to fine-tune all ROBERTA

models, using 300k instances from NATCAT.9

Fine-tuning ROBERTA dual encoder. While
many other combinations of score and loss func-
tion could be considered, we report results with
two particular combinations: dot product paired
with binary cross entropy and L2 distance paired
with a contrastive hinge loss. When dot product is
used, ROBERTA is fine-tuned to minimize binary
cross entropy between score(enc(c), enc(t)) and a
binary label y ∈ {0, 1}.

When using L2 distance, we fine-tune
ROBERTA to minimize a contrastive hinge loss:

loss = max(xp + γ − xn, 0)

where xp = score(enc(cp(t)), enc(t)), xn =
score(enc(cn(t)), enc(t)), score is the squared L2
distance, cp(t) is a positive category for text t, cn(t)
is a negative category, and γ is a parameter indicat-
ing the margin. This loss aims to make negative
category-text pairs have higher squared L2 distance
than negative pairs by the margin.

Fine-tuning ROBERTA single encoder. When
used as a single encoder, ROBERTA is fine-tuned

8Practically we find the model is easier to train with dot
product compared to cosine similarity.

9The finetuning hyperparameters are in the appendix.

http://nlp.stanford.edu/data/glove.840B.300d.zip
http://nlp.stanford.edu/data/glove.840B.300d.zip
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AG DBP Yahoo 20NG avg

GloVe

cosine baseline 66.1 43.5 29.4 29.8 42.2
+ ULR 78.3 46.4 27.9 30.8 45.9

L2 baseline 40.5 15.7 14.5 19.5 22.6
+ ULR 58.7 35.7 23.3 25.9 35.9

ROBERTA

cosine baseline 74.0 84.6 52.3 36.4 61.8
+ ULR 73.7 93.3 54.3 40.3 65.4

L2 baseline 69.9 78.8 55.7 37.8 60.6
+ ULR 70.7 90.5 61.3 37.4 65.0

Table 2: Accuracies (%) when applying ULR to
the GloVe and ROBERTA dual encoder architecture
(“baseline”), for two different choices of distance func-
tion (cosine and L2).

to minimize binary cross entropy between the pre-
dicted score score(enc(c, t)) and a binary label y,
where score is a linear function that transforms the
vector into a scalar score.

5 Experimental Results of ULR

Dual encoder models. With the dual encoder
models, we used two sets of distance measures.
The first distance is the cosine distance of two vec-
tors. In this case, we always normalize the vector
representations before applying ULR. The second
distance measure is the L2 distance.

Table 2 shows results for the GloVe and
ROBERTA dual encoder model with two distance
functions. With GloVe, except for the single case
of cosine distance with Yahoo, all accuracies im-
prove, with some improving by large amounts
(up to 20% absolute). With the ROBERTA dual
encoder model, the choice of distance function
matches the scoring function we used when fine-
tuning ROBERTA, i.e., cosine distance is used with
dot product scoring and L2 distance is used with
the contrastive hinge loss. ULR improves accura-
cies by 3.6% to 4.4% on average, and the improve-
ments are consistent across distance functions and
datasets, except for the cases of 20 NEWSGROUPS

with L2 distance and AG with cosine distance,
which show slight degradations.

Single encoder model. Table 3 summarizes the
results of applying ULR to the ROBERTA single
encoder architecture. ULR improves performance
across all four datasets, ranging from 0.5% for
20NG up to 6.8% on DBP. Additional experiments

AG DBP Yahoo 20NG avg

baseline 72.6 81.8 59.3 36.0 62.4
+ ULR 75.1 88.6 60.0 36.5 65.1

Table 3: Accuracies (%) when applying ULR to the
ROBERTA single encoder architecture (“baseline”).

AG DBP Yahoo

cosine ensemble 79.1 84.6 54.5
+ ULR 81.1 93.3 54.4

L2 ensemble 72.4 79.0 56.5
+ ULR 73.4 90.7 61.7

Table 4: Accuracies (%) of ensemble predictions using
10 choices of label names using the ROBERTA dual en-
coder architecture (“ensemble”), and results when com-
bining it with ULR.

in the appendix show the impact of early stopping
and interpolation using this architecture.

Label ensembles. Finding the best choice of la-
bel names for dataless classifiers is difficult without
labeled data. Therefore, it is easier to supply multi-
ple choices of label names for a given task.

We manually pick 10 different sets of label
names for each dataset,10 generate category and
text representations with our ROBERTA dual en-
coder model, and perform ULR. The exact choices
of label names are in the appendix. The predicted
scores for the 10 sets are summed up as the final
ensemble predictions. Table 4 shows results. Com-
pared to Table 2, all accuracies on all tasks improve.
Even with a stronger starting point from ensem-
bling, ULR still yields consistent improvements in
accuracy, with the single exception of Yahoo and
cosine distance.

6 Robustness Experiments

Different choices of label names. Dataless text
classification tasks are known to suffer from high
variance due to label descriptions. Performance
can vary dramatically across different choices of
category names, as shown in Table 1.

One advantage of ULR is that it is robust to label
noise. That is, even given a poor choice of label
names, ULR can help the classifier to partially re-
cover some of the accuracy, as shown in the lower

10We exclude 20NG mainly because it is difficult to come
up with synonyms for its labels for this ensemble experiment
and the robustness analysis in Section 6, since some labels in
20NG include proper nouns like “windows”, “ibm”, “mac”,
etc.
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Figure 2: Accuracy (%) improvement when applying ULR compared to the ROBERTA dual encoder model (with
Euclidean distance). The horizontal axis is the initial accuracy and the vertical axis is the absolute accuracy
improvement after ULR.

AG News DBP Yahoo

baseline 69.6 (8.7) 79.4 (3.2) 43.8 (3.9)
cos. + ULR 77.5 (5.5) 91.6 (3.2) 45.3 (3.9)

# imp. 213
240 = 89% 3867

3867 = 100% 732
1015 = 72%

baseline 62.2 (9.6) 71.7 (3.8) 49.5 (3.8)
L2 + ULR 75.2 (4.1) 85.2 (5.5) 59.3 (1.5)

# imp. 237
240 = 99% 2960

2963 = 100% 947
947 = 100%

Table 5: Robustness analysis when varying choices
of label names. The “baseline” and “+ ULR” rows
show average accuracies (%) with standard deviations
in parentheses of the ROBERTA dual encoder architec-
ture among all category naming choices. The “# imp.”
rows show the numbers and percentages of cases where
the performance improves after ULR.

portion of Table 1. We now describe similar ex-
periments on a larger scale. In particular, we test
several hundred sets of label names for each of AG,
DBP, and Yahoo. For each category, we randomly
assign different label names to it, all having similar
meaning. The exact combinations of label names
are in the appendix.

We then perform dataless text classification and
ULR with our ROBERTA dual encoder model, ei-
ther under cosine or L2 distance. Table 5 shows
the results of the average performance gains before
and after ULR. We also report the number and per-
centage of cases in which ULR improves accuracy.
ULR improves the performance on average for all
three tasks, and improves individual accuracies in
the vast majority of cases. These results show that
ULR is not only effective at improving the accu-
racy of dataless text classifiers across a wide range
of label name sets, but also can help to mitigate
harmful effects due to suboptimal label names.

We next study the relationship between the
ROBERTA dual encoder model’s initial accuracies
and its accuracy gains with ULR. Figure 2 plots
accuracy improvements vs. initial accuracies for
the three datasets. We find that ULR gives larger
gains when the initial accuracies are lower.

We also computed oracle accuracies by choosing
the combination of label names that maximize ac-
curacy (without ULR). With cosine distance, they
are 81.9% for AG, 87.5% for DBP, and 53.3% for
Yahoo. With L2 distance, they are 81.5% for AG,
81.1% for DBP, and 58.9% for Yahoo. Using ULR
with the ROBERTA dual encoder provides better
performance on DBP and Yahoo, and competitive
results on AG, as shown in Tables 2 and 4.

Clustering with random initialization. We
now investigate the impact of our initialization in
ULR. We consider a variation in which we ran-
domly initialize centroids. Since we can no longer
link clusters and categories, this task becomes un-
supervised text classification. A standard k-means
algorithm is applied to update the centroids. Unlike
Algorithm 1, in this experiment we do not interpo-
late the updated centroids with the initial centroids,
as the initial centroids are random. The accuracy
is calculated based on the oracle one-to-one map-
ping between final centroids and categories. This
is often referred to as “one-to-one accuracy”.

Table 6 presents results on AG with this experi-
ment. We performed 240 trials with different ran-
dom initialization of the centroids, and unsurpris-
ingly, accuracy is improved in all cases. With L2
distance, ULR with random initialization even out-
performs centroids initialized as category embed-
dings, which shows that unsupervised clustering is
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cosine L2

baseline 37.3 39.9
AG News + ULR 61.4 75.8

# improved 239
240 = 99.6% 240

240 = 100%

Table 6: Average 1-to-1 accuracy (%) of ULR with ran-
dom initialization of centroids. “baseline” and “ULR”
are average accuracy (%) of the ROBERTA dual en-
coder architecture among all random initialized cen-
troids. “# imp.” are the numbers and percentages of
cases where the performance improves after ULR.

AG DBP Yahoo 20NG avg

baseline 74.0 84.6 52.3 36.4 61.8
+ 30 labeled ins. 81.5 97.1 66.0 58.1 75.7
+ ULR 85.2 97.4 66.7 58.2 76.9

Table 7: Accuracies (%) when adding 30 labeled in-
stances for each category with the ROBERTA dual en-
coder model (“baseline”).

powerful in text classification with good text rep-
resentations. However, since we do not have the
one-to-one mapping between category and final
centroids in the purely unsupervised setting, the
results in Table 6 are not directly comparable to
those in earlier tables.

7 ULR with Few Shot Learning

In this section, we apply ULR in the few shot learn-
ing setting. In particular, we draw 30 labeled in-
stances for each category from the training split in
the original datasets. We then further fine-tune our
ROBERTA dual encoder model with the labeled
instances. We adopt the hyperparameters of fine-
tuning text classifiers from Wolf et al. (2019) and
fine-tune for 3 epochs on these 30 labeled instances
for each category. Then we apply ULR on the unla-
beled test set in addition to the 30 labeled instances
from each category.

Unlike Algorithm 1, these 30 labeled instances
from each category are fixed to be assigned to
their corresponding clusters. We compute the cen-
troids of these clusters from 30 labeled instances
by rlc =

∑
t∈Lc

enc(t)

|Lc| ∀c ∈ C where documents Lc
are labeled with c ∀c ∈ C.

At every iteration, the update rule of the cen-
troids as in Algorithm 1 will include the text vector
representations of these 30 labeled instances, i.e.,

rc = (
∑

t:predt=c enc(t)

count({t:predt=c}) + rlc + 2× enc(c))/4.
Table 7 summarizes the results of combining

30 labeled instances for each category and ULR.

Unsurprisingly, adding labeled instances improves
accuracy by a large margin. Even so, ULR yields
an additional improvement of 3.7% for AG, and
also improves on the other datasets.

8 Analysis

A key challenge of dataless text classifiers is seman-
tic drift between the training data and downstream
tasks. As ULR is based on k-means, the centroids
move towards the embeddings of the majority of
text instances belonging to that category. Hence
after ULR the locations of the centroids combine
the information in the initial dataless text classifiers
and the document sets for the downstream tasks.

Using AG, Table 8 shows the 5 text in-
stances closest to the centroids for “business” and
“sci&tech” before and after ULR. These categories
are hard to distinguish as technology companies
often appear in both business and technology news.
However, after ULR, we see that texts containing
technology companies (“LeapFrog”, “ScanSoft”)
become less central for the “business” category,
replaced by texts describing transactions and earn-
ings. Also, a text containing a company name
(“NEC”) has become less central for the “sci&tech”
category, replaced in the top 5 by a similar text that
does not emphasize a company name.

In certain text classification settings, we may be
able to abstain from classifying instances we are
less confident about. This notion can be instanti-
ated by checking the texts closest to the centroids
corresponding to the labels, which we can view
intuitively as the ones the model is most confident
about. Table 9 shows a confidence-based evalua-
tion, evaluating the k texts that are closest to each
centroid and showing that ULR consistently im-
proves precision at k.

9 Related Work

Earlier we discussed prior work on dataless and
zero-shot text classification. We briefly introduce
more related work in this section. Song et al. (2015)
provide a text label refinement algorithm to adjust
the label set with noisy and missing labels. There
is also a wealth of prior work in semi-supervised
text classification: using unlabeled text to improve
classification performance (Nigam et al., 2000;
Mukherjee and Awadallah, 2020; Xie et al., 2019).
These methods typically learn generally useful text
representations from a large corpus of unlabeled
text and use them for a specific target task with
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category baseline + ULR

Hicks Muse Pays for ConAgra’s Swift Stake ... CA to buy Netegrity for 430 m ...
EDS Is Charter Member of Siebel BPO Alliance ... Sara Lee 1st-Quarter Net Rises on Fee (Reuters) ...

business GM, Daimler Go Green ... Sears and Kmart Agree to Merge in 11 Billion Deal ...
LeapFrog’s Greener Pastures (The Motley Fool) ... LCC Int Posts 3Q Profit, Shares Tumble, ...
ScanSoft to acquire 3 software firms ... Before-the-Bell: GenCorp Falls 5.6 Pct. (Reuters) ...

Robot eats flies to make power ... Particle lab celebrates 50th birthday ...
Particle lab celebrates 50th birthday ... Breakthrough on hydrogen fuel ...

sci&tech Time on a Chip: The Incredible Shrinking Atomic ... Time on a Chip: The Incredible Shrinking Atomic ...
NEC Unveils World Fastest Vector Supercomputer .. Record Breaking Supercomputer Performance ...
Breakthrough on hydrogen fuel ... Robot eats flies to make power ...

Table 8: Top-5 scoring texts belonging to categories “business” and “sci&tech” in AGNews.

P@10 P@50 P@100 P@500

AG baseline 85.0 87.5 89.3 85.4
+ ULR 85.0 89.5 91.5 89.9

DBP baseline 83.6 84.1 84.1 84.6
+ ULR 92.1 92.1 92.6 91.5

Yahoo baseline 79.0 84.8 83.6 83.3
+ ULR 91.0 90.2 89.4 87.2

20NG baseline 64.5 62.0 57.6 35.7
+ ULR 71.5 65.0 62.0 38.8

Table 9: Precision (%) at k (P@k) with dual encoder
ROBERTA and cosine scoring.

limited supervision (Howard and Ruder, 2018; De-
vlin et al., 2019; Liu et al., 2019; Lan et al., 2020;
Peters et al., 2018). Metric learning (Wohlwend
et al., 2019) is related to our work, but they focus
on few-shot learning and we work on improving
unsupervised text classifiers. Related contempo-
raneous work has proposed methods to generate
more relevant label names from a given set (Meng
et al., 2020; Schick et al., 2020). ULR is orthogonal
to such methods of choosing label names, as these
label names can be set as extra initial centroids.
Finally, label descriptions have also been exploited
in supervised learning to improve text classifiers
(Chai et al., 2020; Wang et al., 2019; Sun et al.,
2019).

10 Conclusion

Our proposed ULR algorithms provide a simple but
effective framework to improve the performance
of dataless text classifiers. Extensive experiments
show its flexibility and robustness, offering promise
for making dataless text classification more useful
for practitioners.
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A Clustering Objective

For convenience, we first rewrite Eq. (1) below:

min
{rc}c∈C

min
{at}t∈T

∑
t∈T
||enc(t)− rat ||

2

+
∑
c∈C
|c| ||enc(c)− rc||2 (2)

We also rewrite Algorithm 1 here as Algorithm 3:

Algorithm 3: ULR for dual encoder archi-
tectures
Data: documents T , categories C, encoder

enc, scoring function score
initialize the centroids rc = enc(c) ∀c ∈ C;
while not converged do

for t ∈ T do
stc = score(enc(t), rc)∀c ∈ C;
predt = argmincstc;

end
rc =

(
∑

t:predt=c enc(t)

count({t:predt=c}) + enc(c))/2 ∀c ∈ C;

objective =
∑

t stpredt ;
end
Result: stc, objective, predt, and rc of all

iterations

The objective (2) as a function of a single cen-
troid corresponding to category c ∈ C can be writ-
ten as

min
v∈Rd

∑
t∈c
||enc(t)− v||2 + |c| ||enc(c)− v||2

where c ∈ C is constant given assignments at. It is
easy to verify that the unique solution is given by

rc =
1
c

∑
t∈c enc(t) + enc(c)

2

which is the update in Algorithm 3. Now consider
(2) as a function of category assignments

min
{at}t∈T

∑
t∈T

||enc(t)− rat ||
2 +

∑
c∈C

|c| ||enc(c)− rc||2

where centroids rc are held constant. Unfortu-
nately this problem remains intractable because
the regularization term is weighted by cluster sizes.
We can approximate it by ignoring the regulariza-
tion term: in this case the minimizer is given by
at = argminc∈C ||enc(t)− rc|| for each t ∈ T as
usual. Thus Algorithm 3 can be viewed as optimiz-
ing (2) by alternating minimization, with the simpli-
fying (incorrect) assumption that cluster sizes are
not significantly affected by category assignments.
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B Experimental Setup

We list the hyperparameters we used to fine-tune
our ROBERTA based dataless classification mod-
els in this section, so readers can reproduce our
experimental results. The code with the scripts are
also included in the supplementary material. We
choose ROBERTA-base. In all fine-tuning tasks,
we set the batch size to be 32. The max sequence
length for ROBERTA is 128. The peak learning
rate is 0.00002. We use a linear scheduler with
warmup steps to be 10% of the total fine-tuning
steps. The random seeds of all experiments are set
to be 1.

We fine-tune ROBERTA models on random
choices of single GPUs, including NVIDIA TITAN
X, 1080Ti, or 2080 Ti. Most of the fine-tuning tasks
can be finished within 8 hours.

C Label Names in the Evaluation Tasks

In the main experiments (Section 5), we use the
following label descriptions (separated by “;”) for
the downstream tasks.

• AG: world; sports; business; science technology
• DBP: company; educational institution; artist;

athlete; politician; transportation; building; na-
ture; village; animal; plant; album; film; written
work

• Yahoo: society culture; science mathematics;
health; education reference; computers internet;
sports; business finance; entertainment music;
family relationships; politics government

• 20 NEWSGROUPS: atheist christian atheism
god islamic; graphics image gif animation tiff;
windows dos microsoft ms driver drivers card
printer; bus pc motherboard bios board computer
dos; mac apple powerbook; window motif xterm
sun windows; sale offer shipping forsale sell
price brand obo; car ford auto toyota honda nis-
san bmw; bike motorcycle yamaha; baseball ball
hitter; hockey wings espn; encryption key crypto
algorithm security; circuit electronics radio sig-
nal battery; doctor medical disease medicine pa-
tient; space orbit moon earth sky solar; chris-
tian god christ church bible jesus; gun fbi guns
weapon compound; israel arab jews jewish mus-
lim; gay homosexual sexual; christian morality
jesus god religion horus

Label ensembles. In the experiment of ensem-
bling labels, we use the following 10 sets of label
name choices.

For AG:

• world; sports; business; science technology
• international; sports; business; science technol-

ogy
• world; sports; business; science and technology
• international; sports; business; science and tech-

nology
• world; sports; business and finance; science tech-

nology
• international; sports; business and finance; sci-

ence technology
• world; sports; business and finance; science and

technology
• international; sports; business and finance; sci-

ence and technology
• world politics; sports; business; science technol-

ogy
• world politics; sports; business; science technol-

ogy

For DBP:

• company; educational institution; artist; athlete;
politician; transportation; building; nature; vil-
lage; animal; plant; album; film; written work

• company; school; artist; athlete; politician; trans-
portation; building; nature; village; animal;
plant; album; film; written work

• company; educational institution; artist; athlete;
politician; transportation; architecture; nature;
village; animal; plant; album; movie; written
work

• company; educational institution; artist; athlete;
politician; transportation; building; nature; vil-
lage; animal; plant; album; film; novel

• company; educational institution; artist; athlete;
politician; transportation; building; nature; vil-
lage; animal; plant; album; film; article

• company; educational institution; artist; athlete;
politician; transportation; building; nature; vil-
lage; animal; plant; collection; movie; written
work

• company; school; artist; athlete; politician; trans-
portation; architecture; nature; village; animal;
plant; album; movie; written work

• company; educational institution; artist; athlete;
politician; transportation; architecture; nature;
village; animal; plant; album; movie; novel

• company; school; artist; athlete; politician; trans-
portation; architecture; nature; village; animal;
plant; album; film; novel
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• company; educational institution; artist; athlete;
official; transportation; building; nature; village;
animal; plant; album; movie; article

For Yahoo:

• society culture; science mathematics; health; ed-
ucation reference; computers internet; sports;
business finance; entertainment music; family
relationships; politics government

• society culture; scientific discipline; health; ed-
ucation reference; computers internet; sports;
business finance; entertainment music; family
relationships; politics government

• society culture; science mathematics; health;
learning teaching resource; computers internet;
sports; business finance; entertainment music;
family relationships; politics government

• society culture; science mathematics; health; ed-
ucation reference; computers internet; sports;
business finance; entertainment music; love
home; politics government

• society culture; science mathematics; health;
education reference; information technology;
sports; business finance; entertainment music;
family relationships; politics government

• society culture; scientific discipline; health; edu-
cation reference; information technology; sports;
business finance; entertainment music; family
relationships; politics government

• society culture; science mathematics; health;
learning teaching resource; information technol-
ogy; sports; business finance; entertainment mu-
sic; family relationships; politics government

• society culture; science mathematics; health; ed-
ucation reference; computers internet; sports;
commerce; entertainment music; family relation-
ships; politics government

• society culture; science mathematics; health;
education reference; information technology;
sports; commerce; entertainment music; family
relationships; politics government

• society culture; science mathematics; health;
learning teaching resource; computers internet;
sports; commerce; entertainment music; family
relationships; politics government

D Robustness to Label Noise

In the robustness experiments (Section 6), we man-
ually picked different choices of label names for
each category of the downstream tasks. We list the

choices of label names for each category below,
separated by “;”.

AG:

• world: world; world politics; world news; inter-
national; international news

• sports: sports; health; health and sports
• business: business; commerce; finance; business

and finance
• science technology: science; technology; sci-

ence and technology; science technology

DBP:

• company: company; corporation
• educational institution: educational institution;

school
• artist: artist; creator
• athlete: athlete; sportsman
• politician: politician; official
• transportation: transportation
• building: building; architecture
• nature: nature
• village: village; suburb
• animal: animal; living thing
• plant: plant
• album; collection
• file: film; movie
• written work: written work; writing; novel; arti-

cle

Yahoo:

• society culture: society culture; community
• science mathematics: science mathematics; sci-

entific discipline
• health: health; fitness
• education reference: education reference; learn-

ing teaching resource
• computers internet: computers internet; informa-

tion technology
• sports: sports; athletics
• business finance: business finance; commerce
• entertainment music: entertainment music; fun

songs
• family relationships: family relationships; love

home
• politics government: politics government; policy

regime regulation

Different combinations of label name choices are
used to generate category embeddings and perform
ULR.
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AG DBP Yahoo 20NG avg

baseline 72.6 64.7 57.1 28.7 55.8
+ULR 75.6 75.1 59.9 35.9 61.6

Table 10: Improvements of ULR with the ROBERTA
dual encoder model on unbalanced datasets.

AG DBP YAHOO 20NG avg

baseline 72.6 81.8 59.3 36.0 62.4

+ ULR

75.1 88.6 60.0 36.5 65.0
+ early 72.6 88.6 59.3 36.5 64.3

+ ULR + interpolate

74.0 87.2 59.6 36.9 64.4
+ early 74.0 87.2 59.6 36.9 64.4

Table 11: Accuracies (%) when applying ULR to
the ROBERTA single encoder architecture (“baseline”).
“+interpolate” are the results when we update centroids
with interpolation. “+ early” means early stopping.

E Augmented Categories

In the experiment of augmenting categories with
ULR (Section 8), we use the following augmented
categories (separated by “;”): math; gis; physics;
codereview; stats; unix; english; tex; gaming; ap-
ple; scifi; drupal; ell; meta; electronics; travel; rpg;
dba; magento; webapps; diy; wordpress; android;
security; chemistry; webmasters; blender; softwa-
reengineering; gamedev; academia.

F Unbalanced Dataset

We manually create unbalanced datasets, where
each category only contains 1-100% of the original
instances. For a dataset with n categories, each
instance belonging to category i has a probabil-
ity of i

n , i ∈ {0, 1, · · · , n − 1} of being dropped,
where the orders of categories are random. Ta-
ble 10 shows that ULR improves performance with
unbalanced datasets.

G Single Encoder

Table 11 summarizes the results of applying ULR
on the single encoder model with two variations:

1. early: early stopping on the average Jenson-
Shannon Divergence score of all probability
distribution of text over all categories to their
corresponding nearest one-hot centers;

2. interpolate: when updating centroids in Al-
gorithm 2, we take the average of the new
centroids with the centroids from the previous
iteration.

Overall, these two variations do not provide better
results in the setting of single encoder models.


