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Abstract 

In challenging economic times, obtaining 
value for money by ensuring financial 
integrity and fairer distribution of services 
are among the top priorities for social and 
health-care systems globally. However, 
healthcare billing policies are complex and 
identifying non-compliance is often 
narrow-scope, manual and expensive. 
Maintaining ‘integrity’ is a challenge - 
ensuring that scarce resources get to those 
in need and are not lost to fraud and waste. 
Our approach fuses recent advances in 
dependency parsing with a policy ontology 
to convert the content of regulatory 
healthcare policy into human-friendly 
policy rules, that are amenable to machine-
execution, with human oversight. We 
describe the ontology-guided 
transformation of textual patterns into a 
semantically-meaningful knowledge graph 
of rules, outline our experiments and 
evaluate results against policy rules 
obtained from professional investigators. 
The aim is to make a policy-compliance 
‘landscape’ visible to healthcare programs 
- helping them identify Fraud, Waste or 
Abuse. 

1 Introduction 

The WHO (World Health Organization, 2010) lists 
fairness, financial integrity [“Program Integrity”] 
and access in healthcare among the top global 
healthcare priorities. In the U.S., an estimated 
annual amount of USD$20-30B is lost to Fraud, 
Waste and abuse (FWA) (Shrank et al., 2019). 
These vital funds never make it to the vulnerable 
citizens that they were intended to serve. 

To combat this, countries with insurance-based 
healthcare programs (e.g. Medicaid, Medicare), 

 
1 The ontology and Benefit Rules benchmark are released 
as open source at: 

employ claim investigators to validate the integrity 
of reimbursement claims submitted by providers. 
Investigators verify these claims against the 
program’s policies, with the goal of reducing 
wasteful practices, identifying fraud or abuse and 
closing policy gaps. This is a labor-intensive task – 
claim volumes are high, policies are complex and 
investigative resources are limited. 

More broadly, governments regulate a wide 
range of sectors, with extensive rules and policies. 
These policies drive significant spending by the 
regulated organizations. e.g., a European Union 
Commission study (2019) found that the annual 
cost of complying with EU financial regulations is 
around EUR€11.3B. In Australia, Deloitte (2014) 
estimated the costs of administering and 
complying with public sector rules at AUD$94B. 

In this paper we propose a methodology for 
automatically extracting knowledge from 
healthcare policy documents, in the form of 
Benefit Rules (BRs) that are both human-
understandable and machine consumable. These 
BRs can be applied automatically to flag 
discrepancies in claims, with limited human effort. 
This paper focuses on the extraction of these rules, 
and not their execution.  

Policy rules have a major impact both on the 
health of the citizens they serve, and the financial 
integrity of the Programs that pay the Service 
Providers. Human-understanding, oversight and 
control are first-class AI-design concerns for this 
domain. Model ‘explainability’ is not enough. 
Transparency is needed anywhere that provider or 
citizen coverage is at stake. Users need to see and 
influence which rules are being applied, and on 
what policy basis decisions are being made. 

To achieve this, we anchor our methodology in 
an ontology1 , that both guides and constrains AI 
extraction tasks. We build on recent NLP advances 

https://github.com/IBM/rules_extraction_from_healthcare_po
licy 
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to identify patterns in dependency paths that 
connect relevant entities. 

Finally, we transform the dependent entities into 
knowledge-graph fragments, which are assembled 
into graphs that represent actionable Benefit Rules. 
Users can curate these rules as they are well-
structured and expressed in familiar terms.  

Automated extraction of these rules from high-
volume policies (e.g., Medicaid), will enable the 
emergence of a new generation of tools for 
safeguarding Program Integrity, e.g. execution of 
these rules against claims data enables an overview 
of the ‘policy-compliance landscape’ that does not 
exist today.  

Section 2 presents Rules as Code and related 
work in knowledge extraction for social good. 
Section 3 describes domain requirements. Section 
4 presents the architecture for our ‘Claim Audit’ 
extraction pipeline. Section 5 describes how 
dependency parsing and the ontology are used to 
extract semantically-rich rule fragments. In 
Section 6 we evaluate our results with professional 
policy investigators using dental policies, and in 
Section 7, we present future work. 

2 Related Work 

2.1 Rules As Code (RaC) 

Organizations need novel approaches to help with 
regulatory compliance, and Rules as Code (RaC) 
is an initiative that envisages “an official version 
of rules (e.g., laws and regulations) in a machine-
consumable form, which allows rules to be 
understood and actioned by computer systems in a 
consistent way” (Mohun et al., 2020). It forms part 
of a broad movement towards digital government 
and has garnered broad public-sector interest. 

Approaches to achieving machine-executable 
RaC rules for published legislation run from 
manual coding by multi-disciplinary teams to 
automatic code-generation from natural-language 
legislation (Mohun et al., 2020). The former 
approach brings legislative drafters, policy 
analysts and software developers together to co-
produce human and machine-consumable versions 
of rules. Examples include the New Zealand Better 
Rules Discovery initiative (Digital Government 
NZ, 2018) and OpenFisca (OpenFisca.org, nd) in 
France. The latter approach uses NLP technology 
to assist policy experts in converting policy texts to 
machine-consumable forms, helping scale the RaC 
process, and is being explored by the AustLII’s 

DataLex Project (Greenleaf et al., 2020) and 
CSIRO Data61’s Regulation as a Platform project 
(Data61, 2019). Our work involves taking this 
latter approach for government healthcare 
insurance policy. 

2.2 Knowledge Extraction for Social Good 

Related to our work, Kiyavitskaya et al. (2018) 
extracts right, obligation, exception and constraints 
from legal documents by annotating entities with a 
domain-specific ontology consisting of entity 
vocabulary and normative phrasal templates built 
manually by domain experts. Dragoni et al. (2016) 
parses sentences into grammar trees using Stanford 
NLP, and annotates legal concepts with a 
manually-built ontology. The annotation is turned 
into rules using a set of hand-crafted rules. 

Our work is similar, but we extract tuples from 
dependency trees and reason over the ontology to 
produce a Benefit Rule knowledge graph. 

Recent efforts to build graphs for social good 
include (Assom, 2020) - constructing knowledge 
graphs to extract food-trading activities for 
sustainable food trading and security. Puri et al. 
(2020) discusses challenges in extracting 
knowledge graphs from UN datasets for 
sustainable development goals. Khetan et al. 
(2020) describes the use of NLP tools like Spacy, 
CoreNLP, ClausIE and OpenIE to extract 
information from unstructured text provided by the 
UN. Kejriwal et al. (2017) constructs a knowledge 
graph that supports a semantic search engine for 
investigators in human-trafficking. 

AI for social good is a broad research topic as 
described in Shi et al. (2020). For public health, 
Nordon et al. (2019) uses biomedical knowledge 
graph for drug discovery. Finally, Percha and 
Altman (2018) connect entity-pair dependency 
paths to extract relations between chemicals, genes 
and diseases.  

Our focus is on AI and knowledge-extraction to 
help combat FWA in healthcare programs. Today, 
FWA detection  generally relies on two approaches. 
Firstly, traditional data mining to identify outliers 
and anomalous billing patterns in claims (Joudaki 
et al., 2015). While valuable, this approach 
presents challenges when building legal cases, as it 
is not innately grounded in policy. Secondly, hand-
coded algorithms written by analysts to find claims 
that are not compliant with policy. These are labor-
intensive to develop and maintain in the face of 
ever-evolving policy. Worse, they cover only a 
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small fraction of the policy ‘landscape’, resulting 
in a prioritization catch-22 - algorithms are needed 
in order to know which areas most need 
algorithms. 

3 Background and Requirements 

Despite the variety of ways that Benefit Rules 
(BRs) are expressed across healthcare policies, 
experts know the common entities, relationships 
and logical constraints that underpin them. To 
extract BRs that are correct, human-friendly and 
executable, we need to account for these semantics. 
Popular generic language models do not capture 
such implicit knowledge and expert-labeled 
datasets are expensive to develop (and small). 

We apply these semantics via a BR ontology co-
created with domain experts as described in (Lopez 
et al., 2019). The ontology guides the extraction of 
well-structured, consistent knowledge graphs from 
the policy. It links relevant entities together with 
their context in sentences, e.g., take the policy 
paragraph and its ontology subset shown in Figure 

1. To extract the two distinct Benefit Rules shown 
in Figure 2, the two distinct roles of the service 
‘full-mouth debridement’ must be recognized. 
Widely-adopted medical terminology standards 
(e.g. UMLS, CPT, HCPCS) can be attached to 
ontology concepts for consistent representation 
and mapping of billing codes/values in a BR.  

Human understanding and control are also key 
requirements. Policy can be challenging to 
interpret, and amenable to mis-interpretation or 
mis-application. Expert operators must be able to 
understand the policy provenance and correct any 
incorrectly-extracted BRs. The ontology powers 
this 'explainability' in two ways. Firstly, by 
enabling consistently-structured knowledge graphs 
to be extracted from inconsistent policy 
representations, removing ambiguities between the 
rules interpretation and policy intent. Secondly – 
by expressing them simply, using familiar user 
concepts. All our graphs can be presented as a set 
of simple, editable condition-value pairs, as in 
Figure 2. This is achieved by 'flattening' the graph 
- taking only the leaf properties and values. While 
our UI needs visual design, users report that these 
representations 'feel right' and that correcting 
extraction errors/omissions is straightforward.  

Finally, extracted BRs must be amenable to 
execution - i.e., converted into a form that can 
automatically label claims as policy-compliant (or 
not).  Here again, the ontology helps by mapping 
each condition to consistent constraints - this time 
for the selection, filtering and aggregation of 
claims data.  While beyond the scope of this paper, 
our work to-date suggests that ontology-
conforming BRs execute with similar accuracy to 
algorithms hand-written by claim investigators.  
(Of course, execution accuracy will still also 
depend on accuracy of automated extraction and 
human curation). 

 
Figure 1:  Ontology subset describing the policy: 
Full-mouth debridement to enable comprehensive 
periodontal evaluation and diagnosis is a covered 
service and does not require prior approval. It is 
payable once in a 24-month period. Full-mouth 
debridement is not payable on the same date of services 
as other prophylactic or preventative procedures 

 
Figure 2:  Benefit Rules extracted from a paragraph in a dental policy (DHS, 2013). On the left: a Service 
Limitation BR on the number of units a provider can bill for a service per patient over a period of time. On the 
right: a Mutually Exclusive BR on services that cannot be billed together in a given period 
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4  Proposed Extraction Pipeline 

We propose a methodology to extract Benefit 
Rules from policy automatically.  Figure 3 presents 
the main components, from policy enrichment to 
ontology-guided knowledge extraction and user 
validation. All steps in the pipeline are 
configurable - similar functional components can 
easily be replaced/added. We give an overview for 
each step, the functionality and data requirements: 

 

Data preparation and Policy ingestion: all 
domain information is captured in the ontology, so 
the technical components remain domain agnostic. 
While the ontology schema generalises across 
many policies, instance data is domain-specific and 
must be prepared (‘lifted’). Some instances are 
common across policy areas and states, such as an 
eligible ‘Place of Service’ (e.g. hospital) (Centers 
for Medicare & Medicaid, n.d.). Other instance 
data is specific to the target domain, such as ‘body 
parts’ for tooth identifiers in dental claims. These 
can be automatically ‘lifted’ into the ontology from 
tabular data sources containing a main entity, a list 
of surface forms (to address vocabulary 
heterogeneity) and other attributes. They are added 
as individuals of a given entity type on application 
startup, and according to a user-configurable 
mapping. The lexicalizations are made available 
when processing policy text and identifying entity 
mentions. New instance data can be added as the 
need arises 

Next, PDF policies are transformed into 
enriched HTML using an off-the-shelf conversion 
tool (compare and comply, n.d.), outlining 
headings, passages and paragraphs for later use at 
passage-level  by annotators and extractors, as well 
as at paragraph-level by the classification and 
consolidation. 
Segment Classification: a classifier optionally 
filters incoming paragraphs, deciding whether they 
are likely to contain BRs. This can significantly 
reduce compute-time and can also improve 
Precision, at the cost of some Recall. This is the 
only component in the pipeline that requires 
enough ground truth data on (validated) BRs and 
the associated paragraphs to fine-tune deep 

learning models. In section 6 we evaluate a fine-
tuned, BERT-based classifier. 
Entity & Relation Extraction: Here, candidate 
ontology entities/types are annotated in the text by 
two complementary annotators. The first is based 
on WatsonX (Kalyanpur et al., 2012) , a generic 
entity and UMLS-based clinical annotator. A 
Lucene search index is used to find approximate 
matches for any annotated entities (verbs, noun-
phrases, etc.), in the ontology lexicalizations.  It is 
also used to retrieve semantic types (e.g. diseases) 
relevant to benefit rules, from terminology services 
such as UMLS (UMLS semantic hierarchy, nd). 

The second - SystemT (Chiticariu et al., 2018), 
extracts entity mentions from dictionaries and 
regular expressions. These are built  automatically, 
from the  instances ‘lifted’ into the ontology at 
initialization time, as described earlier. This 
enables entity mentions to be matched with 
complex labels, like ‘Full-mouth debridement to 
enable comprehensive periodontal evaluation and 
diagnoses’. All lexicalizations in the ontology are 
useful to address vocabulary heterogeneity. 

Annotators label these textual spans with 
specific ontology labels (URIs) and other useful 
information (lemma, POS, UMLS type, etc). These 
annotations can later be used to simplify the 
dependency trees of sentences containing complex 
entities. Since there can be overlapping annotations 
and competing annotations for the same span, 
heuristics are used – e.g. ‘longest span’, or 
preferring exact matches to approximate ones. 
Disambiguation is otherwise performed later.  
Deep Parsing and Graph Building: In this step, 
BR knowledge graphs are obtained by combining 
dependency trees together with the annotations, in 
an ontology-guided way. First, linguistic links are 
identified between annotated entities. Then, these 
are converted into semantic triples and linked 
together into knowledge graph fragments by 
reasoning over the ontology. Fragments from 
different sentences in a paragraph are consolidated 
together to produce a set of well-formed Benefit 
Rule knowledge graphs that respect the ontology 
semantics. Finally, to enable human oversight and 
control, all knowledge graphs are ‘flattened’ into a 
user-friendly, editable format. The ability to do this 
flattening is a key ‘explainability’ property of the 
ontology structure and thus, of knowledge graphs 
derived from it. The extracted and curated rules are 
then stored in a Knowledge Base. 

Figure 3. Pipeline from extraction of Benefit Rules  
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User Validation: extracted BRs are shown to 
investigators in a prototype workbench. Here they 
can be reviewed against the corresponding policy 
text and corrected when necessary. Validated BRs 
form a shared store of high-quality, machine-
readable rules, making the rule creation and 
consumption process more transparent. In a related 
work, we execute these rules on claims data to 
discover inappropriate payments. This shortens the 
investigator's workflow by giving them an 
immediate view of policy-relevant claims data 
(normally obtained through time-consuming data 
requests, spreadsheets and algorithm coding). It 
also grounds their work to specific policy clauses, 
helping them build a watertight case for recovery. 

5 Knowledge Extraction Approaches 

Dependency parsing has been frequently used to 
support relation extraction by capturing words that 
are close in context, even if far in sentence 
distance. Given a dependency tree, a set of subtree 
extraction rules identifies linguistically-connected 
terms, in the form of Predicate Argument Structure 
(PAS) tuples (Section 5.1). PAS tuples represent 
dependencies between textual entities, such as 
binary or ternary relations. They provide an easy 
intermediate representation to match text sentences 
to triples (subject, predicate, object) constituting a 
knowledge graph. The ontology can then be used 
to check if the linguistic tuples make sense 
semantically. Transformation of PAS tuples into 
Knowledge Graph fragments (sets of ontology 
triples) is done following a set of semantic 
templates (Section 5.2.).  

To extract PAS tuples, we first implemented a 
deterministic baseline using WatsonX general-
purpose deep parsing engine (Kalyanpur et al., 
2012), which builds dependency trees for 
sentences. WatsonX provides a Pattern Matching 
library to characterize subtrees via handcrafted 
rules. Table 1 shows an example of two rules, 
based on the simple dependency tree in Figure 4. 
The rule assigns a syntactic role to tokens/spans in 
the sentence – e.g., ‘subject’, ‘predicate’ or ‘object’ 
(also referred to as ‘slot types’). Other roles such 
as ‘complement’, can also be applied as necessary. 

However, hand-coding these syntactic rules 
requires knowledge of computational linguistics. 
Our aim is for non-linguistic experts (e.g., 
application developers) to be able to apply this 
process to new domains. To reduce dependence on 
hard-to-acquire dependency parsing skills, we 

have developed an approach based on Spacy 
(Honnibal et al., 2020) for learning these rules from 
curated examples (Section 5.1). In Section 6, we 
compare performance of these learned rules to the 
baseline hand-coded rules.  

 

 

5.1 PAS Extraction Based on Learned Rules 

Using a curated set of sentences with labelled PAS 
tuples, our framework generates dependency 
parsing rules that can obtain corresponding tuples 
from other, similarly-structured sentences. 
Specifically, we use Spacy’s pattern builder to 
extract Semgrex patterns between fully-connected 
tokens, based on the shortest dependency path 
between tokens. This path usually contains the 
necessary information to identify their relation. 
Semgrex syntax allows us to characterize a subtree 
(Chambers et al., 2007), it describes nodes with 
normal token attributes, and how these nodes 
connect to other nodes in the dependency tree. 

 

We begin by obtaining a collection of sentences 
that represent the linguistic relationships we want 
to extract. We then annotate these sentences, 
identifying the interesting tokens and their 
syntactic roles (PAS ‘slots’). Every annotated 
example is used to learn extraction rules, as 
depicted in Figure 5. 

To learn the extraction rules for one curated 
sentence, we start by applying domain-specific 
tokenization, using the ontology-based entities 

pattern1verb[hasPOS(‘verb’), hasLemma(‘be’)] 
{  nsubj -> subj [hasPOS("pron")]   } 
{  acomp-> pred [ ]   } 
{  advmod -> comp [hasPOS ("noun")]   } 
{  prep -> prepVar [ ]   {  pobj -> obj [hasPOS ("noun")]  } } 
pattern2 -> subj [hasPOS ("noun")] 
{  compound -> obj []  {  num_mod -> comp []   }} 
PAS[pattern1]:subj=it,pred=payable,obj=once,comp=period 
PAS[pattern2]:subj=period, pred=[], obj=month, comp=24 

Table 1: Example of written rules to extract PAS. 
 

Figure 4. Dependency tree for an example sentence 

Figure 5. Extraction rule learning phase 
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annotated during Entity Extraction. We then build 
a dependency tree for the sentence. These 
annotations help subsequent dependency parsing 
by letting the parser know when a complex, multi-
token term (e.g., the service name ‘‘Full-mouth 
debridement to enable comprehensive ..”) can be 
treated as a simple, single named-entity. The re-
tokenization simplifies and lends a degree of 
consistency to the resulting dependency tree 
(Finkel and Manning, 2009). The dependency tree 
is then parsed to find the shortest dependency path 
between the interesting (annotated) roles/slots for a 
PAS. Once the subtree consisting of all the desired 
tokens for a PAS has been identified, we extract a 
linguistic pattern characterizing that subtree. In 
addition to the linguistic properties of the tokens, 
we also extract slotting rules. A slotting rule is used 
in conjunction with linguistic patterns to assign a 
syntactic role to an extracted token. This is based 
on (Choi and Palmer, 2012) where dependency 
labels can be assigned to arguments – i.e, they 
indicate the Slot type (subject, predicate, object, 
etc.) Finally, an extraction rule (linguistic -semgrex 
- pattern  +  slotting rules) is captured for every 
PAS in an annotated sentence.  

 

At runtime, incoming sentences are processed to 
extract PAS tuples (Figure 6). As before, domain-
specific tokenization is applied to the sentence 
prior to building a dependency tree. The extraction 
rules learned earlier are then applied, to obtain 
candidate PAS tokens. Lastly, syntactic role labels 
are assigned to these candidate tokens by applying 
slotting rules.  

5.2 Graph Building from PAS 

PAS tuples enable us to extract meaningful 
relationships, even in text with challenging, long-
range dependencies. However, PAS tuples require 
some translation to match ontology entities and 
relationships, e.g., a linguistic predicate may not 
directly translate to an ontological property. 
Implicit arguments may also be missing from a 
PAS. PAS can contain ternary relations that need to 

be aligned to one or more binary relations. And 
finally, not all PAS tuples are relevant. 

To translate PAS tuples into semantically 
consistent Knowledge Graph fragments, we start 
by only keeping PAS that contain one or more 
ontology-based entity annotations. Then, for each 
subset of connected PAS tuples, we search for non-
ambiguous semantic paths in the ontology that 
connect these entities, based on parametrized 
templates - implemented using the Jena API 
(Carrol et al., 2004). We use the annotated semantic 
types of the PAS entities (e.g.: class, instance, 
property, datatype, etc.) to select the templates to 
be executed. If a PAS token was annotated with 
more than one ontology annotation, then all 
combinations are tried. Non-relevant candidates 
will likely not yield any meaningful graph 
fragments. In here we provide an illustrative 
example of the process. Further details on the 
different templates can be found in Appendix C. 

Consider the example in Figure 1, the first 
sentence yields the following PAS (among others): 
<:d4355, :hasApplicableService, :Service> 
<:d4355, :hasNoRequirement, :PAR> 

The first PAS fires a template pattern that checks if 
the class Service is both the type of the instance 
d4355 and the range of the object property 
hasApplicableService.  If so, these entities are 
semantically connected and can be translated into 
the corresponding knowledge graph fragments. 
The following semantic triples are created: 

:br1 rdf:type :ServiceLimitationBR 
:br1 :hasApplicableService :d4355 

For the second PAS, the range of the property 
hasNoRequirement corresponds to the type of the 
object instance PAR. This PAS links to the previous 
through the subject instance :d4355 and can be 
translated into the knowledge graph fragment: 

:br1 :hasNoRequirement :PAR 
Thus, a  knowledge graph is built by joining 
together all graph fragments obtained from the 
subset of connected PAS tuples.  

Finally, a consolidation step pulls together the 
collection of graphs extracted from different 
portions of a policy paragraph. Here, all the 
constraints expressed in the ontology are enforced, 
e.g. disjointness between two properties, min and 
max cardinality, to ensure semantically-
meaningful rules and discard nonsense rules (e.g. 
there  can only be one applicable time period per 
BR – due to max cardinality = 1). Graph fragments 
are also merged, if the resulting BR graph does not 

Figure 6. Runtime extraction of candidate PAS tuples 
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violate any ontological constraint. Since there can 
more than one extractor, any duplicate graphs 
derived from the same policy text are discarded, 
partial graphs can also  be merged if doing so does 
not violate any ontological constraint.  

Figure 7 shows the consolidated graph extracted 
from sentence 1 and 2. This graph can be 
‘flattened’ to obtain human-readable ‘Benefit 
Rules’ – such as the Service Limitation rule shown 
on the left of Figure 2 and Mutually Exclusive rule 
shown on the right. Both subtypes inherit the 
properties of their parent Benefit Rule class, but are 
not merged, because each contains conditions that 
are only meaningful for that rule subtype, e.g., the 
property hasServiceLimitation is only relevant for 
a ‘Service Limitation’ rule.  
 

 

6 Evaluation Methodology 

We concentrate on the system's ability to exploit 
the rich information contained in both a domain 
ontology and dependency trees with respect to a 
gold-standard created in consultation with our 
policy investigators.  In particular, we aim to 
compare the impact of first addressing the need for 
dependency rules to extract PAS by proposing 
an approach that generates these rules from 
examples, which fit the domain-specific 
characteristics of new policy text. Policy-aware 
users can add these examples as there is no 
requirement to manually write new dependency 
parsing rules. Second, the impact of using a BERT-
based classifier.  Labeled training data is 
expensive to acquire as it requires domain 
expertise. However, as policy investigators review 
Benefit Rules, we investigated the use of this 
curated, small labeled dataset to fine-tune a 
classifier that filters out paragraphs that do not 
appear to contain any rules.  

6.1 Set up: Data and Metrics 

The proposed extraction pipeline was evaluated 
using Benefit Rules extracted from unstructured 
policies from two different states in the US. The 
ground truth of BRs for each policy was manually 
created by a team of three FWA investigators using 

our prototype User Interface: 90 rules were 
provided for State1 and 51 rules for State 2. 

The ontology used in the experiments consists 
of 34 classes and 43 properties. Once the domain-
specific instance data is ‘lifted’ in, 4954 individuals 
are added along with 23250 lexicalizations (i.e., 
labels used to annotate textual entities). The ground 
truth Benefit Rules presented in the experiments 
(not commercially sensitive or in production) are 
made available together with the ontology. 

Each BR comprises of a policy text and a 
corresponding set of condition-values describing 
the text. Precision (P) measures the proportion of 
extracted rules that match the ground  truth (GT) 
for the same policy text. Recall (R) measures the 
proportion of GT rules correctly extracted.  F1 
combines the two. In addition, each matched 
rule gets a pairing ‘score’. When all extracted 
condition-value pairs for a rule exactly match the 
GT, the score is 1. For partial matches, the score is 
between 0 and 1. A score of 0 indicates a missed 
rule. Table 2 shows the average pairing score 
across all rules. Details on the calculation and 
execution environment can be found in the 
appendixes A and B. 

Jupyter notebooks showcasing the dependency 
tree (before and after tokenization) and PAS tuple 
extraction implementation with the learned rule for 
the example used in this paper, can be found in the 
git repository. 

6.2 Results and Discussion 

We run the evaluations using the two approaches 
presented for the PAS tuple extraction. The first – 
based on 54 manually-coded linguistic rules in 
WatsonX - acts as a baseline. The second are the 
learned syntactic rules described in Section 5.1. A 
total of 55 sentences were annotated with PAS 
examples. 
 

State Extractor R P Avg score F1 

1 
Learned rules 0.51 0.90 0.56 0.65 

Manual rules 0.48 0.73 0.57 0.58 

2 
Learned rules 0.45 0.82 0.41 0.58 

Manual rules 0.57 0.71 0.54 0.62 

Results are summarized in Table 2. Overall, figures 
indicate that the proposed pipeline is a promising 
step towards automated extraction of BRs from 
unstructured policies.  Extraction using learned 

Table 2: Metrics when different extractors are applied 
over policies from different states 

Figure 7. Consolidated graph from sentence 1 and 2 
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rules is comparable to using manual rules. 
Considering the number of curated examples and 
rules added to both extractors, there is a potential 
to further improve this by identifying missed rules 
and adding them as examples. This requires far less 
skill than manually hand-crafting linguistic 
extraction rules. We believe this takes a distinct 
step towards empowering development teams to 
tailor extraction to customer needs.   

 

Spacy provides several linguistic features on which 
to characterize a subtree, including syntactic 
dependency (DEP), part-of-speech (POS) and 
detailed part-of-speech (TAG). When settling on 
which of these to use (Table 3), we used Recall as 
the key metric and found that syntactic dependency 
(DEP) yielded best performance. 

The use of a filtering classifier increases both 
performance (execution times shown in appendix 
A) and Precision (from 0.88 to 0.96 in State 1 and 
0.82  to 0.95 in State 2) at the cost of a small drop 
in Recall (from 0.51 to 0.48 in State 1 and 0.45 to 
0.41 in State 2). This is expected, since there are 
inevitably some false negatives in the 
classification. The model used is a BERT-based 
text classifier, fine-tuned on 70% of the paragraphs 
of the two policies, with the remaining 30% used 
for validation and early stopping during training. 
The hyperparameters were selected using Optuna 
(Takuya et al., 2019) optimization framework 
using  5-fold cross validation settings. The 
generalization capacity of the model is difficult to 
assess due to the small amount of labelled ground 
truth. With that caveat, it has been verified with 
cross-validation, where the model obtains an 
average accuracy of 96% on the various folds.  The 
training data size is currently small due to the cost 
of manual policy labelling. However, it is expected 
this will expand as users review and curate 
extractor output.  

While these benefit rule extraction results are 
promising, there is clearly scope to enhance our 
models and extractors to improve coverage. Most 
Benefit Rules are self-contained across one or 
more sentences in a paragraph, However, further 
work is needed to automatically capture the 

knowledge from headings, tables or co-references 
that span paragraphs. Improvements in service 
annotation could also reduce the incidence of 
partially-extracted rules being discarded during 
consolidation. Of course, there can always be 
implicit information, available in the minds of 
policy consumers but not present in the policy text 
for extractors to see. For example, the meaning of 
‘fair to good’ expressed in the rule “Restorative 
services are payable when there is a fair to good 
prognosis for maintaining the tooth”. While these 
details cannot currently be extracted automatically, 
our system gives policy analysts the ability to 
capture them in other consistent ways. For 
example, simple options like attaching a ‘medical 
necessity’ label can make cases like these 
amenable to machine learning and offer real 
benefits to Program Integrity workers seeking to 
size and prioritize work.  

Various approaches can be used to look beyond 
co-occurrence of entities in sentences and explore 
how the terms are linguistically and semantically 
connected. For instance (Roth and Lapata, 2015) 
(Lopez et al., 2019) use semantic role labeling to 
identify actions and roles in a sentence (agent, 
theme, polarity, etc.) and reason over these to 
expose relation-entity/value pairs. Other 
complementary extraction approaches can be 
leveraged to look beyond co-occurrence of entities 
in the sentence and explore how the terms are 
linguistically and semantically connected, which 
could improve further on rule extraction coverage, 
such deep learning models. While the training data 
set is currently small, due to the cost of manual 
policy labeling, it is expected this will expand as 
users review and curate the extractors' output.  

In this paper, we have explored building over 
dependency PAS, which can be exploited to 
capture fine-grained and distant relationships. 
Using a 'learned-rule' approach to 
obtain intermediate representations from a 
sentence enables non-linguistic experts to extend 
this process to more policies, without requiring 
manual production of syntactic-rules to address 
syntactical variability. 

We made a small analysis to quantify the 
similarity between our two dental policy texts P1 
and P2. We extracted sentences (removing stop 
words) from P1 and P2 using a standard sentence 
tokenizer (NLK Tokeniser, n.d.). Following 
(Reimers et al., 2019), we computed embeddings 
for each sentence using a model optimized for 

Table 3: Performance when various combinations of 
linguistic features are used to characterize subtree 
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Semantic Textual Similarity (STS) (specifically, 
we used stsb-roberta-large -STSb 
performance:86.39 (SBert, n.d.)). Let Ei be the list 
of sentence embeddings for the sentences of policy 
Pi. We have computed pairwise cosine similarity 
between E1 and E2. Let E12_max be the list of the 
maximum values of the cosine similarity between 
each embedding in E1 and all the embeddings in E2 
(the i-th value of E12_max gives the best cosine 
similarity between the i-th sentence in P1 and some 
sentence in P2). We  found that the mean of E12_max 
is 0.65 with a standard deviation of 0.12; about 
45% of the sentences in P1 have a cosine similarity 
score with some sentence in P2 that is above the 
average value. We repeated the same experiment 
using a third policy text from a different domain P3, 
and found that the similarity scores for sentences in 
P1 with respect to P3 were consistently lower than 
between P1 and P2. This small experiment gives an 
indication that policy texts from different states but 
in the same domain (e.g., dental) have a good 
degree of similarity. The Benefit Rule Ground 
Truth built for each of the two policies can be seen 
in the git repository, each Benefit Rule shows the 
policy paragraph of text from where it is extracted 
and condition-values. 

7 Conclusions and Future Work 

Within regulated organizations, visibility over any 
part of the ‘compliance landscape’ is valuable 
information for identifying Program Integrity risks 
and prioritizing follow-up. With healthcare 
insurance policies, typically only a small fraction 
policy is automated (hand-coded), and the rest of 
the landscape remains opaque. So, unlike many AI 
applications that require high Recall before they 
are useful, any Recall here provides concrete, 
actionable value that claim workers can use both 
for prioritization and for follow-up. In a dark room, 
all light helps. 

The ontology abstraction supports 
transferability, e.g. from one US state to another 
that semantically express similar compliance rules  
concepts or conditions (e.g.: eligible members, 
places of service, maximum billable units of 
service, services that should not be billed together, 
etc.) even if the wording differs between the texts. 
It also supports incremental enhancement to  cover 
more rules and/or  policy areas, which enables a 
scalable market. Dependency trees capture fine-
grained, distant connections, which guided by the 
ontology are used to automatically  build and 

consolidate a semantically meaningful Knowledge 
Graph. This increases precision by allowing for 
paragraphs that mention relevant entities, but 
which don't contain Benefit-Rules, to be discarded. 
If syntactical variability is high, using a ‘learned 
rule’ approach to obtain PAS representation 
enables non-linguistic experts to apply this process 
to more policies without requiring manual 
production of syntactic rules. 

 We see interesting avenues for follow-up NLP / 
AI work that combines neural and symbolic 
approaches, e.g., training deep learning models as 
our users validate more policy rules, to recognize 
rule fragments (spans), then assemble them into 
rules using the ontology as a blueprint. We also 
plan to perform user-based evaluations to measure 
how our pipeline impacts the time taken by 
investigators to identify and resolve FWA leads, as 
well as the quality and scope of the compliance 
information provided. 

Finally, while our methodology is shown in a 
Healthcare setting, we believe it is applicable to 
other regulated domains, such as Finance.  These 
extracted computable policy representations have 
the potential to open up many new opportunities – 
from reducing compliance costs through 
automated checking (particularly where common 
regulations apply to many) to ‘what-if’ analyses of 
proposed policy to automatically identifying 
gaps/loopholes that undermine Program Integrity.  
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critical to ensuring that resources are available 
when vulnerable people need them). At the same 
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time, defects in the code increase the potential for 
failure to reimburse healthcare providers for 
delivering necessary services. Getting from policy, 
to business requirements, to coded rules is a long, 
multi-translation process, with error and omission 
failure modes at every step. Gaps or biases in the 
original policy may also remain unnoticed through 
this long journey, only to be discovered at the end 
when vulnerable people are impacted. 

A recent global movement known as ‘Rules as 
Code’ (Mohun et al., 2020) identifies several 
methods to tackle this. The one our system uses 
involves extracting rules from policy text via NLP, 
to minimize translation steps.  There is potential for 
misuse here, should machine-extracted rules be 
executed blindly, without checking they faithfully 
represent policy intent. Hence, our system treats 
human-in-the-loop oversight as an essential, non-
optional part of the process. Together - automated 
extraction plus human oversight have the potential 
to reduce translation failures, as well as enable 
discovery of policy errors and biases (by 
facilitating earlier testing and iteration). 

Further to this, we believe that effective 
oversight demands more than a review process or 
‘AI explainability’ add-on. It requires human-
understanding and ability-to-correct to be first-
class design goals. To this end, we use an ontology 
to represent extracted rules in a form (Figure 2) that 
policy-aware users find familiar, understandable 
and correctable (as well as traceable back to their 
policy origin). This representation is at the heart of 
the system. When presented side-by-side with the 
policy text to a reviewer, both success and failure 
scenarios are clearly visible. For example, in a 
failure scenario (ontology does not model the 
policy well), few rules are extracted, and rule 
conditions are missing. Here the reviewer can 
discard the rule, or fill-in the missing information. 
Whether well-formed or poorly formed, at no point 
are rules blindly applied to citizen data 
automatically. 

We believe that shifting the focus towards 
validation of policy and its digital expression will 
facilitate the production of better-quality, more 
humane policy. 
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Supplementary Material  

Appendix A. Evaluation environment  

Our experiments were run using multiple 
microservices representing the modules described 
in the paper.  Kubernetes was used to orchestrate 
the deployment of containers (microservices) in a 
cloud infrastructure with approximately 16 CPUs, 
16 GB of RAM, and 64 GB of disk space. 

The processing time of the policy for state 1 (27 
pages) is approximately 74 minutes using the 
“learned rules” approach, while if using the 
classifier, the time is reduced to 41 minutes. The 
“manual rules” approach instead takes 42 minutes 
without classifier and 23 minutes with the 
classifier. For the policy of state 2 (35 pages), the 
times of the “learned rules” approach with and 
without classifier are 104 minutes and 35 minutes 
respectively. For the “manual rules” approach the 
processing time with and without classifier are 70 
minutes and 10 minutes respectively. 

Appendix B. Definition of metrics  

Precision (P) measures the proportion of extracted 
rules that match the GT. Recall (R) measures the 
proportion of GT rules correctly extracted. 𝑓𝑓1 
combines these two. Specifically, they are defined 
as follows: 

 
For a pair consisting of a ground truth Benefit Rule 
(BR) and an output BR we calculate a similarity 
score as follows, assuming each BR is a list of 
conditions 𝑐𝑐𝑖𝑖  with corresponding values 𝑣𝑣𝑖𝑖  taken 
out of a set with cardinality 𝐶𝐶𝑖𝑖. 
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For every pair of partial matches BR (𝑅𝑅𝑗𝑗𝐺𝐺𝐺𝐺 ,𝑅𝑅𝑖𝑖𝐸𝐸), a 
similarity score 𝑠𝑠𝑗𝑗𝑖𝑖  is calculated based on: 

𝑠𝑠𝑗𝑗𝑖𝑖 =  
min�𝐿𝐿𝑖𝑖,𝐿𝐿𝑗𝑗�

max�𝐿𝐿𝑖𝑖,𝐿𝐿𝑗𝑗�
∗ 1
𝐿𝐿𝑗𝑗
∗ ∑ 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘

𝐿𝐿𝑗𝑗
𝑘𝑘=1   

where 𝐿𝐿𝑗𝑗 and 𝐿𝐿𝑖𝑖 correspond to the sizes of 𝑅𝑅𝑗𝑗𝐺𝐺𝐺𝐺and 
𝑅𝑅𝑖𝑖𝐸𝐸  (i.e., how many conditions each BR consists 

of), and  
min�𝐿𝐿𝑖𝑖,𝐿𝐿𝑗𝑗�
max�𝐿𝐿𝑖𝑖,𝐿𝐿𝑗𝑗�

  represents a penalizing factor 

when the sizes of the two BR are not the same (rule 
length similarity).. The score 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘  for each 
condition value pair {𝑐𝑐𝑘𝑘: 𝑣𝑣𝑘𝑘} is calculated as: 

0, 𝑖𝑖𝑓𝑓 𝑐𝑐𝑘𝑘  𝑖𝑖𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑅𝑅𝑗𝑗𝐺𝐺𝐺𝐺 , 𝑏𝑏𝑐𝑐𝑐𝑐 𝑖𝑖𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑅𝑅𝑖𝑖𝐸𝐸

1, 𝑖𝑖𝑓𝑓 𝑐𝑐𝑘𝑘 𝑖𝑖𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑏𝑏𝑐𝑐𝑐𝑐ℎ 𝑅𝑅𝑗𝑗𝐺𝐺𝐺𝐺 ,𝑅𝑅𝑖𝑖𝐸𝐸  𝑐𝑐𝑖𝑖𝑐𝑐 𝑣𝑣𝑘𝑘𝑖𝑖𝑠𝑠 𝑐𝑐ℎ𝑐𝑐 𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐

0.5 + 0.5 ∗  𝑓𝑓1 ∗ �1 −
1
𝐶𝐶𝑐𝑐𝑘𝑘

� , 𝑖𝑖𝑓𝑓 𝑐𝑐𝑘𝑘  𝑖𝑖𝑠𝑠 𝑖𝑖𝑖𝑖 𝑅𝑅𝑗𝑗𝐺𝐺𝐺𝐺 ,𝑅𝑅𝑖𝑖𝐸𝐸  𝑐𝑐𝑖𝑖𝑐𝑐 𝑣𝑣𝑘𝑘𝑐𝑐𝑖𝑖𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐  
 

 
Here, 𝑓𝑓1  is the harmonic P-R mean generated by 
comparing the values of 𝑐𝑐𝑘𝑘  in 𝑅𝑅𝑗𝑗𝐺𝐺𝐺𝐺 and 𝑅𝑅𝑖𝑖𝐸𝐸  and 
{𝐶𝐶𝑐𝑐𝑘𝑘}  is the number of semantically compatible 
candidate values a condition may have in the 
ontology (i.e., instances of the same type, such as 
all known medical programs), for datatypes where 
𝐶𝐶𝑐𝑐𝑘𝑘  𝑖𝑖𝑠𝑠 1 

Appendix C. Semantic patterns - templates 

For each PAS tuple containing at least two entities 
annotated with the ontology model (as classes, 
instances, properties or datatype), consistent 
semantic statements (subject, predicate, object) are 
created to build the knowledge graph. Connections 
are found across the entities according to their 
semantic types and the templates described in 
Table 1. Different templates are executed for each 
meaningful combination of candidate matches in 
the PAS. 

Table 4: semantic templates to check if entities of the 
given types can be semantically connected. They 
consist of parameters to substitute by the candidate 
entities of the type sought - a class, property, instance 
or datatype (in between <>) - and variables (preceded 
by ‘?’) that must bind to an ontological resource.  If all 
the constraints apply (that is semantically consistent), 
the pattern executes to build new statements, creating 
anonymous resources (blank nodes) as needed. 

Pattern 1: <class, object property, instance> 

• <class> is one of the domains of <property> 
• <instance> type is on the range of <property> 

 If consistent, create a blank  resource _:b such: 

_:b rdf:type <class>. _:b <property> <instance> 

• <class> is in the range of <property> 

• <class> is the type of <instance> (or a superclass, that is 
<instance> rdf:type <class>) 

• <obj property> has a domain ?domain 
 If consistent, create a blank resource _:b such: 

_:b rdf:type <domain>. _:b <property> <instance>.  

Pattern 2: <class, data property, datatype> 
• <class> is one of the domains of <property> 
• the range of <property> is consistent with the <datatype> 

(e.g.,  string, numerical, currency) 
 If consistent, create an blank resource _:b such: 

_:b rdf:type <class>. _b: <property> ‘datatype’ 

Pattern 3: <class, object property, datatype> 
• <class> is one of the ranges of <property> 
• <class> is the domain of a ?property2, which range is 

compatible with <datatype> 
• <property> has a domain ?domain 

If consistent, create two blank resources _:bi such: 

 _:bx rdf:type <domain>. _:bx <property> :_by.  
_:by rdf:type <class >.  _:by <property2> <datatype>. 

Pattern 5: <instance, data property, datatype> 
• the <instance> type is one of the domains of <property>  
• the range of <property> is compatible with <datatype> 

If consistent, create a new statement such: 

<instance> <property> ‘datatype’ 

• <property> has a range consistent with the datatype  
• <property> has a domain ?domain 
• ?domain is the domain of ?property2, which range ?range 

is compatible with the type of < instance>  
If consistent, create a blank resource _:b such: 

_:b1 <property> ‘datatype’. _:b1 rdf:type <domain> 
_:b1 <property2> <instance> 

Pattern 6: <instance1, object property, instance2> 
• <property> has <instance2> as value 
• <property> has a domain ?domain 
• ?domain is the domain of ?property2, which range ?range 

is compatible with the type of < instance> 
If consistent, create a blank resource _:b such: 

_:b <property> <instance2>. _:b rdfs:type <domain>. 
__:b <property2> <instance2> 

Pattern 7: <class1, object property, class2> 
• <class1> is the domain of <property>  
• <class2> is the range of <property> 

If consistent, create a blank resource _:bi such: 

_:bx rdf:type <class1>. _:by rdf:type <class2> 
_:bx <property>_:by. 

Pattern 8: <class, instance1, instance2> 
• <class> is the domain of ?property1 and 

?property2 
• ?property1 has as range the type of <instance1> 
• ?property2 has as range the type of <instance2>  

 If consistent, create a blank resource _:b1 such: 

_:b1 rdf:type <class>. _:b1 <property1> <instance1>. 
_:b1<property2> <instance2> 
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