
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 4066–4078
August 1–6, 2021. ©2021 Association for Computational Linguistics

4066

HySPA: Hybrid Span Generation for Scalable Text-to-Graph Extraction

Liliang Ren, Chenkai Sun, Heng Ji, Julia Hockenmaier
University of Illinois, Urbana Champaign

Department of Computer Science
{liliang3,chenkai5,hengji,juliahmr}@illinois.edu

Abstract
Text-to-Graph extraction aims to automati-
cally extract information graphs consisting of
mentions and types from natural language
texts. Existing approaches, such as table filling
and pairwise scoring, have shown impressive
performance on various information extraction
tasks, but they are difficult to scale to datasets
with longer input texts because of their second-
order space/time complexities with respect to
the input length. In this work, we propose
a Hybrid SPan GenerAtor (HySPA) that in-
vertibly maps the information graph to an al-
ternating sequence of nodes and edge types,
and directly generates such sequences via a
hybrid span decoder which can decode both
the spans and the types recurrently in linear
time and space complexities. Extensive exper-
iments on the ACE05 dataset show that our ap-
proach also significantly outperforms state-of-
the-art on the joint entity and relation extrac-
tion task.1

1 Introduction

Information Extraction (IE) can be viewed as a
Text-to-Graph extraction task that aims to extract
an information graph (Li et al., 2014; Shi et al.,
2017) consisting of mentions and types from un-
structured texts, where the nodes of the graph are
mentions or entity types and the edges are relation
types that indicate the relations between the nodes.
A typical approach towards graph extraction is to
break the extraction process into sub-tasks, such as
Named Entity Recognition (NER) (Florian et al.,
2006, 2010) and Relation Extraction (RE) (Sun
et al., 2011; Jiang and Zhai, 2007), and either per-
form them separately (Chan and Roth, 2011) or
jointly (Li and Ji, 2014; Eberts and Ulges, 2019).

Recent joint IE models (Wadden et al., 2019;
Wang and Lu, 2020; Lin et al., 2020) have shown

1Our code is publicly available at https://github.
com/renll/HySPA

Figure 1: We represent directed multigraphs as alter-
nating sequences of nodes (blue) and edges (orange).
Here, the graph is traversed by Breadth First Search
(BFS) with an ascending ordering of nodes and edge
types. “[s]” or [SEP] is a virtual edge type, represent-
ing the end of each BFS level.

impressive performance on various IE tasks, since
they can mitigate error propagation and leverage
inter-dependencies between the tasks. Previous
work often uses pairwise scoring techniques to iden-
tify relation types between entities. However, this
approach is computationally inefficient because it
needs to enumerate all possible entity pairs in a
document, and the relation type is a null value for
most of the cases due to the sparsity of relations
between entities. Also, pairwise scoring techniques
evaluate each relation type independently and thus
fail to capture interrelations between relation types
for different pairs of mentions.

Another approach is to treat the joint information
extraction task as a table filling problem (Zhang
et al., 2017; Wang and Lu, 2020), and generate two-
dimensional tables with a Multi-Dimensional Re-
current Neural Network (Graves et al., 2007). This
can capture interrelations among entities and rela-
tions, but the space complexity grows quadratically
with respect to the length of the input text, making
this approach impractical for long sequences.

Some attempts, such as Seq2RDF (Liu et al.,
2018) and IMoJIE (Kolluru et al., 2020), leverage
the power of Seq2seq models (Cho et al., 2014)

https://github.com/renll/HySPA
https://github.com/renll/HySPA

4067

to capture the interrelations among mentions and
types with first-order complexity, but they all use
a pre-defined vocabulary for mention prediction,
which largely depends on the distribution of the
target words and will not be able to handle unseen
out-of-vocabulary words.

To solve these problems, we propose a first-order
approach that invertibly maps the target graph to
an alternating sequence of nodes and edges, and
applies a hybrid span generator that directly learns
to generate such alternating sequences. Our main
contributions are three-fold:

• We propose a general technique to invertibly
map between an information graph and an al-
ternating sequence (assuming a given graph
traversal algorithm). Generating an alternat-
ing sequence is equivalent to generating the
original information graph.

• We propose a novel neural decoder that is en-
forced to only generate alternating sequences
by decoding spans and types in a hybrid man-
ner. For each decoding step, our decoder only
has linear space and time complexity with re-
spect to the length of the input sequence, and
it can capture inter-dependencies among men-
tions and types due to its nature as a sequential
decision process.

• We conduct extensive experiments on the
Automatic Content Extraction (ACE) dataset
which show that our model achieves state-of-
the-art performance on the joint entity and
relation extraction task which aims to extract
a knowledge graph from a piece of unstruc-
tured text.

2 Modeling Information Graphs as
Alternating Sequences

An information graph can be viewed as a het-
erogeneous multigraph (Li et al., 2014; Shi et al.,
2017) G = (V,E), where V is a set of nodes (typ-
ically representing spans (ts, te) in the input doc-
ument) and E is a multiset of edges with a node
type mapping function φ : V → Q and an edge
type mapping function ψ : E → R. Node and
edge types are assumed to be drawn from a finite
vocabulary. Node types can be used e.g. to rep-
resent entity types (PER, ORG, etc.), while edge
types may represent relations (PHYS, ORG-AFF,
etc.) between the nodes. In this work, we represent

node types as separate nodes that are connected to
their node v by a special edge type, [TYPE]. 2

Representing information graphs as sequences
Instead of directly modeling the space of het-
erogeneous multigraphs, G, we build a mapping
sπ = fs(G, π) from G, to a sequence space Sπ.
fs depends on a (given) ordering π of nodes and
their edges in G, constructed by a graph traver-
sal algorithm like Breadth First Search (BFS) or
Depth First Search (DFS), and an internal order-
ing of nodes and edge types. We assume that
the elements sπi of the resultant sequences sπ are
drawn from finite sets of node representations
V (defined below), node types Q, edge types
R (incl. [TYPE]), and “virtual” edge types U :
∀ sπi ∈ sπ, sπi ∈ V ∪ Q ∪ R ∪ U . Virtual edge
types U = {[SOS], [EOS], [SEP]} do not repre-
sent edges in G, but serve to control the genera-
tion of the sequence, indicating the start/end of
sequences and the separation of levels in the graph.

We furthermore assume that sπ = sπ0 , ..., s
π
n

that represent graphs have an alternating struc-
ture, where sπ0 , s

π
2 , s

π
4 , ... represent nodes V , and

sπ1 , s
π
3 , ... represent actual or virtual edges. In the

case of BFS, we exploit the fact that it visits nodes
level by level, i.e., in the order pi, ci1, ..., cik, pj
(where cik is the k-th child of parent pi, connected
by edge eik, and pj may or may not be equal to
one of the children of pi), which we turn into a
sequence,

sπ = pi,ψ(ei1), ci1, ...,

ψ(eik), cik, [SEP], pj , ...

where we use the special edge type [SEP] to de-
lineate the levels in the graph. This represen-
tation allows us to unambiguously recover the
original graph, if we know which type of graph
traversal is assumed (BFS or DFS).3 Algorithm 1
(which we use to translate graphs in the training
data to sequences) shows how an alternating se-
quence for a given graph can be constructed with
BFS traversal. Figure 1 shows the alternating se-
quence for an information multigraph. The length
|sπ| is bounded linearly by the size of the graph
O(|sπ|) = O(|V | + |E|) (which is also the com-
plexity of typical graph traversal algorithms like
BFS/DFS).

2Q includes a [NULL] node type for the case when the
input text does not have an information graph.

3In the case of DFS, [SEP] tokens appear after leaf nodes.
Parents appear once for each child.

4068

Algorithm 1 Alternating sequence construction al-
gorithm with BFS
Input :Ordered adjacency dictionary of an infor-

mation graph G, positions of nodes in the
input text pq, frequency of edge types in
the training set pr

Output :An alternating sequence yπ

Sort the nodes in G according to pq
For each node v in G, sort the neighbors and the

edges of v according to pq and pr respectively
Instantiate yπ as an empty list
for u in G do

if u is not visited then
Initialize an empty queue q
Mark u as visited and enqueue u to q
while q is not empty do

Dequeue the a node w from q
if w in G then

Append w and all the neighbors of
w with their edge types to yπ

Append the separation edge type,
[SEP], to yπ

Mark all unvisited neighbors of w
as visited and enqueue them to q

end
end

end
end
Return yπ

Node and Edge Representations Our node and
edge representations (explained below) rely on the
observation that there are only two kinds of objects
in an information graph: spans (as addresses to
pieces of input texts) and types (as representations
of abstract concepts). Since we can view types
as special spans of length 1 grounded on the vo-
cabulary of all types, Q ∪ R ∪ U , we only need
O(nm + |Q ∪ R ∪ U |) number of indices to un-
ambiguously represent the spans grounded on a
concatenated representation of the type vocabulary
and the input text, where n is the maximum in-
put length, m is the maximum span length, and
m� n. We denote these indices as hybrid spans
because they consist of both the spans of texts and
the length-1 spans of types. These indices can
be invertibly mapped back to types or text spans
depending on their magnitudes (details of this map-
ping are explained in Section 3.2). With this joint
indexing of spans and types, the task of generating
an information graph is thus converted to generat-

ing an alternating sequence of hybrid spans.

Generating sequences We model the distribu-
tion p(sπ) by a sequence generator h with parame-
ters θ (|sπ| is the length of the sπ):

p(sπi |sπ0 , ..., sπi−1) = h(sπ0 , ..., s
π
i−1, θ),

p(sπ) =

|sπ |∏
i=1

p(sπi |sπ0 , ..., sπi−1),

We will address in the following sections how to
enforce the sequence generator, h, to only gener-
ate sequences in the space Sπ, since we do not
want h to assign non-zero probabilities to arbitrary
sequences that do not have a corresponding graph.

3 HySPA: Hybrid Span Generation for
Alternating Sequences

In order to directly generate a target sequence that
alternates between nodes that represent spans in
the input and a set of node/edge types that depend
on our extraction task, we first build a hybrid rep-
resentation H that is a concatenation of the hidden
representations from edge types, node types and the
input text. This representation functions as both the
context space and the output space for our decoder.
Then we invertibly map both the spans of input text
and the indices of the types to the hybrid spans
grounded on the representation H . Finally, hybrid
spans are generated auto-regressively through a hy-
brid span decoder to form the alternating sequence
yπ ∈ Sπ. By translating the graph extraction task
to a sequence generation task, we can easily use
beam-search decoding to reduce possible exposure
bias (Wiseman and Rush, 2016) of the sequential
decision process and thus find globally better graph
representation.

High-level overview of HySPA: The HySPA
model takes a piece of text (e.g. a sentence or
passage), and the pre-defined node and edge types
as input, and outputs an alternating sequence rep-
resentation of an information graph. We enforce
the generation of this sequence to be alternated by
applying an alternating mask to the output proba-
bilities. The detailed architecture is described in
the following subsections.

3.1 Text and Types Encoder
Figure 2 shows the encoder architecture of our pro-
posed model. For the set of node types, Q, and the
set of edge types, R, and the virtual edge types, U ,

4069

Figure 2: The encoder architecture of our model, where the ⊕ symbol is the concatenation operator, k is the index
of the word vectors in H0, and le = |R| + |U |. The colored table on the right indicates the assignment of the
meta-types for different blocks of the concatenated word vectors from H0.

we arrange the type list, v as a concatenation of the
label names of the edge types, virtual edge types
and node types, i.e.,

v = R̂⊕ Û ⊕ Q̂
R̂ = [R1, ..., R|R|]

Û = [U1, ..., U|U |]

Q̂ = [Q1, ..., Q|Q|]

where ⊕ means the concatenation operator be-
tween two lists, and R̂, Û , Q̂ are the lists of the
type names in the sets R,U,Q, respectively (e.g.
Q̂ = [“Geopolitics”, “Person”, ...]). Note that the
concatenation order between the lists of type names
can be arbitrary as long as it is kept consistent
throughout the whole model. Then, as in the em-
bedding part of the table-sequence encoder (Wang
and Lu, 2020), for each type, vi, we embed the label
tokens of the types with the contextualized word
embedding from a pre-trained language model, the
GloVe embedding (Pennington et al., 2014) and the
character embedding,

E1 = ContextualizedEmbed(v),∈ R lp×dc

E2 = GloveEmbed(v),∈ R lp×dg

E3 = CharacterEmbed(v),∈ R lp×dk

E4 = E1 ⊕ E2 ⊕ E3 ∈ R lp×de ,

Ev = E4W
T
0 ∈ R lp×dm ,

where lp = |R| + |U | + |Q| is the number of all
kinds of types, W0 ∈ R de×dm is the weight matrix
of the linear projection layer, de = dc + dg + dk
is the total embedding dimension and dm is the
hidden size of our model. After we obtain the con-
textualized embedding of the tokens of each type

vi ∈ v, we take the average of these token vectors
as the representation of vi and freeze its update
during training. More details of the embedding
pipeline can be found in Appendix A.

This embedding pipeline is also used to embed
the words in the input text, x. Unlike the pipeline
for the type embedding, we represent the word as
the contextualized embedding of its first sub-token
from the pre-trained Language Model (LM, e.g.
BERT (Devlin et al., 2018)), and finetune the LM
in an end-to-end fashion.

After obtaining the type embedding Ev, and the
text embedding Ex respectively, we concatenate
them along the sequence length dimension to form
the hybrid representation H0. Since H0 is a con-
catenation of word vectors from four different types
of tokens, i.e., edge types, virtual edge types, node
types and text, a meta-type embedding is applied
to indicate this type difference between the blocks
of vectors from the representation H0, as shown
in Figure 2. The final context representation H is
obtained by element-wise addition of the meta-type
embedding and H0,

H0 = Ev ⊕ Ex ∈ Rlh×dm ,
Hs = MetaTypeEmbed(H0) ∈ Rlh×dm ,
H = H0 +Hs ∈ Rlh×dm ,

where lh = lp + |x| is the height of our hybrid
representation matrix H .

3.2 Invertible Mapping between Spans &
Types and Hybrid Spans

Given a span in the text, t = (ts, te) ∈ N2, ts < te,
we convert the span t to an index k, k ≥ lp, in the
representation H via the mapping gk,

k = gk(ts, te) = tsm+ te − ts − 1 + lp ∈ N,

4070

Figure 3: An example of the alternating sequence rep-
resentation (in the middle) of a knowledge graph (at
bottom) from the ACE05 training set, where A1 means
the Algorithm 1. We take m = 16 and lp = 19 for this
example. “19” in the alternating sequence is the index
for the span (0,1) of “He”, “83” is the index for the span
(4,5) of “Baghdad”, and “10” is the index of the virtual
edge type, [SEP]. The input text (on top) for this graph
is “He was captured in Baghdad late Monday night”.

where m is the maximum length of spans, and
lp = |R| + |U | + |Q|. We keep the type indices
in the graph unchanged because they are smaller
than lp and k ≥ lp. Since, for an information
graph, the maximum span length, m, of a mention
is often far smaller than the length of the text, i.e.,
m � n, we can then reduce the bound of the
maximum magnitude of k from O(n2) to O(nm)
by only considering spans of length smaller than
m, and thus maintain linear space complexity for
our decoder with respect to the length of the input
text, n. Figure 3 shows a concrete example of our
alternating sequence for a knowledge graph in the
ACE05 dataset.

Since ts, te, k are all natural numbers, we can
construct an inverse mapping gt that converts the
index k in H back to t = (ts, te),

ts = gts(k) = −max(0,−k + lp)+

bmax(0, k − lp)/mc+ lp,

te = gte(k) = gts(k) + max(0, k − lp) mod m,

where b·c is the integer floor function and mod
is the modulus operator. Note that gt(k) can be di-
rectly applied to the indices from the types segment
of H and remain their values unchanged, i.e.,

gt(k) = (k, k), ∀k < lp, k ∈ N.

With this property, we can easily incorporate the
mapping gt into our decoder to map the alternat-
ing sequence yπ back to the spans in the hybrid
representation H .

3.3 Hybrid Span Decoder
Figure 4 shows the general model architecture of
our hybrid span decoder. Our decoder takes the
context representation H as input, and recurrently
decodes the alternating sequence yπ given a start-
of-sequence token.

Hybrid Span Encoding via Attention Given
the alternating sequence yπ, and the mapping gt
(section 3.2), our decoder first maps each index in
yπ to a span, (tsi , tei) = gt(y

π
i), grounded on the

representation H and then converts the span to an
attention mask, M0, to allow the model to learn to
represent a span as a weighted sum of a segment
of the contextualized word representations referred
by the span,

Q =W T
1 H[CLS] + b1 ∈ R |yπ |×dm ,

K =W T
2 H + b2 ∈ R lh×dm ,

Hy = softmax
(
QKT

√
dm

+M0

)
H ∈ R |yπ |×dm ,

M0(i, j) =

{
0, tsi ≤ j ≤ tei
−∞, otherwise

where H[CLS] ∈ R |y
π |×dm is the |yπ|-times re-

peated hidden representation of the start of the se-
quence token, [CLS], from the text segment of H ,
and Hy is our final representation of the hybrid
spans in yπ. W1,W2,b1,b2 are learnable param-
eters, and tsi , tei are the start and the end position
of the span thatwe are encoding. Note that for the
type spans whose length is 1, the result of the soft-
max calculation will always be 1, which leads to
its span representation to be exactly its embedding
vector as we desired.

Traversal Embedding In order to distinguish
the hybrid spans at different position in yπ, a naive
way is to add a sinusoidal position embedding
(Vaswani et al., 2017) to Hy. However, this ap-
proach treats the alternating sequence as an ordi-
nary sequence and ignores the underlying graph
structure it encodes. To alleviate this issue, we pro-
pose a novel traversal embedding approach which
captures the traversal level information, the parent-
child information and the intra-level connection
information as a substitution of the naive position
embedding. Our traversal embedding can either
encode the BFS or DFS traversal pattern. As an ex-
ample, we assume BFS traversal here and leave the
details of DFS traversal embedding in Appendix
D.

4071

Figure 4: The architecture of our hybrid span decoder. N is the number of the decoder layers. ⊕ before the
softmax function means the concatenation operator. HN

y is the hidden representation of the sequence yπ from the
last decoder layer. Our hybrid span decoder can be understood as an auto-regressive model that operates in a closed
context space and output space defined by H .

Figure 5: An example of BFS traversal embedding
for an alternating sequence, [“He”, Type, PER, [SEP],
“Baghdad”, Type, GPE, PHYS, “He”]. Our traver-
sal embedding is the sum of the level embedding, the
parent-child embedding and the tree embedding.

Our BFS traversal embedding is a pointwise sum
of the level embedding, L, the parent-child embed-
ding, P , and the tree embedding, T of a given
alternating sequence, y,

TravEmbed(y) = L(y)+P (y)+T (y) ∈ R |y|×dm

where the level embedding assigns the same embed-
ding vectorLi for each position at the BFS traversal
level i, and the value of the embedding vector is
filled according to the non-parametric sinusoidal
position embedding since we want our embedding
to extrapolate to the sequence that is longer than
any sequences in the training set. The parent-child
embedding assigns different random initialized em-
bedding vectors at the positions of the parent nodes
and the child nodes in the BFS traversal levels to
help model distinguish between these two kinds
of nodes. For encoding the intra-level connection
information, our insight is that the connection be-
tween each nodes in a BFS level can be viewed as a

depth-3 tree, where the first depth takes the parent
node, the second depth is filled with the edge types
and the third depth consists of the corresponding
child nodes for each of the edge types. Our tree
embedding is then formed by encoding the position
information of the depth-3 tree with a tree posi-
tional embedding (Shiv and Quirk, 2019) for each
BFS level. Figure 5 shows a concrete example of
how these embeddings function for a given alternat-
ing sequence. The obtained traversal embedding
is then pointwisely added to the hidden represen-
tation of the alternating sequence Hy for injecting
the traversal information of the graph structure.

Inner blocks With the input text representation
Htext sliced from the hybrid representation H and
the target sequence representation Hy, we apply an
N -layer transformer structure with mixed-attention
(He et al., 2018) to allow our model to utilize fea-
tures from different attention layers when decoding
the edges or the nodes of an alternating sequence.
Note that our hybrid span decoder is perpendic-
ular to the actual choice of the neural structures
of the inner blocks, and we choose the design of
mixed-attention transformer (He et al., 2018) be-
cause its layerwise coordination property is empiri-
cally more suitable for our heterogeneous decoding
of two different kinds of sequence elements. The
detailed structure of the inner blocks is explained
in Appendix E.

Hybrid span decoding For the hybrid span de-
coding module, we first slice off the hidden rep-

4072

resentation of the alternating sequence yπ from
the output of the N -layer inner blocks and denote
it as HN

y . Then for each hidden representation
hNyi ∈ H

N
y , 0 ≤ i < |yπ|, we apply two different

linear layers to obtain the start position representa-
tion, syi , and the end position representation, eyi ,

syi =W T
5 hyi + b5 ∈ R dm ,

eyi =W T
6 hyi + b6 ∈ R dm ,

where W5,W6 ∈ R dm×dm and b5,b6 ∈ R dm are
learnable parameters. Then we calculate the scores
of the target spans separately for the types segment
and the text segment of H , and concatenate them
together before the final softmax operator for a
joint estimation of the probabilities of text spans
and type spans,

hsi = Htypes syi +ma ∈ Rlp ,
hei = Htypes eyi +ma ∈ Rlp ,
hi = hsi + hei ∈ Rlp ,
tsi = Htext syi +m′a ∈ Rn,
tei = Htext eyi +m′a ∈ Rn,
ti = unfold(tei ,m) + tsi ∈ Rnm,

p(yπi+1) = softmax(hi ⊕ ti) ∈ Rnm+lp ,

where hi is the score vector of possible spans in
the type segment of H , and ti is the score vector of
possible spans in the text segment of H . Since the
type spans always have a span length 1, we only
need an element-wise addition between the start
position scores, hsi and the end position scores hei
to calculate hi. The entries of ti contain the scores
for the text spans, tsi,j + tei,k,∀j ≤ k, k− j < m,
which are calculated with the help of an unfold
function which converts the vector tei ∈ Rn to a
stack of n sliding windows of sizem, the maximum
span length, with stride 1. The alternating masks
ma ∈ Rlp ,m′a ∈ Rn are defined as:

ma(j) =

{
0, yπi > le ∩ j < le
−∞, otherwise

m′a(j) =

{
−∞, yπi > le
0, otherwise

where le = |R| + |U | is the total number of edge
types. In this way, while we have a joint model
of nodes and edge types, the output distribution is
enforced by the alternating masks to produce an
alternating decoding of nodes and edge types, and
this is the main reason why we call this decoder a
hybrid span decoder.

4 Experiments

4.1 Experimental Setting

We test our model on the ACE 2005 dataset dis-
tributed by LDC4, which includes 14.5k sentences,
38.3k entities (with 7 types), and 7.1k relations
(with 6 types), derived from the general news do-
main. More details can be found in Appendix C.

Following previous work, we use F1 as an eval-
uation metric for both NER and RE. For the NER
task, a prediction is marked correct when both the
type and the boundary span match those of the gold
entity. For the RE task, a prediction is correct when
both the relation type and the boundaries of the two
entities are correct.

4.2 Implementation Details

When training our model, we apply the cross-
entropy loss with a label smoothing factor of 0.1.
The model is trained with 2048 tokens per batch
(roughly a batch size of 28) for 25000 steps us-
ing an AdamW optimizer (Loshchilov and Hutter,
2018) with a learning rate of 2e−4, a weight decay
of 0.01, and an inverse square root scheduler with
2000 warm-up steps. Following the TabSeq model
(Wang and Lu, 2020), we use RoBERTa-large (Liu
et al.) or ALBERT-xxlarge-v1 (Lan et al., 2020) for
the pretrained language model and slow its learning
rate by a factor of 0.1 during training. A hidden
state dropout rate of 0.2 is applied to RoBERTa-
large while the rate of 0.1 for ALBERT-xxlarge-v1.
A dropout rate of 0.1 is also applied to our hybrid
span decoder during training. We set the maximum
span length, m = 16, the hidden size of our model,
dm = 256, and the number of the decoder blocks,
N = 12. Even though theoretically the beam-
search should help us reduce the exposure bias, we
do not observe any performance gain during grid
search of the beam size and the length penalty on
the validation set (detailed grid search setting is in
Appendix A). Thus we set a vanilla beam size of 1
and the length penalty of 1, and leave this theory-
experiment contradiction for future research. Our
model is built with the FAIRSEQ toolkit (Ott et al.,
2019) for efficient distributed training and all the
experiments are conducted on two NVIDIA TITAN
X GPUs.

4https://catalog.ldc.upenn.edu/
LDC2006T06

https://catalog.ldc.upenn.edu/LDC2006T06
https://catalog.ldc.upenn.edu/LDC2006T06

4073

IE Models Space Complexity Time Complexity NER RE
PointerNet (Katiyar and Cardie, 2017) O(n) O(n2) 82.6 55.9
SpanRE (Dixit and Al-Onaizan, 2019) O(n) O(n2) 86.0 62.8
Dygie++ (Wadden et al., 2019) O(n) O(n2) 88.6 63.4
OneIE (Lin et al., 2020) O(n) O(n2) 88.8 67.5
TabSeq (Wang and Lu, 2020) O(n2) O(n) 89.5 67.6
HySPA (ours) w/ RoBERTa

O(n) O(n)
88.9 68.2

w/ ALBERT 89.9 68.0

Table 1: Joint NER and RE F1 scores of the IE models on the ACE05 test set. Complexities are calculated for the
entity and relation decoding part of the models (n is the length of the input text). The performance of the TabSeq
model reported here is based on the same ALBERT-xxlarge (Lan et al., 2020) pretrained language model as ours.

Model NER F1 RE F1

HySPA w/ RoBERTa 88.9 68.2
– Traversal-embedding 88.9 66.7
– Masking 88.1 64.8
– BFS 88.7 66.2
– Mixed-attention 88.6 64.7
– Span-attention 88.5 66.1

Table 2: Ablation study on the ACE05 test set. “–
Traversal-embedding”: we remove the traversal embed-
ding and instead use sinusoidal position embedding,
and the following ablations are based on the model af-
ter this ablation. “– Masking”: we remove the alter-
nating mask from the hybrid span decoder. “– BFS”:
we use DFS instead of BFS as traversal. “– Mixed-
attention”: we remove the mixed-attention layer and
use a standard transformer encoder decoder structure.
“– Span-attention”: we remove the span attention in the
span encoding module and instead average the words
in the span.

4.3 Results

Table 1 compares our model with the previous state-
of-the-art results on the ACE05 test set. Compared
with the previous SOTA, TabSeq (Wang and Lu,
2020) with ALBERT pretrained language model,
our model with ALBERT has significantly better
performance for both NER score and RE score,
while maintaining a linear space complexity which
is an order smaller than TabSeq. Our model is the
first joint model that has both linear space and time
complexities compared with all previous joint IE
models, and thus has the best scalability for large-
scale real world applications.

4.4 Ablation Study

To prove the effectiveness of our approach, we con-
duct ablation experiments on the ACE05 dataset.

Figure 6: Distribution of remaining errors on the
ACE05 test set.

As shown in Table 2, after we remove the traver-
sal embedding the RE F1 scores drop significantly,
which indicates that our traversal embedding can
help encode the graph structure and improve rela-
tion predictions. Also if the alternating masking is
dropped, the NER F1 and RE F1 scores both drop
significantly, which proves the importance of en-
forcing the alternating pattern. We can observe that
the mixed-attention layer contributes significantly
for relation extraction. This is because the layer-
wise coordination can help the decoder to disentan-
gle the source features and utilize different layer
features between the entity and the relation predic-
tion. We can also observe that the DFS traversal
has worse performance than BFS. We suspect that
this is because the resultant alternating sequence
from DFS is often longer than the one from BFS
due to the nature of the knowledge graphs, and thus
increases the learning difficulty.

4.5 Error Analysis

After analyzing 80 remaining errors, we categorize
and discuss common cases below (Figure 6 plots
the distribution of error types). These may require
additional features and strategies to address.

4074

Insufficient context. In many examples, the an-
swer entity is a pronoun that cannot be accurately
typed given the limited context: in “We notice they
said they did not want to use the word destroyed,
in fact, they said let others do that”, it’s difficult
to correctly classify We as an organization. This
could be mitigated by using entire documents as
input, leveraging cross-sentence context.
Rare words. The rare word issue is when the word
in test set rarely appeared in the training set and
often not termed in the dictionary. In the sentence

“There are also Marine FA-18s and Marine Heriers
at this base”, the term Heriers (a vehicle incor-
rectly classified as person by the model) neither
appeared in the training set, nor understood well by
pre-trained language model; the model, in this case,
can only rely on subword-level representation.
Background knowledge required Often the sen-
tence mentions entities that are difficult to infer
from the context, but are easily identified by con-
sulting a knowledge base: in “but critics say Airbus
should have sounded a stronger alarm after a sim-
ilar incident occurred in 1997”, our model incor-
rectly predicts the Airbus to be a vehicle while the
Airbus here refers to the European aerospace corpo-
ration. Our system also separated United Nations
Security Council into two entities United Nations
and Security Council, generating a non-existing
relation triple (Security Council part-of United Na-
tions). Such mistakes could be avoided by consult-
ing a knowledge base such as DBpedia (Bizer et al.,
2009) or by performing entity linking.
Inherent ambiguity Many examples have inher-
ent ambiguity, e.g. European Union can be typed
as organization or political entity, while some enti-
ties (e.g., military bases) can be both locations and
organizations, or facilities.

5 Related Work

NER is often done jointly with RE in order to miti-
gate error propagation and learn inter-relation be-
tween tasks. One line of approaches is to treat the
joint task as a squared table filling problem (Miwa
and Sasaki, 2014; Gupta et al., 2016; Wang and
Lu, 2020), where the i-th column or row represents
the i-th token. The table has diagonals indicat-
ing sequential tags for entities and other entries
as relations between pairs of tokens. Another line
of work is by performing RE after NER. In the
work by Miwa and Bansal (2016), the authors used
BiLSTM (Graves et al., 2013) for NER and conse-

quently a Tree-LSTM (Tai et al., 2015) based on
dependency graph for RE. Wadden et al. (2019) and
Luan et al. (2019), on the other hand, takes the ap-
proach of constructing dynamic text span graphs to
detect entities and relations. Extending on Wadden
et al. (2019), Lin et al. (2020) introduced ONEIE,
which further incorporates global features based
on cross subtask and instance constraints, aiming
to extract IE results as a graph. Note that our
model differs from ONEIE (Lin et al., 2020) in
that our model captures global relationships auto-
matically through autoregressive generation while
ONEIE uses feature engineered templates; More-
over, ONEIE needs to do pairwise classification
for relation extraction, while our method efficiently
generates existing relations and entities.

While several Seq2Seq-based models (Zhang
et al., 2020; Zeng et al., 2018, 2020; Wei et al.,
2019; Zhang et al., 2019) have been proposed to
generate triples (i.e., node-edge-node), our model
is fundamentally different from them in that: (1)
it is generating a BFS/DFS traversal of the target
graph, which captures dependencies between nodes
and edges and has a shorter target sequence, (2) we
model the nodes as the spans in the text, which is
independent of the vocabulary, so even if the to-
kens of the nodes are rare or unseen words, we can
still generate spans on them based on the context
information.

6 Conclusion

In this work, we propose the Hybrid Span Gener-
ation (HySPA) model, the first end-to-end text-to-
graph extraction model that has a linear space and
time complexity at the graph decoding stage. Be-
sides its scalability, the model also achieves state-
of-the-art performance on the ACE05 joint entity
and relation extraction task. Given the flexibility of
the structure of our hybrid span generator, abundant
future research directions remain, e.g. incorporat-
ing the external knowledge for hybrid span genera-
tion, applying more efficient sparse self-attention,
and developing better search methods to find more
globally plausible graphs represented by the alter-
nating sequence.

Acknowledgments

This work is supported by Agriculture and Food
Research Initiative (AFRI) grant no. 2020-67021-
32799/project accession no.1024178 from the
USDA National Institute of Food and Agriculture.

4075

References
Jimmy Ba, J. Kiros, and Geoffrey E. Hinton. 2016.

Layer normalization. ArXiv, abs/1607.06450.

Christian Bizer, Jens Lehmann, Georgi Kobilarov,
Sören Auer, Christian Becker, Richard Cyganiak,
and Sebastian Hellmann. 2009. Dbpedia-a crystal-
lization point for the web of data. Journal of web
semantics, 7(3):154–165.

Yee Seng Chan and Dan Roth. 2011. Exploiting
syntactico-semantic structures for relation extrac-
tion. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 551–560, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Kalpit Dixit and Yaser Al-Onaizan. 2019. Span-level
model for relation extraction. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5308–5314, Florence,
Italy. Association for Computational Linguistics.

Markus Eberts and Adrian Ulges. 2019. Span-based
joint entity and relation extraction with transformer
pre-training. arXiv preprint arXiv:1909.07755.

Radu Florian, Hongyan Jing, Nanda Kambhatla, and
Imed Zitouni. 2006. Factorizing complex models: A
case study in mention detection. In Proceedings of
the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 473–480,
Sydney, Australia. Association for Computational
Linguistics.

Radu Florian, John Pitrelli, Salim Roukos, and Imed
Zitouni. 2010. Improving mention detection robust-
ness to noisy input. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing, pages 335–345, Cambridge, MA. Asso-
ciation for Computational Linguistics.

Alex Graves, Santiago Fernández, and Jürgen Schmid-
huber. 2007. Multi-dimensional recurrent neural net-
works. In International conference on artificial neu-
ral networks, pages 549–558. Springer.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In 2013 IEEE international
conference on acoustics, speech and signal process-
ing, pages 6645–6649. Ieee.

Pankaj Gupta, Hinrich Schütze, and Bernt Andrassy.
2016. Table filling multi-task recurrent neural net-
work for joint entity and relation extraction. In Pro-
ceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Techni-
cal Papers, pages 2537–2547.

Tianyu He, Xu Tan, Yingce Xia, Di He, Tao Qin, Zhibo
Chen, and Tie-Yan Liu. 2018. Layer-wise coordi-
nation between encoder and decoder for neural ma-
chine translation. In Advances in Neural Informa-
tion Processing Systems, volume 31, pages 7944–
7954. Curran Associates, Inc.

Jing Jiang and ChengXiang Zhai. 2007. A system-
atic exploration of the feature space for relation ex-
traction. In Human Language Technologies 2007:
The Conference of the North American Chapter of
the Association for Computational Linguistics; Pro-
ceedings of the Main Conference, pages 113–120,
Rochester, New York. Association for Computa-
tional Linguistics.

Arzoo Katiyar and Claire Cardie. 2017. Going out on
a limb: Joint extraction of entity mentions and re-
lations without dependency trees. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 917–928, Vancouver, Canada. Association for
Computational Linguistics.

Keshav Kolluru, Samarth Aggarwal, Vipul Rathore,
Soumen Chakrabarti, et al. 2020. Imojie: Itera-
tive memory-based joint open information extrac-
tion. arXiv preprint arXiv:2005.08178.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In International Con-
ference on Learning Representations.

Qi Li and Heng Ji. 2014. Incremental joint extraction
of entity mentions and relations. In Proceedings
of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 402–412, Baltimore, Maryland. Association
for Computational Linguistics.

Qi Li, Heng Ji, Yu Hong, and Sujian Li. 2014. Con-
structing information networks using one single
model. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1846–1851, Doha, Qatar. Associa-
tion for Computational Linguistics.

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020.
A joint neural model for information extraction with
global features. In Proceedings of the 58th Annual

https://www.aclweb.org/anthology/P11-1056
https://www.aclweb.org/anthology/P11-1056
https://www.aclweb.org/anthology/P11-1056
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.18653/v1/P19-1525
https://doi.org/10.18653/v1/P19-1525
https://doi.org/10.3115/1220175.1220235
https://doi.org/10.3115/1220175.1220235
https://www.aclweb.org/anthology/D10-1033
https://www.aclweb.org/anthology/D10-1033
https://proceedings.neurips.cc/paper/2018/file/4fb8a7a22a82c80f2c26fe6c1e0dcbb3-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/4fb8a7a22a82c80f2c26fe6c1e0dcbb3-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/4fb8a7a22a82c80f2c26fe6c1e0dcbb3-Paper.pdf
https://www.aclweb.org/anthology/N07-1015
https://www.aclweb.org/anthology/N07-1015
https://www.aclweb.org/anthology/N07-1015
https://doi.org/10.18653/v1/P17-1085
https://doi.org/10.18653/v1/P17-1085
https://doi.org/10.18653/v1/P17-1085
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.3115/v1/P14-1038
https://doi.org/10.3115/v1/P14-1038
https://doi.org/10.3115/v1/D14-1198
https://doi.org/10.3115/v1/D14-1198
https://doi.org/10.3115/v1/D14-1198
https://doi.org/10.18653/v1/2020.acl-main.713
https://doi.org/10.18653/v1/2020.acl-main.713

4076

Meeting of the Association for Computational Lin-
guistics, pages 7999–8009, Online. Association for
Computational Linguistics.

Y Liu, M Ott, N Goyal, J Du, M Joshi, D Chen, O Levy,
M Lewis, L Zettlemoyer, and V Stoyanov. Roberta:
A robustly optimized bert pretraining approach.
arxiv 2019. arXiv preprint arXiv:1907.11692.

Yue Liu, Tongtao Zhang, Zhicheng Liang, Heng Ji, and
Deborah L McGuinness. 2018. Seq2rdf: An end-
to-end application for deriving triples from natural
language text. arXiv preprint arXiv:1807.01763.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Con-
ference on Learning Representations.

Yi Luan, Dave Wadden, Luheng He, Amy Shah,
Mari Ostendorf, and Hannaneh Hajishirzi. 2019.
A general framework for information extraction
using dynamic span graphs. arXiv preprint
arXiv:1904.03296.

Makoto Miwa and Mohit Bansal. 2016. End-to-end re-
lation extraction using lstms on sequences and tree
structures. arXiv preprint arXiv:1601.00770.

Makoto Miwa and Yutaka Sasaki. 2014. Modeling
joint entity and relation extraction with table repre-
sentation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1858–1869.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

C. Shi, Y. Li, J. Zhang, Y. Sun, and P. S. Yu. 2017. A
survey of heterogeneous information network anal-
ysis. IEEE Transactions on Knowledge and Data
Engineering, 29(1):17–37.

Vighnesh Shiv and Chris Quirk. 2019. Novel positional
encodings to enable tree-based transformers. In Ad-
vances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Ang Sun, Ralph Grishman, and Satoshi Sekine. 2011.
Semi-supervised relation extraction with large-scale
word clustering. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
521–529, Portland, Oregon, USA. Association for
Computational Linguistics.

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. arXiv preprint arXiv:1503.00075.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

David Wadden, Ulme Wennberg, Yi Luan, and Han-
naneh Hajishirzi. 2019. Entity, relation, and event
extraction with contextualized span representations.
arXiv preprint arXiv:1909.03546.

Jue Wang and Wei Lu. 2020. Two are bet-
ter than one: Joint entity and relation extrac-
tion with table-sequence encoders. arXiv preprint
arXiv:2010.03851.

Zhepei Wei, Jianlin Su, Yue Wang, Yuan Tian, and
Yi Chang. 2019. A novel cascade binary tagging
framework for relational triple extraction. arXiv
preprint arXiv:1909.03227.

Sam Wiseman and Alexander M Rush. 2016.
Sequence-to-sequence learning as beam-search
optimization. In Proceedings of the 2016 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 1296–1306.

Daojian Zeng, Haoran Zhang, and Qianying Liu. 2020.
Copymtl: Copy mechanism for joint extraction of
entities and relations with multi-task learning. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 34, pages 9507–9514.

Xiangrong Zeng, Daojian Zeng, Shizhu He, Kang Liu,
and Jun Zhao. 2018. Extracting relational facts by
an end-to-end neural model with copy mechanism.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 506–514.

Haoran Zhang, Qianying Liu, Aysa Xuemo Fan, Heng
Ji, Daojian Zeng, Fei Cheng, Daisuke Kawahara,
and Sadao Kurohashi. 2020. Minimize exposure
bias of seq2seq models in joint entity and relation
extraction. arXiv preprint arXiv:2009.07503.

Meishan Zhang, Yue Zhang, and Guohong Fu. 2017.
End-to-end neural relation extraction with global op-
timization. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1730–1740, Copenhagen, Denmark. As-
sociation for Computational Linguistics.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019. Broad-coverage semantic pars-
ing as transduction. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3786–3798, Hong Kong, China. As-
sociation for Computational Linguistics.

https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1109/TKDE.2016.2598561
https://doi.org/10.1109/TKDE.2016.2598561
https://doi.org/10.1109/TKDE.2016.2598561
https://proceedings.neurips.cc/paper/2019/file/6e0917469214d8fbd8c517dcdc6b8dcf-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/6e0917469214d8fbd8c517dcdc6b8dcf-Paper.pdf
https://www.aclweb.org/anthology/P11-1053
https://www.aclweb.org/anthology/P11-1053
https://doi.org/10.18653/v1/D17-1182
https://doi.org/10.18653/v1/D17-1182
https://doi.org/10.18653/v1/D19-1392
https://doi.org/10.18653/v1/D19-1392

4077

A Hyperparameters

We use 100-dimensional GloVe word embeddings
trained on 6B tokens as intialization 5, and freeze
its update during training. The character embed-
ding has 30-dimension with LSTM encoding 6 and
the Glove Embeddings for the out of vocabulary to-
kens are replaced with randomly initialized vectors
following Wang and Lu (2020). We use gradient
clipping of 0.25 during training. The number of
heads for our mixed attention is set to 8. The beam
size and length penalty is decided by a grid-search
on the validation set of the ACE05 dataset, and
the range for the beam size is from 1 to 7 with a
step size of 1 and the length penalty is from 0.7
to 1.2 with a step size of 0.1. We choose the best
beam size and length penalty based on the metric
of relation extraction F1 score.

B Training Details

Our model has 236 million parameters with
the ALBERT-xxlarge pretrained language model.
On average, our best performing model with
ALBERT-xxlarge can be trained distributedly on
two NVIDIA TITAN X GPUs for 20 hours.

C Data

The Automatic Content Extraction (ACE) 2005 7

dataset contains English, Arabic and Chinese train-
ing data for the 2005 Automatic Content Extraction
(ACE) technology evaluation, providing entity, re-
lation, and event annotations. We follow Wadden
et al. (2019) 8 for preprocessing and data splits.
The preprocessed data contains 7.1k relations, 38k
entities, and 14.5k sentences. The split contains
10051 samples for training, 2424 samples for de-
velopment, and 2050 for testing.

D DFS Traversal Embedding

Since the parent-child information is already con-
tained in the intra-level connections of DFS traver-
sal, we only have the sum of the level embedding
and the connection embedding for DFS traversal

5https://nlp.stanford.edu/projects/
glove/

6https://github.com/LorrinWWW/
two-are-better-than-one/blob/master/
layers/encodings/embeddings.py

7https://www.ldc.upenn.edu/
collaborations/past-projects/ace

8https://github.com/dwadden/dygiepp/
tree/master/scripts/data/ace05/
preprocess

Figure 7: The general model architecture of the mixed-
attention transformer.

embedding. Similar to BFS embedding, the DFS
level embedding assigns the same embedding vec-
tor Li for each position at the DFS traversal level i,
but the value of the embedding vector is randomly
initialized instead of filled with the non-parametric
sinusoidal position embedding, since the proximity
information does not exist between the traversal
levels of DFS. However, we do have clear distance
information for the elements in a DFS level, i,e.,
for a DFS level D = [A, B, C, ..., [sep]], the dis-
tance from A to the elements [A, B, C, ..., [sep]] is
[0, 1, 2, 3, ..., |D| − 1]. We encode this distance in-
formation with the sinusoidal position embedding
which becomes our connection embedding that cap-
tures the intra-level connection information.

E Transformer with Mixed-attention

We first slice off the hidden representation of the
input text from the hybrid representation H , and
denote it as Htext, then the input text representa-
tion Htext and the output from the Hybrid Span
Encoding Hy gets fed into a stack of N mixed-
attention/feedforward blocks that have the follow-
ing structure (as shown in Figure 7):

Since generating the node and edge types may
need features from different layers, we use mixed
attention (He et al., 2018), which allows our model
to utilize the features from different attention layers
when encoding the text segment, Htext, and the

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://github.com/LorrinWWW/two-are-better-than-one/blob/master/layers/encodings/embeddings.py
https://github.com/LorrinWWW/two-are-better-than-one/blob/master/layers/encodings/embeddings.py
https://github.com/LorrinWWW/two-are-better-than-one/blob/master/layers/encodings/embeddings.py
https://www.ldc.upenn.edu/collaborations/past-projects/ace
https://www.ldc.upenn.edu/collaborations/past-projects/ace
https://github.com/dwadden/dygiepp/tree/master/scripts/data/ace05/preprocess
https://github.com/dwadden/dygiepp/tree/master/scripts/data/ace05/preprocess
https://github.com/dwadden/dygiepp/tree/master/scripts/data/ace05/preprocess

4078

target features, Hy,

MixedAtt(Q,K, V) = softmax
(
QKT

√
dm

+M1

)
V

∈ R lm×dm ,

M1(i, j) =

{
0, j < n ∪ j ≤ i+ n
−∞, otherwise

where n = |x| is the length of the input text,
lm = |x|+ |yπ| is the total length of the source and
the target features. Denoting the concatenation of
the source features, Htext, and the target features,
Hy, as H0, a source/target embedding (He et al.,
2018) is also added to H0 before the first layer of
the mixed attention to allow the model to distin-
guish the features from the source and the target
sequences. The mixed-attention layer is combined
with a feed-forward layer to form a decoder block:

FFN(x) = max(0, xW3 + b3)W4 + b4,

Q =W T
q H0 + bq,

K =W T
k H0 + bk,

V =W T
v H0 + bv,

H ′0 = LayerNorm(MixedAtt(Q,K, V) +H0),

H1 = LayerNorm(FFN(H ′0) +H ′0),

where Wq,k,v,bq,k,v,W3 ∈ R dm×4dm ,W4 ∈
R 4dm×dm ,b3,b4 are the learnable parameters,
and LayerNorm is the Layer Normalization layer
(Ba et al., 2016). The decoder block is stacked
N times to obtain the final hidden representation
HN , and output the final representation of the tar-
get sequence, HN

y . The mixed-attention has a time
complexity of O(n2) when encoding the source
features, but we can cache the hidden representa-
tion of this part when generating the target tokens
due to the causal masking of the target features,
and thus maintain a time complexity of O(n) for
each decoding step.

