
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 3467–3481
August 1–6, 2021. ©2021 Association for Computational Linguistics

3467

Annotations Matter: Leveraging Multi-task Learning to Parse UD and
SUD

Zeeshan Ali Sayyed
Indiana University

Department of Computer Science
zasayyed@iu.edu

Daniel Dakota
Uppsala University

Department of Linguistics
ddakota@lingfil.uu.se

Abstract

Using multiple treebanks to improve parsing
performance has shown positive results. How-
ever, to what extent similar, yet competing an-
notation decisions play in parser behavior is
unclear. We investigate this within a multi-task
learning (MTL) dependency parser setup on
two parallel treebanks, UD and SUD, which,
while possessing similar annotation schemes,
differ in specific linguistic annotation prefer-
ences. We perform a set of experiments with
different MTL architectural choices, compar-
ing performance across various input embed-
dings. We find languages tend to pattern in
loose typological associations, but generally
the performance within an MTL setting is
lower than single model baseline parsers for
each annotation scheme. The main contribut-
ing factor seems to be the competing syntactic
annotation information shared between tree-
banks in an MTL setting, which is shown in
experiments against differently annotated tree-
banks. This suggests that the impact of how
the signal is encoded for annotations and its in-
fluence on possible negative transfer is more
important than that of the input embeddings in
an MTL setting.

1 Introduction

Multi-task learning (MTL; Caruana, 1997) has
shown promise in various NLP tasks such as se-
mantic dependency parsing (Peng et al., 2017; Her-
shcovich et al., 2018; Kurita and Søgaard, 2019),
machine translation (Dong et al., 2015) and muli-
tiword expression detection (Taslimipoor et al.,
2019).

MTL inherently is designed to share informa-
tion between tasks, which has helped various NLP
components (Collobert and Weston, 2008). One
active research question however is what informa-
tion in specific tasks should be shared, as well was
what indicators can be used to predetermine the

cost-benefit trade-offs of MTL for a given appli-
cation. Findings have shown that label distribu-
tions (Martı́nez Alonso and Plank, 2017), data sizes
(Bollmann et al., 2018) and single task loss curves
(Bingel and Søgaard, 2017) have all been respective
indicators for MTL performance. Different tasks,
data sizes, and settings can all show different rel-
ative performance gains (Adouane and Bernardy,
2020). Thus, it is still an open question under
which circumstance MTL can be used to achieve
max performance boosts over a single task system.

In syntactic parsing, learning a closely related
task (e.g. POS tagging) in a joint paradigm bene-
fits overall performance (Bohnet and Nivre, 2012;
Zhang and Weiss, 2016), and work has also ex-
ploited MTL by leveraging two or more treebanks
against each other (see section 2). We often assume
simply increasing data and the sharing of syntac-
tic information will inherently benefit all parsers,
but this assumes that all syntactic sharing, specif-
ically all annotation sharing, is positive and com-
plementary. However, annotation decisions have
been shown to favor parsing preferences (Rosa,
2015; Rehbein et al., 2017; Kohita et al., 2017).
This means that is is not necessarily clear if shar-
ing annotations benefits all parsers equally. This is
especially true if two annotation schemes choose
drastically different approaches when annotating
specific linguistic phenomena.

We look to examine this issue further by utiliz-
ing a set of treebanks that are annotated on parallel
data, Universal Dependencies (UD; Nivre et al.,
2016) and Surface-Syntactic Universal Dependen-
cies (SUD; Gerdes et al., 2018), to examine how
two competing syntactic annotation schemes be-
have when used in an MTL setup. Using parallel
treebanks also removes the lexical variation and
influences of domain differences that are present
in most MTL treebank setups. Whether this is a
positive or negative in an MTL setup is unclear,



3468

but reduction in domain differences tend to benefit
single model parsers.

We utilize the graph-based Deep Biaffine Parser
of Dozat and Manning (2017) in an MTL archi-
tecture, treating each UD and SUD treebank of a
selected language as a task, and experiment with
sharing different embeddings, layers, and loss func-
tions. Additionally, we look at the how different
embeddings interact with these annotations along
with their role in encoding the signal utilized by the
MTL parsers, and whether results follow any lin-
guistic patterns. Finally, we perform additional ex-
periments with treebanks from SPMRL shared task
(Seddah et al., 2013, 2014) to support our analysis.
We look to investigate the following questions:

1. How will competing syntactic annotations
schemes on parallel treebanks behave in an
MTL parser?

2. What impact do different input embeddings
have on behavior in such a setup?

3. When a treebank is paired with a non-parallel
treebank possessing noticeably different syn-
tactic annotations, do trends hold?

2 Related Work

The use of multiple treebanks has been success-
fully incorporated in parsing strategies. Recent
multilingual multi-treebank work by Schuster et al.
(2019) extended the Biaffine parser by Dozat and
Manning (2017) to incorporate deep contextual-
ized multilingual embeddings in combination with
multiple treebank sources, demonstrating gains for
zero-shot parsing. Smith et al. (2018a) noted us-
ing smaller groups of closely related languages
is preferable to larger datasets of dissimilar ones.
Multiple synthetic treebanks derived from closely
related languages were used to parse Faroese by
Barry et al. (2019), though a single language source
model yielded the best results.

More directly related work is Johansson (2013),
who shares features between two treebanks of the
same language that differ in annotation schemes
by identifying overlapping features. Using a graph-
based parser, he achieved noticeable relative error
reduction in UAS for four language pairs, with
the largest performance gains on the smaller tree-
banks. This was followed by Johansson and Ade-
sam (2020) using a neural transition-based parser
and leveraging a mixture of treebanks, three de-
pendency and two constituency, against a single

constituency treebank in a multi-treebank setup.
They find that in all settings, performance on the
target constituency treebank improves, with the
highest gain coming from using all five as an auxil-
iary treebank. Kankanampati et al. (2020) use the
Multidimensional Easy First approach introduced
by Constant et al. (2016) to parse the Arabic CATiB
(Habash and Roth, 2009) and its converted UD rep-
resentation in a multi-task setup. They note that
both treebanks showed error reduction, but that im-
provements were due to partial dependencies, and
not primarily driven through lexical sharing.

Little direct work exists on extensive empirical
investigations between UD and SUD with parsers.
Recent work by Kulmizev et al. (2020) performed
probing experiments across a set of languages to
extract dependency graphs from BERT (Devlin
et al., 2019) and ELMO (Peters et al., 2018) lan-
guage models, finding that both models prefer UD,
with tree shape directly correlated to preference
strength.

One of the advantages of MTL is the ability to
share information as well as altering objective func-
tions between tasks. Early work examined the im-
pact different loss functions have on downstream
applications (Hall et al., 2011) and how in a hierar-
chy of tasks, sharing of individual layers benefits
other tasks differently, with lower level task sharing
most beneficial (Søgaard and Goldberg, 2016).

Both hard and soft sharing of parameters have
proven successful. Duong et al. (2015) exploited
soft parameter sharing between different cross-
lingual treebanks possessing the same annotation
schemes achieving results on the target language
with only half the needed annotated data. Soft
sharing of parameters allows nuances between lan-
guages of the same treebank when hard sharing all
other parameters (Stymne et al., 2018).

Parameter sharing has proven effective in both
monolingual (Guo et al., 2016) and multilingual
parsing (Ammar et al., 2016; Kitaev et al., 2019).
However, what are the optimal parameters to share,
and where to do so in the architecture, particu-
larly in cross-lingual setups, is not consistent as
shown by de Lhoneux et al. (2018) in extensive
experiments in sharing word and character LSTM
parameters.



3469

What can we do about it ?
PROP AUX PROP VERB ADP PRON PUNCT

obj

aux

nsubj

obl:about

case

punct

comp:obj

subj

comp:aux

punct

udep comp:obj

Figure 1: UD and SUD annotation example from English EWT Treebank

Treebank ar-padt de-gsd el-gdt en-ewt fi-tdt fr-gsd hu-szeged ko-gsd ru-gsd tr-imst vt-vtb zh-gsd
UD Train Non-Proj .0892 .0950 .0596 .0523 .0606 .0399 .2572 .1620 .0623 .1105 .0314 .0233

Dev Non-Proj .0825 .0626 .0521 .0275 .0689 .0407 .3356 .1568 .0587 .1204 .0213 .0014
SUD Train Non-Proj .2331 .2118 .1420 .0948 .1423 .0857 .3384 .1764 .0901 .1444 .0957 .4412

Dev Non-Proj .2090 .1815 .1266 .0679 .1645 .0800 .4082 .1684 .0933 .1478 .1075 .4320
Total Train 6075 13814 1662 12543 12217 14449 910 4400 3850 3664 1400 3997
Total Dev 909 799 403 2002 1364 1476 441 950 579 988 800 500

Table 1: Proportion of Non-Projective Trees in UD and SUD Train and Dev Sets

3 Experimental Setup

3.1 Data

UD have become a de facto standard as a source
for treebanks for dependency parsing. A main anno-
tation choice in UD is the prioritization of content
words as the head. While some functional distinc-
tions are kept, such as those between subjects and
objects, many other are merged, such as comple-
ments and adjuncts. Importantly, function words
are dependents of the content words.

SUD were developed as a counter-balance to
UD with the belief that UD are not syntactically
motivated enough, with a particular linguistically
argued objection to the prioritization of content
words as heads, stemming from the belief that the
distributional context of words should drive head-
edness. While many individual labels are kept,
several are collapsed into a single label (e.g. nsubj
& csubj → subj). The primary result of function
words becoming heads is the inherent reversal of
syntactic relationships of many words.

Fig. 1 is an example of how the SUD conversion
alters an English sentence from its original UD rep-
resentation. One of the more noticeable differences
is that the projective UD tree is now non-projective
in the SUD schema. The main cause, in this exam-
ple, is because the auxiliary verb can is now the
root in SUD, rather than the content word do in UD.
Furthermore, the only word to retain the same head
word between the two sentences is what, while all
others have new heads. We wish to emphasize how-
ever, that not all trees show such stark contrasts,

but simply want to highlight how a simple choice
in annotation can produce distinctly different trees,
and the resultant impact on non-projectivity.

By using UD and SUD, we eliminate one of the
variables in many multi-treebank setups, the differ-
ent distribution of the underlying vocabulary. This
effectively eliminates domain differences between
the treebanks (see section 3.2), as both parsers will
get more similar outputs from the BiLSTM layer,
and identical ones in a joint loss setting.

We Use UD and SUD version 2.7 and select
12 different language from 10 language families.
This was done in order capture sufficient linguis-
tic variation in terms of how UD and SUD may
impact various linguistic phenomena found in ty-
pologically different languages, and subsequently
annotation schemes.1 Table 1 presents statistics on
the treebanks in respect to their variation in train-
ing and dev sizes. Additionally, we also note the
proportion of non-projective trees found in each
annotation scheme.2 All languages show higher
number of non-projective trees in SUD when com-
pared to their UD counterparts, but for some it is
much more substantial. A noticeable example is
Chinese (zh) which has 40% more absolute non-
projective trees in its SUD treebank compared to
its UD counterpart. Noticeable increases can also
be seen in Arabic and German, but most languages
show only moderate differences. Hungarian (hu) is

1We restrict ourselves to treebanks that contained complete
training, dev, and test splits.

2We note that this is not always entail explicit linguistic
non-projectivity, as in many cases punctuation is the source of
non-projectivity which can be viewed as non-linguistic.



3470

Figure 2: Multi-task model architecture.

interesting as it is the only language that shows a
high proportion of non-projective trees in UD and
only a moderate increase for SUD.

3.2 MTL Parsing Architecture
We use the PyTorch (Paszke et al., 2019) implemen-
tation of the Biaffine parser of Dozat and Manning
(2017) provided by Zhang et al. (2020),3 and ex-
tend it to an MTL architecture.4

We modify the base parser by treating parsing
of each annotation scheme as a separate task. Each
task shares the BiLSTM layer that is used to en-
code the concatenation of all input embeddings.
These BiLSTM encodings are then passed through
dimension reducing MLPs to strip away arc and
relationship information information deemed not
relevant. We implement two MLP schemes, one in
which we share them across tasks (shared; Figure
2A) and the other in which each task has its own
MLP layers (unshared; Figure 2B). Considering
the overlap in the annotation schemes, a shared
MLP setting allows us to examine the behavior of
sharing information between the two annotation
scheme when irrelevant information is minimized.
Finally, in order for the model to learn task specific
information, we apply task specific biaffine atten-
tion layers to the MLP outputs to produce scores
for both arcs and labels.

The common practice in MTL is to have sepa-
rate losses for different tasks and to optimize for
each of them separately (alternating loss; Ruder,

3https://github.com/yzhangcs/parser
4Our code is available at https://github.com/

zeeshansayyed/multiparser

2017). This is particularly the case when the dif-
ferent tasks do not share the same input. However,
our dataset contains parallel sentences albeit with
different annotations. It thus then becomes possible
to experiment with using a joint loss for training
both tasks as the parsers receive the same input,
and a joint loss has shown improvements when
joint learning POS tags and dependency parsing
(Li et al., 2018). We do this by optimizing for the
sum of losses of each of the tasks. Since the losses
of both tasks are of nearly the same magnitude, we
do not have to worry about imbalance and a simple
sum suffices.5 We experiment with both types of
losses.

In the alternating loss setting, we randomly
choose a task from the given tasks and then ran-
domly choose a batch of sentences along with their
annotations from that task before calculating the
loss of that batch and backpropagating the errors.
In a given epoch we chose sentences without re-
placement. For joint loss, we randomly choose a
batch of the same sentences from both the tasks,
along with their different annotations. Losses are
calculated based on those annotations and summed
together before backpropagating the errors. We
posit that joint loss should allow for faster conver-
gence as both the tasks affect the parameter updates
of the shared layers simultaneously, thus helping
the optimization process to move towards the goal
more quickly.

The two choices of losses combined with the op-
5When losses in an MTL setting do not have comparable

magnitude, then the joint loss tends to more influenced by the
task with larger loss; thus, producing a learning bias.

https://github.com/yzhangcs/parser
https://github.com/zeeshansayyed/multiparser
https://github.com/zeeshansayyed/multiparser


3471

Figure 3: Heatmap illustrating the mean LAS scores for the four MTL settings across all languages and embedding
types. UD-LAS is represented in the left column and SUD-LAS in the right column for each embedding input.

tional sharing of MLP layers gives rise to four dif-
ferent experimental settings: alternating-unshared,
alternating-shared, joint-unshared, and joint-shared.
In addition, we experiment with internally ran-
domly initialized word and POS6 embeddings, ex-
ternal embeddings (FastText; Bojanowski et al.
(2017)) and BERT (Devlin et al., 2019)), and their
concatenations as inputs to the BiLSTM layers.
All results are reported on the dev sets using the
CoNLL 2018 Shared Task Scorer (Zeman et al.,
2018).

4 Results

The overall performances of the four experimen-
tal settings, namely alternating vs joint loss and
shared vs unshared MLP layers, are very close to
each other. The convergence statistics for joint and
alternating loss settings are reported in Table 2.7 It
can be noted that despite taking a greater number of
epochs to converge when compared to alternating
loss, joint loss converges faster in terms of time be-
cause it performs the forward propagation through
the shared layers only once for both tasks, whereas
alternating loss has to perform it separately for each
task.

As we are more interested in the MTL parser

6We use gold POS tags.
7All experiments were performed on Nvidia V100 GPUs.

Tables 2 and 3 analyses do not include BERT experiments.

behavior across experimental settings, we report
the mean LAS score over the four MTL settings in
all our experiments to capture the general trends of
the MTL parser.

Parameter # Epochs Time (seconds)
Joint Loss 342 2 774

Alternating Loss 297 3 907

Table 2: Convergence statistics for Joint and Alternat-
ing Loss

To analyze the impact of different embedding
types on the MTL parsing setup, we change the
specificity of information by using different em-
bedding types with the MTL parser as discussed in
section 3.2, results of which are presented in Fig
3. We see that adding more information yields in
higher LAS across languages (moving from left to
right on the heatmap) with the concatenation of all
embeddings (rightmost columns) performing the
best.

However, given that we are more interested in
examining whether the parallel UD-SUD treebanks
can benefit from an MTL setup, we choose instead
to focus on how the MTL parsers compare to the
single UD and SUD baseline parsers across the dif-
ferent embedding choices. Fig. 4 shows a heatmap
depicting the difference of the mean LAS of all four
settings with respect to the corresponding single



3472

Figure 4: Heatmap illustrating the performance difference between MTL parsers compared to corresponding single
task baseline parser. Each block represents the difference between the mean LAS score of four MTL settings and
the respective single task baseline LAS score.

baseline parser, for each embedding input.8

The mean drop in LAS scores for MTL set-
tings when compared to the baselines across all
languages and all the different feature embeddings
(432 runs) are reported in Table 3, with lower num-
bers indicating better performance. No particular
setting shows a significant improvement over the
other. Keeping this in consideration, we still see
that joint loss performs slightly better than alternat-
ing loss. Sharing of MLP layers seems to help a
little compared to the setting where we have task
specific layers. As mentioned in section 3.2, the
role of dimension reducing MLPs is to remove all
the information that is not necessary for perform-
ing the task at hand. This would indicate that the
two tasks remove similar unnecessary information,
thereby sharing the signal necessary for making
parsing decisions.

One of the most striking observations is that ran-
domly initialized word embeddings (seen in the
far left two columns) are noticeably lighter across
all languages. This stands in stark contrast to the
subsequent FastText (FT), word+char and FT+char

8We also experimented with task-specific fine-tuning fol-
lowing Liu et al. (2019) on MTL parsers. While it did lead to
improvements, the overall distribution across all the different
settings and languages was not considerably different. Also
see Appendix for additional heatmaps contrasting shared vs
unshared and alternating vs joint loss settings. The overall
pattern remains the same.

Parameter Mean Drop (LAS)
Joint Loss 0.70

Alternating Loss 0.75
Shared MLP 0.69

Unshared MLP 0.76

Table 3: Mean drop in LAS compared to baseline

embeddings. Hungarian shows particularly notice-
able improvements, though it may be due to its size.
However, given that we also see some moderate
improvements for English, Greek and Russian, the
size of the treebanks is not the only contributing
factor.

Once inputs include word embeddings initialized
with FT embeddings or randomized char embed-
dings, we see some interesting trends. Finnish,
Hungarian, Korean, Turkish, and Russian show
consistent degradation in performance with any in-
clusion of character-based embeddings. Some lan-
guages show more stable results, regardless of the
input embeddings, namely Greek, English, French,
and Chinese. Vietnamese clearly performs worse
when using FT embeeddings to initialize the word
embeddings, but otherwise is rather stable in other
settings. However, even with BERT (B) embed-
dings, we do not see any noticeable improvement
over the baselines.



3473

When we begin incorporating POS tag embed-
dings, we see that drops relative to the baseline
for these languages become less pronounced, but
few languages ultimately show improvements, with
Hungarian being the noticeable exception. The pat-
tern in the reduction in degradation of performance
when including POS tag embeddings continues
across all settings. The exception being Finnish,
which still shows large drops in almost all settings,
but show slightly reduced drops when including
BERT embeddings.

5 Discussion

5.1 UD vs SUD

We see, in general, a systematic decrease in perfor-
mance when using parallel UD and SUD treebanks
in an MTL setup across many languages. When
looking for linguistic behaviors, we can clearly see
that agglutinative languages (Hungarian, Finnish
Turkish, and Korean) all suffer severe performance
drops when using character-based embeddings, but
the concatenation of POS embeddings helps mit-
igate the degradation. The absolute differences
of Hungarian and Finnish are noticeably different
compared to one another. This may be somewhat
unexpected, given they are in the same language
family. However, the modern forms are quite dif-
ferent and treebank sizes may play a role, as input
embeddings pattern similarly overall between the
two.

The morphological complexity of other lan-
guages in relation to their behavior is not neces-
sarily a good predictor of behavior. However, if
we view the other eight remaining languages on
a continuum of fusional and analytical properties,
we can see some general patterns.

Russian, a fusional language, patterns with the
agglutinative languages in its behavior with charac-
ter embeddings, but is also one of the more morpho-
logically rich languages (MRL) of the non aggluti-
native languages. The other more fusional MRLs,
German and Greek, also do not see as much volatil-
ity, although German tends to be worse respective
to the baseline, while Greek shows some more pos-
itive results, but this could again be due to treebank
sizes. English and French are more analytical than
the other fusional languages and contain far less
morphology. While both show rather consistent
minimal degradation regardless of the input embed-
ding, English occasionally shows some improve-
ment, while French virtually none.

Arabic and Vietnamese, however, are some-
what odd cases. Arabic is both fusional and an
MRL, whereas Vietnamese is much more analyt-
ical. Vietnamese, though, patterns more with the
other MRLs, while Arabic patterns more like the
analytical language, particularly with its less over-
all performance degradation compared to baselines
across settings. Vietnamese shows one of the larger
performance drops relative to the baseline com-
pared to the other eight languages when using FT
embeddings in the input, but this is diminished
when combined with additional embeddings.

Chinese, an extremely analytical language,
presents an additionally interesting case. The LAS
for SUD is usually on average 10% absolute lower
than its UD counterpart, which can be seen in
Fig. 3. This probably is a direct result of the
SUD treebank having 40% absolute more non-
projective trees. However, this massive disparity
in non-projectivity has seemingly not resulted in
additional performance degradation in the MTL
setup (as seen in Fig. 4), suggesting that sharing
between treebanks that show large differences in
non-projectivity is not necessarily detrimental.

Given the general behavior across settings, per-
formance degradation can most likely be attributed
to negative transfer derived from the different an-
notation preferences UD and SUD encode, which
is not seen in the single model baselines. When
different embeddings are used, the negative transfer
is either accentuated depending upon the language,
as seen with character embeddings, or some em-
beddings seem to help mitigate the negative trans-
fer, as with POS embeddings. Interestingly, al-
though character-based embeddings show signifi-
cant improvements in the single baseline models
compared to word embeddings, the signals they
encode seem to be detrimental in an MTL setting,
as performances drops relative to their respective
single model baselines. This would seemingly sug-
gest that in an MTL setup, word and POS embed-
dings are encoding more beneficial signals that help
both annotation schemes, reducing possible nega-
tive transfer from each treebank, whereas character
embeddings are maximally beneficial when used
to train a single model. This is in line with recent
work showing that the linguistic information POS
tags convey, when highly accurate or gold, still
have value for specific use cases, and are beneficial
in certain dependency parsing architectures or as
auxiliary tasks (Anderson and Gómez-Rodrı́guez,



3474

Arabic German Hungarian

Exp. MLP
Char + FastText Char + FastText Char + FastText

UD SUD UD SUD UD SUD
UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

baseline 86.59 82.25 86.50 81.44 89.18 85.11 87.81 84.98 84.73 79.97 84.03 79.02
UD-SUD unshared 86.33 81.93 86.34 81.33 87.95 84.06 86.74 83.70 84.28 79.42 83.53 78.56

shared 86.33 81.97 86.22 81.33 87.83 84.08 86.76 83.73 84.50 79.72 85.83 79.05
SPMRL unshared 87.78 83.47 87.52 82.62 90.16 86.44 89.81 87.18 87.04 82.23 86.99 82.73

shared 87.50 83.24 87.38 82.46 90.01 86.39 89.36 86.50 72.16 82.76 87.91 83.32

Table 4: Results for MTL experiments with SPMRL dataset. All MTL experiments are trained with the alternating
batch loss setting to allow for comparison with experiments involving SPMRL. We cannot use joint loss when
training SPMRL with either UD or SUD as they are not parallel treebanks. The UD-SUD experiment shows
results for UD and SUD when they are trained together in an MTL setting, whereas the SPMRL experiment shows
results for UD and SUD when each of them is separately trained along with the corresponding SPMRL dataset
instead of each other (UD-SPMRL & SUD-SPMRL).

2020; Zhou et al., 2020).
One specific often overlooked annotation issue

that helps convey this point is punctuation.9 In
both annotation schemes, punctuation attachment
is rather straight forward. However, as seen in Fig
1, it is one of the competing annotation decisions.
In both annotation schemes, punctuation is sim-
ply attached directly to the root. However, in UD
the root is a content word, while in SUD the root
is a function word. Thus, while straight forward
form an annotation perspective for both schemes,
an MTL system is now learning both attachment
possibilities simultaneously and preferences and
errors regarding both are now being encoded in
the global attachment decisions. When looking at
specific attachment errors, across almost all exam-
ined experiments, there were substantial increases
in punctuation attachment errors. This can be seen
as a direct result of switching the content versus
function oriented headedness and creates system-
atic, competing attachment decisions for an MTL
parser exposed to both attachment possibilities.

5.2 UD and SUD vs SPMRL

To further explore whether the competing annota-
tion decisions between UD and SUD are indeed
contributing to the noticeable performance degra-
dation, we choose to compare a subset of languages
in an MTL setup but with a differently annotated
treebank. Using a different treebank runs the risk

9The CoNLL 2018 evaluation scores punctuation. We are
not, however, making a claim as to whether punctuation is or is
not a linguistic issue, rather simply highlight it is an annotation
attachment issue that illustrates different possible attachment
distributions between the annotation schemes. From a linguis-
tic perspective, punctuation can be argued to be irrelevant,
from a parsing perspective, unless removed, it still influences
attachment decisions.

of adding additional domain issues into our experi-
ments; however, character-level embeddings have
proven effective at handling OOV words (Balles-
teros et al., 2015; Vania et al., 2018), thus domain
differences should be reduced.

We perform experiments where we use the Ara-
bic (Habash and Roth, 2009), German (Brants et al.,
2004), and Hungarian (Vincze et al., 2010) tree-
banks from the SPMRL Shared task (Seddah et al.,
2013, 2014), each of which were annotated with
language specific linguistic phenomena in mind.10

To mitigate size difference issues as the smaller
treebank tends to benefit more in a multi-treebank
setup (Johansson, 2013), we randomly select a train
and dev set from the SPMRL data respectively to
match the corresponding size of the UD-SUD tree-
banks.11

Results for the SPMRL experiments using
char+FT embeddings are presented in Table 6.12

All results in UD-SPRML and SUD-SPMRL MTL
experiments show improved performance over the
baseline. Importantly, this includes settings in
which the UD-SUD MTL experiments show notice-
able decreases relative to the baseline, and specifi-
cally we see that character-based embeddings are
able to yield benefit in an MTL setup relative to the
baseline.

These results suggests that the annotation
10We refer to the reader to the cited papers for more detailed

information on the individual treebank annotations.
11We note that the both German and Hungarian UD-SUD

Treebanks are derived from a small section of the TiGer and
Szeged Treebanks respectively, which are also the treebanks
for the SPMRL data, thus there is a possibility of sentence
overlap in the random selection. The UD-SUD Arabic tree-
bank is derived from the Prague Arabic Dependency Treebank
(Hajič et al., 2004) but is also annotated on newswire.

12Results using word+POS embeddings are provided in the
Appendix.



3475

schemes are indeed contributing to why UD and
SUD make poor tasks for each other in an MTL
setup, and not strictly the embeddings themselves.
Rather, the information conveyed by each individ-
ual annotation scheme is important in terms of the
possible gains that MTL parsers can make over
the baseline parsers. It may simply be that how
the annotations are embedded into the architecture
and shared are more influential in what signals are
encoded in the network than the embeddings them-
selves in terms of how they benefit treebanks in an
MTL setup. If the annotations themselves encode
information that results in negative transfer in the
network due to their competing nature, an MTL
setup cannot benefit as effectively.

6 Conclusion

We implemented an MTL architecture leveraging
parsing UD and SUD as separate tasks to exam-
ine how their syntactic annotation overlaps and
differences influence parser behavior. We find
that models from an MTL setup perform generally
worse than their single model baselines, regardless
of input embeddings. Interestingly, POS embed-
dings seemingly help mitigate some of the perfor-
mance loss caused from negative transfer as the
POS information may help resolve possible linguis-
tic ambiguities with which character embeddings
struggle (Vania et al., 2018; Smith et al., 2018b).
This stands in contrast to much multi-treebanking
research which has yielded positive performance
gains when using multiple treebanks, particularly
if they are of the same language, though this is not
always the case (Barry et al., 2019).

We then further investigated the possible influ-
ence annotations have in an MTL setup by train-
ing a subset of SPMRL treebanks against their
UD-SUD counterparts, finding increases in per-
formance across the chosen languages and input
embeddings not seen when pitting UD and SUD
together. We argue that this indicates that in an
MTL setup, simply adding another treebank is not
inherently going to yield better performance, rather
the information that each additional treebank can
learn from the other, specifically from their anno-
tation schemes, and how this is then subsequently
encoded in the network is a more pivotal factor in
yielding performance gains.

We conclude that the syntactic annotation
schemes are pertinent when determining perfor-
mance gains in an MTL parsing setup, as extensive

competing annotations provides too many mixed
signals in an MTL architecture, hampering the abil-
ity of both parsers to benefit from shared informa-
tion, yielding worse results.

Future research will include incorporating more
treebanks with different annotation schemes to ex-
amine in which directions and annotations parsers
will optimize towards in MTL. We also wish to
further explore how constituency parsing and de-
pendency parsing can be leveraged against each
other in similar MTL setups.

Acknowledgements

The authors would like to thank Sandra Kübler
and members of the Uppsala Parsing Group: Artur
Kulmizev, Joakim Nivre, and Sara Stymne for their
feedback, as well as the anonymous reviewers for
their comments. This research was supported in
part by Lilly Endowment, Inc., through its support
for the Indiana University Pervasive Technology
Institute. The second author is supported by the
Swedish strategic research programme eSSENCE.

References
Wafia Adouane and Jean-Philippe Bernardy. 2020.

When is multi-task learning beneficial for low-
resource noisy code-switched user-generated Alge-
rian texts? In Proceedings of the The 4th Workshop
on Computational Approaches to Code Switching,
pages 17–25, Marseille, France. European Language
Resources Association.

Waleed Ammar, George Mulcaire, Miguel Ballesteros,
Chris Dyer, and Noah A. Smith. 2016. Many lan-
guages, one parser. Transactions of the Association
for Computational Linguistics, 4:431–444.

Mark Anderson and Carlos Gómez-Rodrı́guez. 2020.
On the frailty of universal POS tags for neural UD
parsers. In Proceedings of the 24th Conference on
Computational Natural Language Learning, pages
69–96, Online.

Miguel Ballesteros, Chris Dyer, and Noah A. Smith.
2015. Improved transition-based parsing by model-
ing characters instead of words with LSTMs. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 349–
359, Lisbon, Portugal.

James Barry, Joachim Wagner, and Jennifer Foster.
2019. Cross-lingual parsing with polyglot training
and multi-treebank learning: A Faroese case study.
In Proceedings of the 2nd Workshop on Deep Learn-
ing Approaches for Low-Resource NLP (DeepLo
2019), pages 163–174, Hong Kong, China.

https://www.aclweb.org/anthology/2020.calcs-1.3
https://www.aclweb.org/anthology/2020.calcs-1.3
https://www.aclweb.org/anthology/2020.calcs-1.3
https://www.aclweb.org/anthology/Q16-1031
https://www.aclweb.org/anthology/Q16-1031
https://www.aclweb.org/anthology/2020.conll-1.6
https://www.aclweb.org/anthology/2020.conll-1.6
https://www.aclweb.org/anthology/D15-1041
https://www.aclweb.org/anthology/D15-1041
https://www.aclweb.org/anthology/D19-6118
https://www.aclweb.org/anthology/D19-6118


3476

Joachim Bingel and Anders Søgaard. 2017. Identify-
ing beneficial task relations for multi-task learning
in deep neural networks. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, pages 164–169,
Valencia, Spain.

Bernd Bohnet and Joakim Nivre. 2012. A transition-
based system for joint part-of-speech tagging and
labeled non-projective dependency parsing. In Pro-
ceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning, pages 1455–
1465, Jeju Island, Korea.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching Word Vectors with
Subword Information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Marcel Bollmann, Anders Søgaard, and Joachim Bin-
gel. 2018. Multi-task learning for historical text
normalization: Size matters. In Proceedings of the
Workshop on Deep Learning Approaches for Low-
Resource NLP, pages 19–24, Melbourne. Associa-
tion for Computational Linguistics.

Sabine Brants, Stefanie Dipper, Peter Eisenberg, Silvia
Hansen, Esther König, Wolfgang Lezius, Christian
Rohrer, George Smith, and Hans. Uszkoreit. 2004.
TIGER: Linguistic Interpretation of a German Cor-
pus. Journal of Language and Computation, 2004
(2):597–620.

Rich Caruana. 1997. Multitask learning. Machine
Learning, 28(1):41–75.

Ronan Collobert and Jason Weston. 2008. A uni-
fied architecture for natural language processing:
Deep neural networks with multitask learning. In
Proceedings of the 25th International Conference
on Machine Learning, ICML ’08, pages 160–167,
Helsinki, Finland.

Matthieu Constant, Joseph Le Roux, and Nadi Tomeh.
2016. Deep lexical segmentation and syntactic pars-
ing in the easy-first dependency framework. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1095–1101, San Diego, California.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 4171–4186, Minneapolis, Min-
nesota.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-task learning for mul-
tiple language translation. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint

Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 1723–1732, Beijing,
China.

Timothy Dozat and Christopher Manning. 2017. Deep
biaffine attention for neural dependency parsing. In
5h International Conference on Learning Represen-
tations (ICLR 2017), Toulon, France. Conference
Track Proceedings.

Long Duong, Trevor Cohn, Steven Bird, and Paul Cook.
2015. Low resource dependency parsing: Cross-
lingual parameter sharing in a neural network parser.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 2: Short Papers), pages
845–850, Beijing, China.

Kim Gerdes, Bruno Guillaume, Sylvain Kahane, and
Guy Perrier. 2018. SUD or surface-syntactic Uni-
versal Dependencies: An annotation scheme near-
isomorphic to UD. In Proceedings of the Second
Workshop on Universal Dependencies (UDW 2018),
pages 66–74, Brussels, Belgium.

Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting
Liu. 2016. A universal framework for inductive
transfer parsing across multi-typed treebanks. In
Proceedings of COLING 2016, the 26th Interna-
tional Conference on Computational Linguistics:
Technical Papers, pages 12–22, Osaka, Japan.

Nizar Habash and Ryan Roth. 2009. CATiB: The
Columbia Arabic treebank. In Proceedings of the
ACL-IJCNLP 2009 Conference Short Papers, pages
221–224, Suntec, Singapore. Association for Com-
putational Linguistics.

Jan Hajič, Otakar Smrž, Petr Zemánek, Jan Šnaidauf,
and Emanuel Beška. 2004. Prague Arabic Depen-
dency Treebank: Development in Data and Tools.
In Proceedings of the NEMLAR International Con-
ference on Arabic Language Resources and Tools,
pages 110–117, Cairo, Egypt.

Keith Hall, Ryan McDonald, Jason Katz-Brown, and
Michael Ringgaard. 2011. Training dependency
parsers by jointly optimizing multiple objectives. In
Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing, pages
1489–1499, Edinburgh, Scotland, UK.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2018. Multitask parsing across semantic representa-
tions. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 373–385, Melbourne,
Australia.

Richard Johansson. 2013. Training parsers on incom-
patible treebanks. In Proceedings of the 2013 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 127–137, Atlanta, Geor-
gia.

https://www.aclweb.org/anthology/E17-2026
https://www.aclweb.org/anthology/E17-2026
https://www.aclweb.org/anthology/E17-2026
https://www.aclweb.org/anthology/D12-1133
https://www.aclweb.org/anthology/D12-1133
https://www.aclweb.org/anthology/D12-1133
https://www.aclweb.org/anthology/W18-3403
https://www.aclweb.org/anthology/W18-3403
https://www.aclweb.org/anthology/N16-1127
https://www.aclweb.org/anthology/N16-1127
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/P15-1166
https://www.aclweb.org/anthology/P15-1166
https://www.aclweb.org/anthology/P15-2139
https://www.aclweb.org/anthology/P15-2139
https://www.aclweb.org/anthology/W18-6008
https://www.aclweb.org/anthology/W18-6008
https://www.aclweb.org/anthology/W18-6008
https://www.aclweb.org/anthology/C16-1002
https://www.aclweb.org/anthology/C16-1002
https://www.aclweb.org/anthology/P09-2056
https://www.aclweb.org/anthology/P09-2056
https://www.aclweb.org/anthology/D11-1138
https://www.aclweb.org/anthology/D11-1138
https://www.aclweb.org/anthology/P18-1035
https://www.aclweb.org/anthology/P18-1035
https://www.aclweb.org/anthology/N13-1013
https://www.aclweb.org/anthology/N13-1013


3477

Richard Johansson and Yvonne Adesam. 2020. Train-
ing a Swedish constituency parser on six incompati-
ble treebanks. In Proceedings of the 12th Language
Resources and Evaluation Conference, pages 5219–
5224, Marseille, France.

Yash Kankanampati, Joseph Le Roux, Nadi Tomeh,
Dima Taji, and Nizar Habash. 2020. Multitask easy-
first dependency parsing: Exploiting complementar-
ities of different dependency representations. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 2497–2508,
Barcelona, Spain (Online).

Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Multi-
lingual constituency parsing with self-attention and
pre-training. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3499–3505, Florence, Italy.

Ryosuke Kohita, Hiroshi Noji, and Yuji Matsumoto.
2017. Multilingual back-and-forth conversion be-
tween content and function head for easy depen-
dency parsing. In Proceedings of the 15th Confer-
ence of the European Chapter of the Association for
Computational Linguistics: Volume 2, Short Papers,
pages 1–7, Valencia, Spain.

Artur Kulmizev, Vinit Ravishankar, Mostafa Abdou,
and Joakim Nivre. 2020. Do neural language mod-
els show preferences for syntactic formalisms? In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4077–
4091, Online.

Shuhei Kurita and Anders Søgaard. 2019. Multi-task
semantic dependency parsing with policy gradient
for learning easy-first strategies. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 2420–2430, Florence,
Italy. Association for Computational Linguistics.

Miryam de Lhoneux, Johannes Bjerva, Isabelle Augen-
stein, and Anders Søgaard. 2018. Parameter sharing
between dependency parsers for related languages.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4992–4997, Brussels, Belgium.

Zuchao Li, Shexia He, Zhuosheng Zhang, and Hai
Zhao. 2018. Joint learning of POS and dependencies
for multilingual Universal Dependency parsing. In
Proceedings of the CoNLL 2018 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal Depen-
dencies, pages 65–73, Brussels, Belgium.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019. Multi-task deep neural networks
for natural language understanding. In Proceedings
of the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
4487–4496. Association for Computational Linguis-
tics.

Héctor Martı́nez Alonso and Barbara Plank. 2017.
When is multitask learning effective? semantic se-
quence prediction under varying data conditions. In
Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 1, Long Papers, pages 44–53, Va-
lencia, Spain.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC’16), pages 1659–1666, Portorož,
Slovenia. European Language Resources Associa-
tion (ELRA).

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative
style, high-performance deep learning library. arXiv
preprint arXiv:1912.01703.

Hao Peng, Sam Thomson, and Noah A. Smith. 2017.
Deep multitask learning for semantic dependency
parsing. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2037–2048, Vancouver, Canada. Association
for Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237, New Orleans, Louisiana.

Ines Rehbein, Julius Steen, Bich-Ngoc Do, and Anette
Frank. 2017. Universal Dependencies are hard to
parse – or are they? In Proceedings of the Fourth In-
ternational Conference on Dependency Linguistics
(Depling 2017), pages 218–228, Pisa,Italy.

Rudolf Rosa. 2015. Multi-source cross-lingual delexi-
calized parser transfer: Prague or Stanford? In Pro-
ceedings of the Third International Conference on
Dependency Linguistics (Depling 2015), pages 281–
290, Uppsala, Sweden.

Sebastian Ruder. 2017. An overview of multi-task
learning in deep neural networks. arXiv preprint
arXiv:1706.05098.

Tal Schuster, Ori Ram, Regina Barzilay, and Amir
Globerson. 2019. Cross-lingual alignment of con-
textual word embeddings, with applications to zero-
shot dependency parsing. In Proceedings of the
2019 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, pages 1599–1613,
Minneapolis, Minnesota.

https://www.aclweb.org/anthology/2020.lrec-1.642
https://www.aclweb.org/anthology/2020.lrec-1.642
https://www.aclweb.org/anthology/2020.lrec-1.642
https://www.aclweb.org/anthology/2020.coling-main.225
https://www.aclweb.org/anthology/2020.coling-main.225
https://www.aclweb.org/anthology/2020.coling-main.225
https://www.aclweb.org/anthology/P19-1340
https://www.aclweb.org/anthology/P19-1340
https://www.aclweb.org/anthology/P19-1340
https://www.aclweb.org/anthology/E17-2001
https://www.aclweb.org/anthology/E17-2001
https://www.aclweb.org/anthology/E17-2001
https://www.aclweb.org/anthology/2020.acl-main.375
https://www.aclweb.org/anthology/2020.acl-main.375
https://www.aclweb.org/anthology/P19-1232
https://www.aclweb.org/anthology/P19-1232
https://www.aclweb.org/anthology/P19-1232
https://www.aclweb.org/anthology/D18-1543
https://www.aclweb.org/anthology/D18-1543
https://doi.org/10.18653/v1/K18-2006
https://doi.org/10.18653/v1/K18-2006
https://doi.org/10.18653/v1/p19-1441
https://doi.org/10.18653/v1/p19-1441
https://www.aclweb.org/anthology/E17-1005
https://www.aclweb.org/anthology/E17-1005
https://www.aclweb.org/anthology/L16-1262
https://www.aclweb.org/anthology/L16-1262
https://www.aclweb.org/anthology/P17-1186
https://www.aclweb.org/anthology/P17-1186
https://www.aclweb.org/anthology/N18-1202
https://www.aclweb.org/anthology/N18-1202
https://www.aclweb.org/anthology/W17-6525
https://www.aclweb.org/anthology/W17-6525
https://www.aclweb.org/anthology/W15-2131
https://www.aclweb.org/anthology/W15-2131
https://www.aclweb.org/anthology/N19-1162
https://www.aclweb.org/anthology/N19-1162
https://www.aclweb.org/anthology/N19-1162


3478

Djamé Seddah, Sandra Kübler, and Reut Tsarfaty. 2014.
Introducing the SPMRL 2014 Shared Task on Pars-
ing Morphologically-rich Languages. In Proceed-
ings of the First Joint Workshop on Statistical Pars-
ing of Morphologically Rich Languages and Syn-
tactic Analysis of Non-Canonical Languages, pages
103–109, Dublin, Ireland. Dublin City University.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie
Candito, Jinho D. Choi, Richárd Farkas, Jen-
nifer Foster, Iakes Goenaga, Koldo Gojenola Gal-
letebeitia, Yoav Goldberg, Spence Green, Nizar
Habash, Marco Kuhlmann, Wolfgang Maier, Joakim
Nivre, Adam Przepiórkowski, Ryan Roth, Wolfgang
Seeker, Yannick Versley, Veronika Vincze, Marcin
Woliński, Alina Wróblewska, and Eric Villemonte
de la Clergerie. 2013. Overview of the SPMRL
2013 Shared Task: A Cross-Framework Evaluation
of Parsing Morphologically Rich Languages. In Pro-
ceedings of the Fourth Workshop on Statistical Pars-
ing of Morphologically-Rich Languages, pages 146–
182, Seattle, Washington, USA.

Aaron Smith, Bernd Bohnet, Miryam de Lhoneux,
Joakim Nivre, Yan Shao, and Sara Stymne. 2018a.
82 treebanks, 34 models: Universal Dependency
parsing with multi-treebank models. In Proceedings
of the CoNLL 2018 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies, pages
113–123, Brussels, Belgium.

Aaron Smith, Miryam de Lhoneux, Sara Stymne, and
Joakim Nivre. 2018b. An investigation of the inter-
actions between pre-trained word embeddings, char-
acter models and POS tags in dependency parsing.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2711–2720, Brussels, Belgium.

Anders Søgaard and Yoav Goldberg. 2016. Deep multi-
task learning with low level tasks supervised at lower
layers. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics,
pages 231–235, Berlin, Germany.

Sara Stymne, Miryam de Lhoneux, Aaron Smith, and
Joakim Nivre. 2018. Parser training with heteroge-
neous treebanks. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 619–625,
Melbourne, Australia.

Shiva Taslimipoor, Omid Rohanian, and Le An Ha.
2019. Cross-lingual transfer learning and multitask
learning for capturing multiword expressions. In
Proceedings of the Joint Workshop on Multiword
Expressions and WordNet (MWE-WN 2019), pages
155–161, Florence, Italy.

Clara Vania, Andreas Grivas, and Adam Lopez. 2018.
What do character-level models learn about morphol-
ogy? the case of dependency parsing. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 2573–2583,
Brussels, Belgium.

Veronika Vincze, Dóra Szauter, Attila Almási, György
Móra, Zoltán Alexin, and János Csirik. 2010.
Hungarian dependency treebank. In Proceedings
of the Seventh International Conference on Lan-
guage Resources and Evaluation (LREC’10), Val-
letta, Malta. European Language Resources Associ-
ation (ELRA).

Daniel Zeman, Jan Hajič, Martin Popel, Martin Pot-
thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. CoNLL 2018 shared task: Mul-
tilingual parsing from raw text to Universal Depen-
dencies. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 1–21, Brussels, Belgium.

Yu Zhang, Zhenghua Li, and Min Zhang. 2020. Effi-
cient second-order TreeCRF for neural dependency
parsing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3295–3305, Online. Association for Computa-
tional Linguistics.

Yuan Zhang and David Weiss. 2016. Stack-
propagation: Improved representation learning for
syntax. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1557–1566, Berlin, Germany.

Houquan Zhou, Yu Zhang, Zhenghua Li, and Min
Zhang. 2020. Is pos tagging necessary or even help-
ful for neural dependency parsing? In Natural Lan-
guage Processing and Chinese Computing, pages
179–191, Cham. Springer International Publishing.

https://www.aclweb.org/anthology/K18-2011
https://www.aclweb.org/anthology/K18-2011
https://www.aclweb.org/anthology/D18-1291
https://www.aclweb.org/anthology/D18-1291
https://www.aclweb.org/anthology/D18-1291
https://www.aclweb.org/anthology/P16-2038
https://www.aclweb.org/anthology/P16-2038
https://www.aclweb.org/anthology/P16-2038
https://www.aclweb.org/anthology/P18-2098
https://www.aclweb.org/anthology/P18-2098
https://www.aclweb.org/anthology/W19-5119
https://www.aclweb.org/anthology/W19-5119
https://www.aclweb.org/anthology/D18-1278
https://www.aclweb.org/anthology/D18-1278
https://www.aclweb.org/anthology/K18-2001
https://www.aclweb.org/anthology/K18-2001
https://www.aclweb.org/anthology/K18-2001
https://www.aclweb.org/anthology/2020.acl-main.302
https://www.aclweb.org/anthology/2020.acl-main.302
https://www.aclweb.org/anthology/2020.acl-main.302
https://www.aclweb.org/anthology/P16-1147
https://www.aclweb.org/anthology/P16-1147
https://www.aclweb.org/anthology/P16-1147


3479

Appendix

A Heatmaps for Shared and Unshared MLP layer settings

Unshared UAS Shared UAS

Figure 5: Heatmaps depicting the shared and unshared MLP layers settings. Each block represents the mean UAS
score across alternating and joint loss setting for the corresponding embedding and MLP setting.

Unshared LAS Shared LAS

Figure 6: Heatmaps depicting the shared and unshared MLP layers settings. Each block represents the mean LAS
score across alternating and joint loss setting for the corresponding embedding and MLP setting.



3480

B Heatmaps for Alternating vs Joint Loss settings

Alternating Loss (UAS) Joint Loss (UAS)

Figure 7: Heatmaps depicting the when joint loss or alternating loss settings. Each block represents the mean UAS
score across shared and unshared MLP settings for the corresponding embedding and loss setting.

Unshared LAS Shared LAS

Figure 8: Heatmaps depicting the when joint loss or alternating loss settings. Each block represents the mean LAS
score across shared and unshared MLP settings for the corresponding embedding and loss setting.



3481

C Training Hyperparameters

Hyperparameters Value
Embedding Dimensions 300
Character Embedding Dimension 50
POS Tag Embedding Dimension 100
Bert Mapping Dimenstion 100
Number of BERT Layers Used 4
Embed Dropout 0.33
Number of LSTM Layers 400
LSTM Hidden Layer Dimension 400
LSTM Dropout 0.33
MLP (Arc) Output Dimension 500
MLP (Rel) Output Dimension 100
MLP Dropout 0.33
Optimizer Adam
Patience 50
Batch Size 20000 tokens
Learning Rate 2e-3
Eps 1e-12
Betas (.9, .9)
Clip 5.0
Decay 0.75
Decay Steps 5000

Table 5: Hyperparameter settings

D UD-SUD vs SPRML MTL Results Table

Arabic German Hungarian

Exp. MLP
Word + POS Char + FastText Word + POS Char + FastText Word + POS Char + FastText

UD SUD UD SUD UD SUD UD SUD UD SUD UD SUD
UAS LAS UAS LAS UA LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

baseline 86.66 83.30 86.87 82.40 86.59 82.25 86.50 81.44 88.50 84.22 86.64 83.63 89.18 85.11 87.81 84.98 65.20 52.26 65.80 54.35 84.73 79.97 84.03 79.44
UD-SUD unshared 86.79 83.49 86.79 82.39 86.33 81.93 86.34 81.33 87.15 82.84 86.23 83.13 87.95 84.06 86.74 83.70 69.05 57.02 69.16 58.92 84.28 79.42 83.53 78.56

shared 87.05 83.70 87.17 82.94 86.33 81.97 86.22 81.33 88.68 84.43 86.97 84.03 87.83 84.08 86.76 83.73 68.58 57.16 69.15 59.14 84.50 79.72 85.83 79.05
SPMRL unshared 87.52 84.13 87.69 83.15 87.78 83.47 87.52 82.62 89.25 85.40 88.93 86.28 90.16 86.44 89.81 87.18 71.86 60.95 73.68 63.37 87.04 82.23 86.99 82.73

shared 87.62 84.39 87.67 83.15 87.50 83.24 87.38 82.46 89.27 85.34 88.91 86.09 90.01 86.39 89.36 86.50 72.16 61.64 73.42 63.67 87.63 82.76 87.91 83.32

Table 6: Results for MTL experiments with SPMRL dataset. All MTL experiments are trained with the alternating
batch loss setting to allow for comparison with experiments involving SPMRL. We cannot use joint loss when
training SPMRL with either UD or SUD as they are not parallel treebanks. The UD-SUD experiment shows
results for UD and SUD when they are trained together in an MTL setting, whereas the SPMRL experiment shows
results for UD and SUD when each of them is separately trained along with the corresponding SPMRL dataset
instead of each other (UD-SPMRL & SUD-SPMRL).


