
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 3509–3521
August 1–6, 2021. ©2021 Association for Computational Linguistics

3509

Abstract

In challenging economic times, obtaining
value for money by ensuring financial
integrity and fairer distribution of services
are among the top priorities for social and
health-care systems globally. However,
healthcare billing policies are complex and
identifying non-compliance is often
narrow-scope, manual and expensive.
Maintaining ‘integrity’ is a challenge -
ensuring that scarce resources get to those
in need and are not lost to fraud and waste.
Our approach fuses recent advances in
dependency parsing with a policy ontology
to convert the content of regulatory
healthcare policy into human-friendly
policy rules, that are amenable to machine-
execution, with human oversight. We
describe the ontology-guided
transformation of textual patterns into a
semantically-meaningful knowledge graph
of rules, outline our experiments and
evaluate results against policy rules
obtained from professional investigators.
The aim is to make a policy-compliance
‘landscape’ visible to healthcare programs
- helping them identify Fraud, Waste or
Abuse.

1 Introduction

The WHO (World Health Organization, 2010) lists
fairness, financial integrity [“Program Integrity”]
and access in healthcare among the top global
healthcare priorities. In the U.S., an estimated
annual amount of USD$20-30B is lost to Fraud,
Waste and abuse (FWA) (Shrank et al., 2019).
These vital funds never make it to the vulnerable
citizens that they were intended to serve.

To combat this, countries with insurance-based
healthcare programs (e.g. Medicaid, Medicare),

1 The ontology and Benefit Rules benchmark are released
as open source at:

employ claim investigators to validate the integrity
of reimbursement claims submitted by providers.
Investigators verify these claims against the
program’s policies, with the goal of reducing
wasteful practices, identifying fraud or abuse and
closing policy gaps. This is a labor-intensive task –
claim volumes are high, policies are complex and
investigative resources are limited.

More broadly, governments regulate a wide
range of sectors, with extensive rules and policies.
These policies drive significant spending by the
regulated organizations. e.g., a European Union
Commission study (2019) found that the annual
cost of complying with EU financial regulations is
around EUR€11.3B. In Australia, Deloitte (2014)
estimated the costs of administering and
complying with public sector rules at AUD$94B.

In this paper we propose a methodology for
automatically extracting knowledge from
healthcare policy documents, in the form of
Benefit Rules (BRs) that are both human-
understandable and machine consumable. These
BRs can be applied automatically to flag
discrepancies in claims, with limited human effort.
This paper focuses on the extraction of these rules,
and not their execution.

Policy rules have a major impact both on the
health of the citizens they serve, and the financial
integrity of the Programs that pay the Service
Providers. Human-understanding, oversight and
control are first-class AI-design concerns for this
domain. Model ‘explainability’ is not enough.
Transparency is needed anywhere that provider or
citizen coverage is at stake. Users need to see and
influence which rules are being applied, and on
what policy basis decisions are being made.

To achieve this, we anchor our methodology in
an ontology1 , that both guides and constrains AI
extraction tasks. We build on recent NLP advances

https://github.com/IBM/rules_extraction_from_healthcare_po
licy

Towards Protecting Vital Healthcare Programs by Extracting
Actionable Knowledge from Policy

Vanessa Lopez*a, Nagesh Yadavb, Gabriele Piccoa, Inge Vejsbjerga, Eoin Carrollb,
 Seamus Bradyb, Marco Luca Sbodioa, Lam Thanh Hoanga, Miao Weib, John Segrave*b

a IBM Research Europe, Dublin, Ireland
b IBM Watson Health, Dublin, Ireland

*Equal author contribution

https://github.com/IBM/rules_extraction_from_healthcare_policy
https://github.com/IBM/rules_extraction_from_healthcare_policy

3510

to identify patterns in dependency paths that
connect relevant entities.

Finally, we transform the dependent entities into
knowledge-graph fragments, which are assembled
into graphs that represent actionable Benefit Rules.
Users can curate these rules as they are well-
structured and expressed in familiar terms.

Automated extraction of these rules from high-
volume policies (e.g., Medicaid), will enable the
emergence of a new generation of tools for
safeguarding Program Integrity, e.g. execution of
these rules against claims data enables an overview
of the ‘policy-compliance landscape’ that does not
exist today.

Section 2 presents Rules as Code and related
work in knowledge extraction for social good.
Section 3 describes domain requirements. Section
4 presents the architecture for our ‘Claim Audit’
extraction pipeline. Section 5 describes how
dependency parsing and the ontology are used to
extract semantically-rich rule fragments. In
Section 6 we evaluate our results with professional
policy investigators using dental policies, and in
Section 7, we present future work.

2 Related Work

2.1 Rules As Code (RaC)

Organizations need novel approaches to help with
regulatory compliance, and Rules as Code (RaC)
is an initiative that envisages “an official version
of rules (e.g., laws and regulations) in a machine-
consumable form, which allows rules to be
understood and actioned by computer systems in a
consistent way” (Mohun et al., 2020). It forms part
of a broad movement towards digital government
and has garnered broad public-sector interest.

Approaches to achieving machine-executable
RaC rules for published legislation run from
manual coding by multi-disciplinary teams to
automatic code-generation from natural-language
legislation (Mohun et al., 2020). The former
approach brings legislative drafters, policy
analysts and software developers together to co-
produce human and machine-consumable versions
of rules. Examples include the New Zealand Better
Rules Discovery initiative (Digital Government
NZ, 2018) and OpenFisca (OpenFisca.org, nd) in
France. The latter approach uses NLP technology
to assist policy experts in converting policy texts to
machine-consumable forms, helping scale the RaC
process, and is being explored by the AustLII’s

DataLex Project (Greenleaf et al., 2020) and
CSIRO Data61’s Regulation as a Platform project
(Data61, 2019). Our work involves taking this
latter approach for government healthcare
insurance policy.

2.2 Knowledge Extraction for Social Good

Related to our work, Kiyavitskaya et al. (2018)
extracts right, obligation, exception and constraints
from legal documents by annotating entities with a
domain-specific ontology consisting of entity
vocabulary and normative phrasal templates built
manually by domain experts. Dragoni et al. (2016)
parses sentences into grammar trees using Stanford
NLP, and annotates legal concepts with a
manually-built ontology. The annotation is turned
into rules using a set of hand-crafted rules.

Our work is similar, but we extract tuples from
dependency trees and reason over the ontology to
produce a Benefit Rule knowledge graph.

Recent efforts to build graphs for social good
include (Assom, 2020) - constructing knowledge
graphs to extract food-trading activities for
sustainable food trading and security. Puri et al.
(2020) discusses challenges in extracting
knowledge graphs from UN datasets for
sustainable development goals. Khetan et al.
(2020) describes the use of NLP tools like Spacy,
CoreNLP, ClausIE and OpenIE to extract
information from unstructured text provided by the
UN. Kejriwal et al. (2017) constructs a knowledge
graph that supports a semantic search engine for
investigators in human-trafficking.

AI for social good is a broad research topic as
described in Shi et al. (2020). For public health,
Nordon et al. (2019) uses biomedical knowledge
graph for drug discovery. Finally, Percha and
Altman (2018) connect entity-pair dependency
paths to extract relations between chemicals, genes
and diseases.

Our focus is on AI and knowledge-extraction to
help combat FWA in healthcare programs. Today,
FWA detection generally relies on two approaches.
Firstly, traditional data mining to identify outliers
and anomalous billing patterns in claims (Joudaki
et al., 2015). While valuable, this approach
presents challenges when building legal cases, as it
is not innately grounded in policy. Secondly, hand-
coded algorithms written by analysts to find claims
that are not compliant with policy. These are labor-
intensive to develop and maintain in the face of
ever-evolving policy. Worse, they cover only a

3511

small fraction of the policy ‘landscape’, resulting
in a prioritization catch-22 - algorithms are needed
in order to know which areas most need
algorithms.

3 Background and Requirements

Despite the variety of ways that Benefit Rules
(BRs) are expressed across healthcare policies,
experts know the common entities, relationships
and logical constraints that underpin them. To
extract BRs that are correct, human-friendly and
executable, we need to account for these semantics.
Popular generic language models do not capture
such implicit knowledge and expert-labeled
datasets are expensive to develop (and small).

We apply these semantics via a BR ontology co-
created with domain experts as described in (Lopez
et al., 2019). The ontology guides the extraction of
well-structured, consistent knowledge graphs from
the policy. It links relevant entities together with
their context in sentences, e.g., take the policy
paragraph and its ontology subset shown in Figure

1. To extract the two distinct Benefit Rules shown
in Figure 2, the two distinct roles of the service
‘full-mouth debridement’ must be recognized.
Widely-adopted medical terminology standards
(e.g. UMLS, CPT, HCPCS) can be attached to
ontology concepts for consistent representation
and mapping of billing codes/values in a BR.

Human understanding and control are also key
requirements. Policy can be challenging to
interpret, and amenable to mis-interpretation or
mis-application. Expert operators must be able to
understand the policy provenance and correct any
incorrectly-extracted BRs. The ontology powers
this 'explainability' in two ways. Firstly, by
enabling consistently-structured knowledge graphs
to be extracted from inconsistent policy
representations, removing ambiguities between the
rules interpretation and policy intent. Secondly –
by expressing them simply, using familiar user
concepts. All our graphs can be presented as a set
of simple, editable condition-value pairs, as in
Figure 2. This is achieved by 'flattening' the graph
- taking only the leaf properties and values. While
our UI needs visual design, users report that these
representations 'feel right' and that correcting
extraction errors/omissions is straightforward.

Finally, extracted BRs must be amenable to
execution - i.e., converted into a form that can
automatically label claims as policy-compliant (or
not). Here again, the ontology helps by mapping
each condition to consistent constraints - this time
for the selection, filtering and aggregation of
claims data. While beyond the scope of this paper,
our work to-date suggests that ontology-
conforming BRs execute with similar accuracy to
algorithms hand-written by claim investigators.
(Of course, execution accuracy will still also
depend on accuracy of automated extraction and
human curation).

Figure 1: Ontology subset describing the policy:
Full-mouth debridement to enable comprehensive
periodontal evaluation and diagnosis is a covered
service and does not require prior approval. It is
payable once in a 24-month period. Full-mouth
debridement is not payable on the same date of services
as other prophylactic or preventative procedures

Figure 2: Benefit Rules extracted from a paragraph in a dental policy (DHS, 2013). On the left: a Service
Limitation BR on the number of units a provider can bill for a service per patient over a period of time. On the
right: a Mutually Exclusive BR on services that cannot be billed together in a given period

3512

4 Proposed Extraction Pipeline

We propose a methodology to extract Benefit
Rules from policy automatically. Figure 3 presents
the main components, from policy enrichment to
ontology-guided knowledge extraction and user
validation. All steps in the pipeline are
configurable - similar functional components can
easily be replaced/added. We give an overview for
each step, the functionality and data requirements:

Data preparation and Policy ingestion: all
domain information is captured in the ontology, so
the technical components remain domain agnostic.
While the ontology schema generalises across
many policies, instance data is domain-specific and
must be prepared (‘lifted’). Some instances are
common across policy areas and states, such as an
eligible ‘Place of Service’ (e.g. hospital) (Centers
for Medicare & Medicaid, n.d.). Other instance
data is specific to the target domain, such as ‘body
parts’ for tooth identifiers in dental claims. These
can be automatically ‘lifted’ into the ontology from
tabular data sources containing a main entity, a list
of surface forms (to address vocabulary
heterogeneity) and other attributes. They are added
as individuals of a given entity type on application
startup, and according to a user-configurable
mapping. The lexicalizations are made available
when processing policy text and identifying entity
mentions. New instance data can be added as the
need arises

Next, PDF policies are transformed into
enriched HTML using an off-the-shelf conversion
tool (compare and comply, n.d.), outlining
headings, passages and paragraphs for later use at
passage-level by annotators and extractors, as well
as at paragraph-level by the classification and
consolidation.
Segment Classification: a classifier optionally
filters incoming paragraphs, deciding whether they
are likely to contain BRs. This can significantly
reduce compute-time and can also improve
Precision, at the cost of some Recall. This is the
only component in the pipeline that requires
enough ground truth data on (validated) BRs and
the associated paragraphs to fine-tune deep

learning models. In section 6 we evaluate a fine-
tuned, BERT-based classifier.
Entity & Relation Extraction: Here, candidate
ontology entities/types are annotated in the text by
two complementary annotators. The first is based
on WatsonX (Kalyanpur et al., 2012) , a generic
entity and UMLS-based clinical annotator. A
Lucene search index is used to find approximate
matches for any annotated entities (verbs, noun-
phrases, etc.), in the ontology lexicalizations. It is
also used to retrieve semantic types (e.g. diseases)
relevant to benefit rules, from terminology services
such as UMLS (UMLS semantic hierarchy, nd).

The second - SystemT (Chiticariu et al., 2018),
extracts entity mentions from dictionaries and
regular expressions. These are built automatically,
from the instances ‘lifted’ into the ontology at
initialization time, as described earlier. This
enables entity mentions to be matched with
complex labels, like ‘Full-mouth debridement to
enable comprehensive periodontal evaluation and
diagnoses’. All lexicalizations in the ontology are
useful to address vocabulary heterogeneity.

Annotators label these textual spans with
specific ontology labels (URIs) and other useful
information (lemma, POS, UMLS type, etc). These
annotations can later be used to simplify the
dependency trees of sentences containing complex
entities. Since there can be overlapping annotations
and competing annotations for the same span,
heuristics are used – e.g. ‘longest span’, or
preferring exact matches to approximate ones.
Disambiguation is otherwise performed later.
Deep Parsing and Graph Building: In this step,
BR knowledge graphs are obtained by combining
dependency trees together with the annotations, in
an ontology-guided way. First, linguistic links are
identified between annotated entities. Then, these
are converted into semantic triples and linked
together into knowledge graph fragments by
reasoning over the ontology. Fragments from
different sentences in a paragraph are consolidated
together to produce a set of well-formed Benefit
Rule knowledge graphs that respect the ontology
semantics. Finally, to enable human oversight and
control, all knowledge graphs are ‘flattened’ into a
user-friendly, editable format. The ability to do this
flattening is a key ‘explainability’ property of the
ontology structure and thus, of knowledge graphs
derived from it. The extracted and curated rules are
then stored in a Knowledge Base.

Figure 3. Pipeline from extraction of Benefit Rules

3513

User Validation: extracted BRs are shown to
investigators in a prototype workbench. Here they
can be reviewed against the corresponding policy
text and corrected when necessary. Validated BRs
form a shared store of high-quality, machine-
readable rules, making the rule creation and
consumption process more transparent. In a related
work, we execute these rules on claims data to
discover inappropriate payments. This shortens the
investigator's workflow by giving them an
immediate view of policy-relevant claims data
(normally obtained through time-consuming data
requests, spreadsheets and algorithm coding). It
also grounds their work to specific policy clauses,
helping them build a watertight case for recovery.

5 Knowledge Extraction Approaches

Dependency parsing has been frequently used to
support relation extraction by capturing words that
are close in context, even if far in sentence
distance. Given a dependency tree, a set of subtree
extraction rules identifies linguistically-connected
terms, in the form of Predicate Argument Structure
(PAS) tuples (Section 5.1). PAS tuples represent
dependencies between textual entities, such as
binary or ternary relations. They provide an easy
intermediate representation to match text sentences
to triples (subject, predicate, object) constituting a
knowledge graph. The ontology can then be used
to check if the linguistic tuples make sense
semantically. Transformation of PAS tuples into
Knowledge Graph fragments (sets of ontology
triples) is done following a set of semantic
templates (Section 5.2.).

To extract PAS tuples, we first implemented a
deterministic baseline using WatsonX general-
purpose deep parsing engine (Kalyanpur et al.,
2012), which builds dependency trees for
sentences. WatsonX provides a Pattern Matching
library to characterize subtrees via handcrafted
rules. Table 1 shows an example of two rules,
based on the simple dependency tree in Figure 4.
The rule assigns a syntactic role to tokens/spans in
the sentence – e.g., ‘subject’, ‘predicate’ or ‘object’
(also referred to as ‘slot types’). Other roles such
as ‘complement’, can also be applied as necessary.

However, hand-coding these syntactic rules
requires knowledge of computational linguistics.
Our aim is for non-linguistic experts (e.g.,
application developers) to be able to apply this
process to new domains. To reduce dependence on
hard-to-acquire dependency parsing skills, we

have developed an approach based on Spacy
(Honnibal et al., 2020) for learning these rules from
curated examples (Section 5.1). In Section 6, we
compare performance of these learned rules to the
baseline hand-coded rules.

5.1 PAS Extraction Based on Learned Rules

Using a curated set of sentences with labelled PAS
tuples, our framework generates dependency
parsing rules that can obtain corresponding tuples
from other, similarly-structured sentences.
Specifically, we use Spacy’s pattern builder to
extract Semgrex patterns between fully-connected
tokens, based on the shortest dependency path
between tokens. This path usually contains the
necessary information to identify their relation.
Semgrex syntax allows us to characterize a subtree
(Chambers et al., 2007), it describes nodes with
normal token attributes, and how these nodes
connect to other nodes in the dependency tree.

We begin by obtaining a collection of sentences
that represent the linguistic relationships we want
to extract. We then annotate these sentences,
identifying the interesting tokens and their
syntactic roles (PAS ‘slots’). Every annotated
example is used to learn extraction rules, as
depicted in Figure 5.

To learn the extraction rules for one curated
sentence, we start by applying domain-specific
tokenization, using the ontology-based entities

pattern1verb[hasPOS(‘verb’), hasLemma(‘be’)]
{ nsubj -> subj [hasPOS("pron")] }
{ acomp-> pred [] }
{ advmod -> comp [hasPOS ("noun")] }
{ prep -> prepVar [] { pobj -> obj [hasPOS ("noun")] } }
pattern2 -> subj [hasPOS ("noun")]
{ compound -> obj [] { num_mod -> comp [] }}
PAS[pattern1]:subj=it,pred=payable,obj=once,comp=period
PAS[pattern2]:subj=period, pred=[], obj=month, comp=24

Table 1: Example of written rules to extract PAS.

Figure 4. Dependency tree for an example sentence

Figure 5. Extraction rule learning phase

3514

annotated during Entity Extraction. We then build
a dependency tree for the sentence. These
annotations help subsequent dependency parsing
by letting the parser know when a complex, multi-
token term (e.g., the service name ‘‘Full-mouth
debridement to enable comprehensive ..”) can be
treated as a simple, single named-entity. The re-
tokenization simplifies and lends a degree of
consistency to the resulting dependency tree
(Finkel and Manning, 2009). The dependency tree
is then parsed to find the shortest dependency path
between the interesting (annotated) roles/slots for a
PAS. Once the subtree consisting of all the desired
tokens for a PAS has been identified, we extract a
linguistic pattern characterizing that subtree. In
addition to the linguistic properties of the tokens,
we also extract slotting rules. A slotting rule is used
in conjunction with linguistic patterns to assign a
syntactic role to an extracted token. This is based
on (Choi and Palmer, 2012) where dependency
labels can be assigned to arguments – i.e, they
indicate the Slot type (subject, predicate, object,
etc.) Finally, an extraction rule (linguistic -semgrex
- pattern + slotting rules) is captured for every
PAS in an annotated sentence.

At runtime, incoming sentences are processed to
extract PAS tuples (Figure 6). As before, domain-
specific tokenization is applied to the sentence
prior to building a dependency tree. The extraction
rules learned earlier are then applied, to obtain
candidate PAS tokens. Lastly, syntactic role labels
are assigned to these candidate tokens by applying
slotting rules.

5.2 Graph Building from PAS

PAS tuples enable us to extract meaningful
relationships, even in text with challenging, long-
range dependencies. However, PAS tuples require
some translation to match ontology entities and
relationships, e.g., a linguistic predicate may not
directly translate to an ontological property.
Implicit arguments may also be missing from a
PAS. PAS can contain ternary relations that need to

be aligned to one or more binary relations. And
finally, not all PAS tuples are relevant.

To translate PAS tuples into semantically
consistent Knowledge Graph fragments, we start
by only keeping PAS that contain one or more
ontology-based entity annotations. Then, for each
subset of connected PAS tuples, we search for non-
ambiguous semantic paths in the ontology that
connect these entities, based on parametrized
templates - implemented using the Jena API
(Carrol et al., 2004). We use the annotated semantic
types of the PAS entities (e.g.: class, instance,
property, datatype, etc.) to select the templates to
be executed. If a PAS token was annotated with
more than one ontology annotation, then all
combinations are tried. Non-relevant candidates
will likely not yield any meaningful graph
fragments. In here we provide an illustrative
example of the process. Further details on the
different templates can be found in Appendix C.

Consider the example in Figure 1, the first
sentence yields the following PAS (among others):
<:d4355, :hasApplicableService, :Service>
<:d4355, :hasNoRequirement, :PAR>

The first PAS fires a template pattern that checks if
the class Service is both the type of the instance
d4355 and the range of the object property
hasApplicableService. If so, these entities are
semantically connected and can be translated into
the corresponding knowledge graph fragments.
The following semantic triples are created:

:br1 rdf:type :ServiceLimitationBR
:br1 :hasApplicableService :d4355

For the second PAS, the range of the property
hasNoRequirement corresponds to the type of the
object instance PAR. This PAS links to the previous
through the subject instance :d4355 and can be
translated into the knowledge graph fragment:

:br1 :hasNoRequirement :PAR
Thus, a knowledge graph is built by joining
together all graph fragments obtained from the
subset of connected PAS tuples.

Finally, a consolidation step pulls together the
collection of graphs extracted from different
portions of a policy paragraph. Here, all the
constraints expressed in the ontology are enforced,
e.g. disjointness between two properties, min and
max cardinality, to ensure semantically-
meaningful rules and discard nonsense rules (e.g.
there can only be one applicable time period per
BR – due to max cardinality = 1). Graph fragments
are also merged, if the resulting BR graph does not

Figure 6. Runtime extraction of candidate PAS tuples

3515

violate any ontological constraint. Since there can
more than one extractor, any duplicate graphs
derived from the same policy text are discarded,
partial graphs can also be merged if doing so does
not violate any ontological constraint.

Figure 7 shows the consolidated graph extracted
from sentence 1 and 2. This graph can be
‘flattened’ to obtain human-readable ‘Benefit
Rules’ – such as the Service Limitation rule shown
on the left of Figure 2 and Mutually Exclusive rule
shown on the right. Both subtypes inherit the
properties of their parent Benefit Rule class, but are
not merged, because each contains conditions that
are only meaningful for that rule subtype, e.g., the
property hasServiceLimitation is only relevant for
a ‘Service Limitation’ rule.

6 Evaluation Methodology

We concentrate on the system's ability to exploit
the rich information contained in both a domain
ontology and dependency trees with respect to a
gold-standard created in consultation with our
policy investigators. In particular, we aim to
compare the impact of first addressing the need for
dependency rules to extract PAS by proposing
an approach that generates these rules from
examples, which fit the domain-specific
characteristics of new policy text. Policy-aware
users can add these examples as there is no
requirement to manually write new dependency
parsing rules. Second, the impact of using a BERT-
based classifier. Labeled training data is
expensive to acquire as it requires domain
expertise. However, as policy investigators review
Benefit Rules, we investigated the use of this
curated, small labeled dataset to fine-tune a
classifier that filters out paragraphs that do not
appear to contain any rules.

6.1 Set up: Data and Metrics

The proposed extraction pipeline was evaluated
using Benefit Rules extracted from unstructured
policies from two different states in the US. The
ground truth of BRs for each policy was manually
created by a team of three FWA investigators using

our prototype User Interface: 90 rules were
provided for State1 and 51 rules for State 2.

The ontology used in the experiments consists
of 34 classes and 43 properties. Once the domain-
specific instance data is ‘lifted’ in, 4954 individuals
are added along with 23250 lexicalizations (i.e.,
labels used to annotate textual entities). The ground
truth Benefit Rules presented in the experiments
(not commercially sensitive or in production) are
made available together with the ontology.

Each BR comprises of a policy text and a
corresponding set of condition-values describing
the text. Precision (P) measures the proportion of
extracted rules that match the ground truth (GT)
for the same policy text. Recall (R) measures the
proportion of GT rules correctly extracted. F1
combines the two. In addition, each matched
rule gets a pairing ‘score’. When all extracted
condition-value pairs for a rule exactly match the
GT, the score is 1. For partial matches, the score is
between 0 and 1. A score of 0 indicates a missed
rule. Table 2 shows the average pairing score
across all rules. Details on the calculation and
execution environment can be found in the
appendixes A and B.

Jupyter notebooks showcasing the dependency
tree (before and after tokenization) and PAS tuple
extraction implementation with the learned rule for
the example used in this paper, can be found in the
git repository.

6.2 Results and Discussion

We run the evaluations using the two approaches
presented for the PAS tuple extraction. The first –
based on 54 manually-coded linguistic rules in
WatsonX - acts as a baseline. The second are the
learned syntactic rules described in Section 5.1. A
total of 55 sentences were annotated with PAS
examples.

State Extractor R P Avg score F1

1
Learned rules 0.51 0.90 0.56 0.65

Manual rules 0.48 0.73 0.57 0.58

2
Learned rules 0.45 0.82 0.41 0.58

Manual rules 0.57 0.71 0.54 0.62

Results are summarized in Table 2. Overall, figures
indicate that the proposed pipeline is a promising
step towards automated extraction of BRs from
unstructured policies. Extraction using learned

Table 2: Metrics when different extractors are applied
over policies from different states

Figure 7. Consolidated graph from sentence 1 and 2

3516

rules is comparable to using manual rules.
Considering the number of curated examples and
rules added to both extractors, there is a potential
to further improve this by identifying missed rules
and adding them as examples. This requires far less
skill than manually hand-crafting linguistic
extraction rules. We believe this takes a distinct
step towards empowering development teams to
tailor extraction to customer needs.

Spacy provides several linguistic features on which
to characterize a subtree, including syntactic
dependency (DEP), part-of-speech (POS) and
detailed part-of-speech (TAG). When settling on
which of these to use (Table 3), we used Recall as
the key metric and found that syntactic dependency
(DEP) yielded best performance.

The use of a filtering classifier increases both
performance (execution times shown in appendix
A) and Precision (from 0.88 to 0.96 in State 1 and
0.82 to 0.95 in State 2) at the cost of a small drop
in Recall (from 0.51 to 0.48 in State 1 and 0.45 to
0.41 in State 2). This is expected, since there are
inevitably some false negatives in the
classification. The model used is a BERT-based
text classifier, fine-tuned on 70% of the paragraphs
of the two policies, with the remaining 30% used
for validation and early stopping during training.
The hyperparameters were selected using Optuna
(Takuya et al., 2019) optimization framework
using 5-fold cross validation settings. The
generalization capacity of the model is difficult to
assess due to the small amount of labelled ground
truth. With that caveat, it has been verified with
cross-validation, where the model obtains an
average accuracy of 96% on the various folds. The
training data size is currently small due to the cost
of manual policy labelling. However, it is expected
this will expand as users review and curate
extractor output.

While these benefit rule extraction results are
promising, there is clearly scope to enhance our
models and extractors to improve coverage. Most
Benefit Rules are self-contained across one or
more sentences in a paragraph, However, further
work is needed to automatically capture the

knowledge from headings, tables or co-references
that span paragraphs. Improvements in service
annotation could also reduce the incidence of
partially-extracted rules being discarded during
consolidation. Of course, there can always be
implicit information, available in the minds of
policy consumers but not present in the policy text
for extractors to see. For example, the meaning of
‘fair to good’ expressed in the rule “Restorative
services are payable when there is a fair to good
prognosis for maintaining the tooth”. While these
details cannot currently be extracted automatically,
our system gives policy analysts the ability to
capture them in other consistent ways. For
example, simple options like attaching a ‘medical
necessity’ label can make cases like these
amenable to machine learning and offer real
benefits to Program Integrity workers seeking to
size and prioritize work.

Various approaches can be used to look beyond
co-occurrence of entities in sentences and explore
how the terms are linguistically and semantically
connected. For instance (Roth and Lapata, 2015)
(Lopez et al., 2019) use semantic role labeling to
identify actions and roles in a sentence (agent,
theme, polarity, etc.) and reason over these to
expose relation-entity/value pairs. Other
complementary extraction approaches can be
leveraged to look beyond co-occurrence of entities
in the sentence and explore how the terms are
linguistically and semantically connected, which
could improve further on rule extraction coverage,
such deep learning models. While the training data
set is currently small, due to the cost of manual
policy labeling, it is expected this will expand as
users review and curate the extractors' output.

In this paper, we have explored building over
dependency PAS, which can be exploited to
capture fine-grained and distant relationships.
Using a 'learned-rule' approach to
obtain intermediate representations from a
sentence enables non-linguistic experts to extend
this process to more policies, without requiring
manual production of syntactic-rules to address
syntactical variability.

We made a small analysis to quantify the
similarity between our two dental policy texts P1
and P2. We extracted sentences (removing stop
words) from P1 and P2 using a standard sentence
tokenizer (NLK Tokeniser, n.d.). Following
(Reimers et al., 2019), we computed embeddings
for each sentence using a model optimized for

Table 3: Performance when various combinations of
linguistic features are used to characterize subtree

3517

Semantic Textual Similarity (STS) (specifically,
we used stsb-roberta-large -STSb
performance:86.39 (SBert, n.d.)). Let Ei be the list
of sentence embeddings for the sentences of policy
Pi. We have computed pairwise cosine similarity
between E1 and E2. Let E12_max be the list of the
maximum values of the cosine similarity between
each embedding in E1 and all the embeddings in E2
(the i-th value of E12_max gives the best cosine
similarity between the i-th sentence in P1 and some
sentence in P2). We found that the mean of E12_max
is 0.65 with a standard deviation of 0.12; about
45% of the sentences in P1 have a cosine similarity
score with some sentence in P2 that is above the
average value. We repeated the same experiment
using a third policy text from a different domain P3,
and found that the similarity scores for sentences in
P1 with respect to P3 were consistently lower than
between P1 and P2. This small experiment gives an
indication that policy texts from different states but
in the same domain (e.g., dental) have a good
degree of similarity. The Benefit Rule Ground
Truth built for each of the two policies can be seen
in the git repository, each Benefit Rule shows the
policy paragraph of text from where it is extracted
and condition-values.

7 Conclusions and Future Work

Within regulated organizations, visibility over any
part of the ‘compliance landscape’ is valuable
information for identifying Program Integrity risks
and prioritizing follow-up. With healthcare
insurance policies, typically only a small fraction
policy is automated (hand-coded), and the rest of
the landscape remains opaque. So, unlike many AI
applications that require high Recall before they
are useful, any Recall here provides concrete,
actionable value that claim workers can use both
for prioritization and for follow-up. In a dark room,
all light helps.

The ontology abstraction supports
transferability, e.g. from one US state to another
that semantically express similar compliance rules
concepts or conditions (e.g.: eligible members,
places of service, maximum billable units of
service, services that should not be billed together,
etc.) even if the wording differs between the texts.
It also supports incremental enhancement to cover
more rules and/or policy areas, which enables a
scalable market. Dependency trees capture fine-
grained, distant connections, which guided by the
ontology are used to automatically build and

consolidate a semantically meaningful Knowledge
Graph. This increases precision by allowing for
paragraphs that mention relevant entities, but
which don't contain Benefit-Rules, to be discarded.
If syntactical variability is high, using a ‘learned
rule’ approach to obtain PAS representation
enables non-linguistic experts to apply this process
to more policies without requiring manual
production of syntactic rules.

 We see interesting avenues for follow-up NLP /
AI work that combines neural and symbolic
approaches, e.g., training deep learning models as
our users validate more policy rules, to recognize
rule fragments (spans), then assemble them into
rules using the ontology as a blueprint. We also
plan to perform user-based evaluations to measure
how our pipeline impacts the time taken by
investigators to identify and resolve FWA leads, as
well as the quality and scope of the compliance
information provided.

Finally, while our methodology is shown in a
Healthcare setting, we believe it is applicable to
other regulated domains, such as Finance. These
extracted computable policy representations have
the potential to open up many new opportunities –
from reducing compliance costs through
automated checking (particularly where common
regulations apply to many) to ‘what-if’ analyses of
proposed policy to automatically identifying
gaps/loopholes that undermine Program Integrity.

 Acknowledgments
We would like to acknowledge our business
developers, offering managers, subject matter
experts and accredited fraud investigators that
make this project and its evaluation possible:
Morten Kristiansen, Conor Cullen, Denisa Moga,
Jillian Scalvini, John Davis, Shannon Ware, Mark
Gillespie and Mark Goodhart.

Ethics / Broader Impact Statement
Governments must routinely automate policy rules
in order to deliver services at population-scale, and
this brings opportunities for both good and harm.
Consistent application of policy rules at
population-scale ensures fairer distribution of
healthcare and social care services, as well as
defending limited resources from Fraud, Waste and
Abuse. (This latter point is often missed, but is
critical to ensuring that resources are available
when vulnerable people need them). At the same

3518

time, defects in the code increase the potential for
failure to reimburse healthcare providers for
delivering necessary services. Getting from policy,
to business requirements, to coded rules is a long,
multi-translation process, with error and omission
failure modes at every step. Gaps or biases in the
original policy may also remain unnoticed through
this long journey, only to be discovered at the end
when vulnerable people are impacted.

A recent global movement known as ‘Rules as
Code’ (Mohun et al., 2020) identifies several
methods to tackle this. The one our system uses
involves extracting rules from policy text via NLP,
to minimize translation steps. There is potential for
misuse here, should machine-extracted rules be
executed blindly, without checking they faithfully
represent policy intent. Hence, our system treats
human-in-the-loop oversight as an essential, non-
optional part of the process. Together - automated
extraction plus human oversight have the potential
to reduce translation failures, as well as enable
discovery of policy errors and biases (by
facilitating earlier testing and iteration).

Further to this, we believe that effective
oversight demands more than a review process or
‘AI explainability’ add-on. It requires human-
understanding and ability-to-correct to be first-
class design goals. To this end, we use an ontology
to represent extracted rules in a form (Figure 2) that
policy-aware users find familiar, understandable
and correctable (as well as traceable back to their
policy origin). This representation is at the heart of
the system. When presented side-by-side with the
policy text to a reviewer, both success and failure
scenarios are clearly visible. For example, in a
failure scenario (ontology does not model the
policy well), few rules are extracted, and rule
conditions are missing. Here the reviewer can
discard the rule, or fill-in the missing information.
Whether well-formed or poorly formed, at no point
are rules blindly applied to citizen data
automatically.

We believe that shifting the focus towards
validation of policy and its digital expression will
facilitate the production of better-quality, more
humane policy.

References
Takuya Akiba, Shotaro Sano, Toshihiko Yanase,

Takeru Ohta, and Masanori Koyama. 2019. Optuna:
A Next-generation Hyperparameter Optimization
Framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge

discovery & data mining, Association for
Computing Machinery, pages 2623-2631.
https://doi.org/10.1145/3292500.3330701

American Medical Association. 2000. Current
procedural terminology: CPT 2001. American
Medical Association, Chicago, IL.

Luigi Assom. 2020. Impact of Global food Trade:
Food tractability and sustainability indicators. In
1st Workshop on Knowledge Graphs for Social
Good. Data retrieved from
https://knowledgegraphsocialgood.pubpub.org/sche
dule

Olivier Bodenreider. 2004. The Unified Medical
Language System (UMLS): integrating biomedical
terminology. Nucleic Acids Research. 32(1)
(Database issue)):D267-70.
https://doi.org/10.1093/nar/gkh061

Jeremy Carroll, Dave Reynolds, Ian Dickinson, Chris
Dollin, Andy Seaborne, Kevin Wilkinson. 2004.
Jena: Implementing the Semantic Web
Recommendations. In Proceedings of the 13th
International World Wide Web Conference on
Alternate Track Papers & Posters, Association for
Computing Machinery , pages 74-83.
https://doi.org/10.1145/1013367.1013381

Centers for Medicare & Medicaid Services (U.S.).
2020. Healthcare Common Procedure Coding
System (HCPCS). Centers for Medicare & Medicaid
Services.

Centers for Medicare & Medicaid Services (U.S.). n.d.
Place of Service Codes. Data retrieved from
https://www.cms.gov/Medicare/Coding/place-of-
service-codes/Place_of_Service_Code_Set

Nathanael Chambers, Daniel Cer, Trond Grenager,
David Hall, Chloe Kiddon, Bill MacCartney, Marie-
Catherine de Marneffe, Daniel Ramage, Eric Yeh,
and Christopher D. Manning. 2007. Learning
alignments and leveraging natural logic. In
Proceedings of the ACL-PASCAL Workshop on
Textual Entailment and Paraphrasing. Association
for Computational Linguistics, pages 165– 170.

Compare and Comply. n.d.
https://cloud.ibm.com/docs/compare-comply

Jinho D. Choi, and Martha Palmer. 2012. Guidelines
for the clear style constituent to dependency
conversion. Technical report 01-12, Institute of
Cognitive Science, University of Colorado Boulder,
Boulder CO, USA.

Laura Chiticariu, Marina Danilevsky, Yunyao Li,
Frederick Reiss, Huaiyu Zhu. 2018 SystemT:
Declarative text understanding for enterprise. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for
Computational Linguistics: Human Language

https://doi.org/10.1145/3292500.3330701
https://knowledgegraphsocialgood.pubpub.org/schedule
https://knowledgegraphsocialgood.pubpub.org/schedule
https://doi.org/10.1093/nar/gkh061
https://doi.org/10.1145/1013367.1013381
https://www.cms.gov/Medicare/Coding/place-of-service-codes/Place_of_Service_Code_Set
https://www.cms.gov/Medicare/Coding/place-of-service-codes/Place_of_Service_Code_Set
https://www.aclweb.org/anthology/W07-1427/
https://www.aclweb.org/anthology/W07-1427/
http://www.mathcs.emory.edu/%7Echoi/doc/cu-2012-choi.pdf
http://www.mathcs.emory.edu/%7Echoi/doc/cu-2012-choi.pdf
http://www.mathcs.emory.edu/%7Echoi/doc/cu-2012-choi.pdf
https://www.aclweb.org/anthology/N18-3010/
https://www.aclweb.org/anthology/N18-3010/

3519

Technologies, Volume 3 (Industry Papers).
Association for Computational Linguistics, pages
76-83. http://dx.doi.org/10.18653/v1/N18-3010

Data61. 2019. Case study on CSIRO’s Data61,
Australia: Contribution to the OECD TIP Digital
and Open Innovation project. Commonwealth
Science and Industrial Research Organisation
(CSIRO) Data 61. Data retrieved from
https://www.csiro.au/en/News/News-
releases/2019/OECD-spotlights-CSIROs-Data61-as-
global-blueprint-for-digital-innovation

Deloitte. 2014. Get out of your own way – Unleashing
productivity. Building the Lucky Country: Business
imperatives for a prosperous Australia series. Data
retrieved from
https://www2.deloitte.com/au/en/pages/building-
lucky-country/articles/get-out-of-your-own-
way.html

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language
understanding. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers). Association for Computational
Linguistics, pages 4171–4186.
http://dx.doi.org/10.18653/v1/N19-1423

Digital Government NZ. 2018. Better Rules for
Government Discovery Report. Digital Government
New Zealand. Data retrieved from
https://www.digital.govt.nz/dmsdocument/95-better-
rules-for-government-discovery-report/

Mauro Dragoni, Serena Villata, Williams Rizzi, and
Guido Governatori. 2016. Combining NLP
approaches for rule extraction from legal
documents. In Proceedings of the 1st Workshop on
MIning and REasoning with Legal texts (MIREL
2016) collocated with the 29th International
Conference on Legal Knowledge and Information
Systems, IOS Press, pages 1–13.

William D. Eggers, Mike Turley, Pankaj Kishnani.
2018. The Regulator’s New Toolkit: Technologies
and Tactics for Tomorrow’s Regulator. Reducing
compliance costs with RegTech Deloitte Insights.
Data retrieved from
https://www2.deloitte.com/us/en/insights/industry/p
ublicsector/reducing-compliance-costs-with-
regtech.html

European Commission. 2019. Study on the costs of
compliance for the financial sector. Publications
Office of the European Union. Data retrieved from
https://op.europa.eu/en/publication-detail/-
/publication/4b62e682-4e0f-11ea-aece-
01aa75ed71a1

Jenny Rose Finkel and Christopher D. Manning. 2009.
Joint parsing and named entity recognition.
In Proceedings of Human Language Technologies:
The 2009 Annual Conference of the North American
Chapter of the Association for Computational
Linguistics. Association for Computational
Linguistics, pages 326-334.

Graham Greenleaf, Andrew Mowbray and Philip
Chung. 2020. Strengthening Development of Rules
As Code: Submission to the OECD’s OPSI on
Cracking the Code. Australasian Legal Information
Institute (AustLII).
http://dx.doi.org/10.2139/ssrn.3638771

Matthew Honnibal, Ines Montani, Sofie Van
Landeghem, and Adriane Boyd. 2020. spaCy:
Industrial-strength Natural Language Processing in
Python. Explosion AI.
https://doi.org/10.5281/zenodo.1212303

Iowa Department of Human Services (DHS). 2013.
Dental Services Provider Manual. Data retrieved
from
https://dhs.iowa.gov/sites/default/files/Dental.pdf?0
12520210943

Hossein Joudaki, Arash Rashidian, Behrouz Minaei-
Bidgoli, Mahmood Mahmoodi, Bijan Geraili,
Mahdi Nasiri and Mohammad Arab. 2015. Using
data mining to detect health care fraud and abuse: a
review of literature. Global journal of health
science, 7(1):194–202.
https://doi.org/10.5539/gjhs.v7n1p194

Aditya Kalyanpur, Branimir Boguraev, Siddharth
Patwardhan, J. William Murdock, et al. 2012.
Structured data and inference in DeepQA. IBM
Journal of Research and Development, 56(3):10.
https://doi.org/10.1147/JRD.2012.2188737

Mayank Kejriwal and Peter Szekely. 2017.
Knowledge Graphs for Social Good: An Entity-
centric Search Engine for the Human Trafficking
Domain. In IEEE Transactions on Big Data,
https://doi.org/10.1109/TBDATA.2017.2763164

Vivek Khetan. 2020. SDGs and Knowledge Graph
Extraction from Unstructured text. In 1st Workshop
on Knowledge Graphs for Social Good. Data
retrieved from
https://knowledgegraphsocialgood.pubpub.org/sche
dule

Nadzeya Kiyavitskaya, Nicola Zeni, Travis D. Breaux,
Annie I. Antón, James R. Cordy, Luisa Mich, and
John Mylopoulos. 2008. Automating the Extraction
of Rights and Obligations for Regulatory
Compliance. In Proceedings of the 27th
International Conference on Conceptual Modeling
(ER '08). Springer-Verlag, pages 154–168.
https://doi.org/10.1007/978-3-540-87877-3_13

https://www.csiro.au/en/News/News-releases/2019/OECD-spotlights-CSIROs-Data61-as-global-blueprint-for-digital-innovation
https://www.csiro.au/en/News/News-releases/2019/OECD-spotlights-CSIROs-Data61-as-global-blueprint-for-digital-innovation
https://www.csiro.au/en/News/News-releases/2019/OECD-spotlights-CSIROs-Data61-as-global-blueprint-for-digital-innovation
https://www2.deloitte.com/au/en/pages/building-lucky-country/topics/building-lucky-country.html
https://www2.deloitte.com/au/en/pages/building-lucky-country/topics/building-lucky-country.html
https://www.aclweb.org/anthology/N19-1423/
https://www.aclweb.org/anthology/N19-1423/
https://www.aclweb.org/anthology/N19-1423/
https://www.digital.govt.nz/dmsdocument/95-better-rules-for-government-discovery-report/
https://www.digital.govt.nz/dmsdocument/95-better-rules-for-government-discovery-report/
https://www2.deloitte.com/us/en/insights/industry/publicsector/reducing-compliance-costs-with-regtech.html
https://www2.deloitte.com/us/en/insights/industry/publicsector/reducing-compliance-costs-with-regtech.html
https://www2.deloitte.com/us/en/insights/industry/publicsector/reducing-compliance-costs-with-regtech.html
https://op.europa.eu/en/publication-detail/-/publication/4b62e682-4e0f-11ea-aece-01aa75ed71a1
https://op.europa.eu/en/publication-detail/-/publication/4b62e682-4e0f-11ea-aece-01aa75ed71a1
https://op.europa.eu/en/publication-detail/-/publication/4b62e682-4e0f-11ea-aece-01aa75ed71a1
http://dx.doi.org/10.2139/ssrn.3638771
https://dhs.iowa.gov/sites/default/files/Dental.pdf?012520210943
https://dhs.iowa.gov/sites/default/files/Dental.pdf?012520210943
https://doi.org/10.5539/gjhs.v7n1p194
https://knowledgegraphsocialgood.pubpub.org/schedule
https://knowledgegraphsocialgood.pubpub.org/schedule
https://doi.org/10.1007/978-3-540-87877-3_13

3520

KPMG. 2018. There's a revolution coming - embracing
the challenge of RegTech 3.0. Data retrieved from
https://home.kpmg/content/dam/kpmg/uk/pdf/2018/
09/regtech-revolution-coming.pdf

Vanessa Lopez, Valentina Rho, Theodora Brisimi, John
Segrave-Daly, Morten Kristiansen and Fabrizio
Cucci. 2019. Benefit graph extraction from
healthcare policies. In Proceedings of the
International Semantic Web Conference.

James Mohun, Alex Roberts. 2020. Cracking the code:
Rulemaking for humans and machines. OECD
Working Papers on Public Governance, No. 42,
OECD Publishing, Paris,
https://doi.org/10.1787/3afe6ba5-en.

NLTK tokeniser, n.d.,
https://www.nltk.org/api/nltk.tokenize.html

Galia Nordon, Gideon Koren, Varda Shalev, Eric
Horvitz, and Kira Radinsky. 2019. Separating wheat
from chaff: Joining biomedical knowledge and
patient data for repurposing medications.

OpenFisca. .n.d. Homepage, OpenFisca,
https://fr.openfisca.org/ (Accessed 27 January 2021)

Bethany Percha and Russ B. Altman. 2018. A global
network of biomedical relationships derived from
text. Bioinformatics, 34(15):2614-2624.
https://doi.org/10.1093/bioinformatics/bty114

Colin Puri. 2020. Building A Simple Knowledge
Graph with UN Data: Quick Start Example,
Common Methodologies, and Tooling. In 1st
Workshop on Knowledge Graphs for Social Good.
https://knowledgegraphsocialgood.pubpub.org/sch
edule

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence Embeddings using Siamese BERT-
Networks. In Proceedings of EMNLP/IJCNLP.

Michael Roth and Mirella Lapata. 2015. Context-aware
Frame-Semantic Role Labeling. Transactions of the
Association for Computational Linguistics (3):449-
460 http://dx.doi.org/10.1162/tacl_a_00150

Zheyuan Ryan Shi, Claire Wang and Fei Fang. 2020.
Artificial Intelligence for Social Good: A Survey.
Computing Research Repository, ArXiv,
abs/2001.01818.

SBERT Sentence Embedding Models, n.d.,
https://www.sbert.net/docs/pretrained_models.html

William H. Shrank, Teresa L. Rogstad, and Natasha
Parekh. 2019. Waste in the US Health Care System:
Estimated Costs and Potential for Savings. JAMA,
322(15):1501-1509.
https://doi.org/10.1001/jama.2019.13978.

SpaCy Pattern Builder (nd). Accessed January 30
2020 from https://pypi.org/project/spacy-pattern-
builder/

World Health Organization. 2010. Health System
Financing. The path to universal coverage. Chapter
4: More health for the money. The World Health
Report 2010. https://www.who.int/whr/2010/en/

Supplementary Material

Appendix A. Evaluation environment

Our experiments were run using multiple
microservices representing the modules described
in the paper. Kubernetes was used to orchestrate
the deployment of containers (microservices) in a
cloud infrastructure with approximately 16 CPUs,
16 GB of RAM, and 64 GB of disk space.

The processing time of the policy for state 1 (27
pages) is approximately 74 minutes using the
“learned rules” approach, while if using the
classifier, the time is reduced to 41 minutes. The
“manual rules” approach instead takes 42 minutes
without classifier and 23 minutes with the
classifier. For the policy of state 2 (35 pages), the
times of the “learned rules” approach with and
without classifier are 104 minutes and 35 minutes
respectively. For the “manual rules” approach the
processing time with and without classifier are 70
minutes and 10 minutes respectively.

Appendix B. Definition of metrics

Precision (P) measures the proportion of extracted
rules that match the GT. Recall (R) measures the
proportion of GT rules correctly extracted. 𝑓𝑓1
combines these two. Specifically, they are defined
as follows:

For a pair consisting of a ground truth Benefit Rule
(BR) and an output BR we calculate a similarity
score as follows, assuming each BR is a list of
conditions 𝑐𝑐𝑖𝑖 with corresponding values 𝑣𝑣𝑖𝑖 taken
out of a set with cardinality 𝐶𝐶𝑖𝑖.

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷

=
𝑷𝑷°𝑷𝑷𝒆𝒆𝒆𝒆𝑷𝑷𝒆𝒆 𝒎𝒎𝒆𝒆𝒆𝒆𝑷𝑷𝒎𝒎𝑷𝑷𝑷𝑷 + 𝑷𝑷° 𝒑𝒑𝒆𝒆𝑷𝑷𝒆𝒆𝑷𝑷𝒆𝒆𝒑𝒑 𝒎𝒎𝒆𝒆𝒆𝒆𝑷𝑷𝒎𝒎𝑷𝑷𝑷𝑷

𝑷𝑷° 𝑷𝑷𝒆𝒆𝒆𝒆𝑷𝑷𝒆𝒆𝑷𝑷𝒆𝒆𝑷𝑷𝒆𝒆 𝑷𝑷𝒓𝒓𝒑𝒑𝑷𝑷𝑷𝑷

𝑹𝑹𝑷𝑷𝑷𝑷𝒆𝒆𝒑𝒑𝒑𝒑 =
𝑷𝑷°𝑷𝑷𝒆𝒆𝒆𝒆𝑷𝑷𝒆𝒆 𝒎𝒎𝒆𝒆𝒆𝒆𝑷𝑷𝒎𝒎𝑷𝑷𝑷𝑷 + 𝑷𝑷° 𝒑𝒑𝒆𝒆𝑷𝑷𝒆𝒆𝑷𝑷𝒆𝒆𝒑𝒑 𝒎𝒎𝒆𝒆𝒆𝒆𝑷𝑷𝒎𝒎𝑷𝑷𝑷𝑷

𝑷𝑷° 𝑮𝑮𝑮𝑮 𝑷𝑷𝒓𝒓𝒑𝒑𝑷𝑷𝑷𝑷

𝒇𝒇𝟏𝟏 = 𝟐𝟐 ∗
𝑷𝑷 ∗ 𝑹𝑹
𝑷𝑷 + 𝑹𝑹

https://home.kpmg/content/dam/kpmg/uk/pdf/2018/09/regtech-revolution-coming.pdf
https://home.kpmg/content/dam/kpmg/uk/pdf/2018/09/regtech-revolution-coming.pdf
https://doi.org/10.1787/3afe6ba5-en
https://www.nltk.org/api/nltk.tokenize.html
https://fr.openfisca.org/
https://doi.org/10.1093/bioinformatics/bty114
https://knowledgegraphsocialgood.pubpub.org/schedule
https://knowledgegraphsocialgood.pubpub.org/schedule
https://www.aclweb.org/anthology/Q15-1032/
https://www.aclweb.org/anthology/Q15-1032/
http://dx.doi.org/10.1162/tacl_a_00150
https://www.sbert.net/docs/pretrained_models.html
https://doi.org/10.1001/jama.2019.13978
https://pypi.org/project/spacy-pattern-builder/
https://pypi.org/project/spacy-pattern-builder/
https://www.who.int/whr/2010/en/

3521

For every pair of partial matches BR (𝑅𝑅𝑗𝑗𝐺𝐺𝐺𝐺 ,𝑅𝑅𝑖𝑖𝐸𝐸), a
similarity score 𝑠𝑠𝑗𝑗𝑖𝑖 is calculated based on:

𝑠𝑠𝑗𝑗𝑖𝑖 =
min�𝐿𝐿𝑖𝑖,𝐿𝐿𝑗𝑗�

max�𝐿𝐿𝑖𝑖,𝐿𝐿𝑗𝑗�
∗ 1
𝐿𝐿𝑗𝑗
∗ ∑ 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘

𝐿𝐿𝑗𝑗
𝑘𝑘=1

where 𝐿𝐿𝑗𝑗 and 𝐿𝐿𝑖𝑖 correspond to the sizes of 𝑅𝑅𝑗𝑗𝐺𝐺𝐺𝐺and
𝑅𝑅𝑖𝑖𝐸𝐸 (i.e., how many conditions each BR consists

of), and
min�𝐿𝐿𝑖𝑖,𝐿𝐿𝑗𝑗�
max�𝐿𝐿𝑖𝑖,𝐿𝐿𝑗𝑗�

 represents a penalizing factor

when the sizes of the two BR are not the same (rule
length similarity).. The score 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘 for each
condition value pair {𝑐𝑐𝑘𝑘: 𝑣𝑣𝑘𝑘} is calculated as:

0, 𝑖𝑖𝑓𝑓 𝑐𝑐𝑘𝑘 𝑖𝑖𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑅𝑅𝑗𝑗𝐺𝐺𝐺𝐺 , 𝑏𝑏𝑐𝑐𝑐𝑐 𝑖𝑖𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑅𝑅𝑖𝑖𝐸𝐸

1, 𝑖𝑖𝑓𝑓 𝑐𝑐𝑘𝑘 𝑖𝑖𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑏𝑏𝑐𝑐𝑐𝑐ℎ 𝑅𝑅𝑗𝑗𝐺𝐺𝐺𝐺 ,𝑅𝑅𝑖𝑖𝐸𝐸 𝑐𝑐𝑖𝑖𝑐𝑐 𝑣𝑣𝑘𝑘𝑖𝑖𝑠𝑠 𝑐𝑐ℎ𝑐𝑐 𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐

0.5 + 0.5 ∗ 𝑓𝑓1 ∗ �1 −
1
𝐶𝐶𝑐𝑐𝑘𝑘

� , 𝑖𝑖𝑓𝑓 𝑐𝑐𝑘𝑘 𝑖𝑖𝑠𝑠 𝑖𝑖𝑖𝑖 𝑅𝑅𝑗𝑗𝐺𝐺𝐺𝐺 ,𝑅𝑅𝑖𝑖𝐸𝐸 𝑐𝑐𝑖𝑖𝑐𝑐 𝑣𝑣𝑘𝑘𝑐𝑐𝑖𝑖𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐

Here, 𝑓𝑓1 is the harmonic P-R mean generated by
comparing the values of 𝑐𝑐𝑘𝑘 in 𝑅𝑅𝑗𝑗𝐺𝐺𝐺𝐺 and 𝑅𝑅𝑖𝑖𝐸𝐸 and
{𝐶𝐶𝑐𝑐𝑘𝑘} is the number of semantically compatible
candidate values a condition may have in the
ontology (i.e., instances of the same type, such as
all known medical programs), for datatypes where
𝐶𝐶𝑐𝑐𝑘𝑘 𝑖𝑖𝑠𝑠 1

Appendix C. Semantic patterns - templates

For each PAS tuple containing at least two entities
annotated with the ontology model (as classes,
instances, properties or datatype), consistent
semantic statements (subject, predicate, object) are
created to build the knowledge graph. Connections
are found across the entities according to their
semantic types and the templates described in
Table 1. Different templates are executed for each
meaningful combination of candidate matches in
the PAS.

Table 4: semantic templates to check if entities of the
given types can be semantically connected. They
consist of parameters to substitute by the candidate
entities of the type sought - a class, property, instance
or datatype (in between <>) - and variables (preceded
by ‘?’) that must bind to an ontological resource. If all
the constraints apply (that is semantically consistent),
the pattern executes to build new statements, creating
anonymous resources (blank nodes) as needed.

Pattern 1: <class, object property, instance>

• <class> is one of the domains of <property>
• <instance> type is on the range of <property>

 If consistent, create a blank resource _:b such:

_:b rdf:type <class>. _:b <property> <instance>

• <class> is in the range of <property>

• <class> is the type of <instance> (or a superclass, that is
<instance> rdf:type <class>)

• <obj property> has a domain ?domain
 If consistent, create a blank resource _:b such:

_:b rdf:type <domain>. _:b <property> <instance>.

Pattern 2: <class, data property, datatype>
• <class> is one of the domains of <property>
• the range of <property> is consistent with the <datatype>

(e.g., string, numerical, currency)
 If consistent, create an blank resource _:b such:

_:b rdf:type <class>. _b: <property> ‘datatype’

Pattern 3: <class, object property, datatype>
• <class> is one of the ranges of <property>
• <class> is the domain of a ?property2, which range is

compatible with <datatype>
• <property> has a domain ?domain

If consistent, create two blank resources _:bi such:

 _:bx rdf:type <domain>. _:bx <property> :_by.
_:by rdf:type <class >. _:by <property2> <datatype>.

Pattern 5: <instance, data property, datatype>
• the <instance> type is one of the domains of <property>
• the range of <property> is compatible with <datatype>

If consistent, create a new statement such:

<instance> <property> ‘datatype’

• <property> has a range consistent with the datatype
• <property> has a domain ?domain
• ?domain is the domain of ?property2, which range ?range

is compatible with the type of < instance>
If consistent, create a blank resource _:b such:

_:b1 <property> ‘datatype’. _:b1 rdf:type <domain>
_:b1 <property2> <instance>

Pattern 6: <instance1, object property, instance2>
• <property> has <instance2> as value
• <property> has a domain ?domain
• ?domain is the domain of ?property2, which range ?range

is compatible with the type of < instance>
If consistent, create a blank resource _:b such:

_:b <property> <instance2>. _:b rdfs:type <domain>.
__:b <property2> <instance2>

Pattern 7: <class1, object property, class2>
• <class1> is the domain of <property>
• <class2> is the range of <property>

If consistent, create a blank resource _:bi such:

_:bx rdf:type <class1>. _:by rdf:type <class2>
:bx <property>:by.

Pattern 8: <class, instance1, instance2>
• <class> is the domain of ?property1 and

?property2
• ?property1 has as range the type of <instance1>
• ?property2 has as range the type of <instance2>

 If consistent, create a blank resource _:b1 such:

_:b1 rdf:type <class>. _:b1 <property1> <instance1>.
_:b1<property2> <instance2>

	1 Introduction
	2 Related Work
	2.1 Rules As Code (RaC)
	2.2 Knowledge Extraction for Social Good

	3 Background and Requirements
	4 Proposed Extraction Pipeline
	5 Knowledge Extraction Approaches
	5.1 PAS Extraction Based on Learned Rules
	5.2 Graph Building from PAS

	6 Evaluation Methodology
	6.1 Set up: Data and Metrics
	6.2 Results and Discussion

	7 Conclusions and Future Work
	Acknowledgments
	Ethics / Broader Impact Statement
	References
	Supplementary Material
	Appendix A. Evaluation environment
	Appendix B. Definition of metrics
	𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏=𝒏°𝒆𝒙𝒂𝒄𝒕 𝒎𝒂𝒕𝒄𝒉𝒆𝒔+ 𝒏° 𝒑𝒂𝒓𝒕𝒊𝒂𝒍 𝒎𝒂𝒕𝒄𝒉𝒆𝒔𝒏° 𝒆𝒙𝒕𝒓𝒂𝒄𝒕𝒆𝒅 𝒓𝒖𝒍𝒆𝒔
	𝑹𝒆𝒄𝒂𝒍𝒍=𝒏°𝒆𝒙𝒂𝒄𝒕 𝒎𝒂𝒕𝒄𝒉𝒆𝒔+ 𝒏° 𝒑𝒂𝒓𝒕𝒊𝒂𝒍 𝒎𝒂𝒕𝒄𝒉𝒆𝒔𝒏° 𝑮𝑻 𝒓𝒖𝒍𝒆𝒔
	𝒇𝟏 =𝟐∗ 𝑷∗𝑹𝑷+𝑹
	Appendix C. Semantic patterns - templates
	 <class> is the domain of ?property1 and ?property2
	 ?property1 has as range the type of <instance1>
	 ?property2 has as range the type of <instance2>
	1.1 If consistent, create a blank resource _:b1 such:

