
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 3467–3481
August 1–6, 2021. ©2021 Association for Computational Linguistics

3467

Annotations Matter: Leveraging Multi-task Learning to Parse UD and
SUD

Zeeshan Ali Sayyed
Indiana University

Department of Computer Science
zasayyed@iu.edu

Daniel Dakota
Uppsala University

Department of Linguistics
ddakota@lingfil.uu.se

Abstract

Using multiple treebanks to improve parsing
performance has shown positive results. How-
ever, to what extent similar, yet competing an-
notation decisions play in parser behavior is
unclear. We investigate this within a multi-task
learning (MTL) dependency parser setup on
two parallel treebanks, UD and SUD, which,
while possessing similar annotation schemes,
differ in specific linguistic annotation prefer-
ences. We perform a set of experiments with
different MTL architectural choices, compar-
ing performance across various input embed-
dings. We find languages tend to pattern in
loose typological associations, but generally
the performance within an MTL setting is
lower than single model baseline parsers for
each annotation scheme. The main contribut-
ing factor seems to be the competing syntactic
annotation information shared between tree-
banks in an MTL setting, which is shown in
experiments against differently annotated tree-
banks. This suggests that the impact of how
the signal is encoded for annotations and its in-
fluence on possible negative transfer is more
important than that of the input embeddings in
an MTL setting.

1 Introduction

Multi-task learning (MTL; Caruana, 1997) has
shown promise in various NLP tasks such as se-
mantic dependency parsing (Peng et al., 2017; Her-
shcovich et al., 2018; Kurita and Søgaard, 2019),
machine translation (Dong et al., 2015) and muli-
tiword expression detection (Taslimipoor et al.,
2019).

MTL inherently is designed to share informa-
tion between tasks, which has helped various NLP
components (Collobert and Weston, 2008). One
active research question however is what informa-
tion in specific tasks should be shared, as well was
what indicators can be used to predetermine the

cost-benefit trade-offs of MTL for a given appli-
cation. Findings have shown that label distribu-
tions (Martı́nez Alonso and Plank, 2017), data sizes
(Bollmann et al., 2018) and single task loss curves
(Bingel and Søgaard, 2017) have all been respective
indicators for MTL performance. Different tasks,
data sizes, and settings can all show different rel-
ative performance gains (Adouane and Bernardy,
2020). Thus, it is still an open question under
which circumstance MTL can be used to achieve
max performance boosts over a single task system.

In syntactic parsing, learning a closely related
task (e.g. POS tagging) in a joint paradigm bene-
fits overall performance (Bohnet and Nivre, 2012;
Zhang and Weiss, 2016), and work has also ex-
ploited MTL by leveraging two or more treebanks
against each other (see section 2). We often assume
simply increasing data and the sharing of syntac-
tic information will inherently benefit all parsers,
but this assumes that all syntactic sharing, specif-
ically all annotation sharing, is positive and com-
plementary. However, annotation decisions have
been shown to favor parsing preferences (Rosa,
2015; Rehbein et al., 2017; Kohita et al., 2017).
This means that is is not necessarily clear if shar-
ing annotations benefits all parsers equally. This is
especially true if two annotation schemes choose
drastically different approaches when annotating
specific linguistic phenomena.

We look to examine this issue further by utiliz-
ing a set of treebanks that are annotated on parallel
data, Universal Dependencies (UD; Nivre et al.,
2016) and Surface-Syntactic Universal Dependen-
cies (SUD; Gerdes et al., 2018), to examine how
two competing syntactic annotation schemes be-
have when used in an MTL setup. Using parallel
treebanks also removes the lexical variation and
influences of domain differences that are present
in most MTL treebank setups. Whether this is a
positive or negative in an MTL setup is unclear,
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but reduction in domain differences tend to benefit
single model parsers.

We utilize the graph-based Deep Biaffine Parser
of Dozat and Manning (2017) in an MTL archi-
tecture, treating each UD and SUD treebank of a
selected language as a task, and experiment with
sharing different embeddings, layers, and loss func-
tions. Additionally, we look at the how different
embeddings interact with these annotations along
with their role in encoding the signal utilized by the
MTL parsers, and whether results follow any lin-
guistic patterns. Finally, we perform additional ex-
periments with treebanks from SPMRL shared task
(Seddah et al., 2013, 2014) to support our analysis.
We look to investigate the following questions:

1. How will competing syntactic annotations
schemes on parallel treebanks behave in an
MTL parser?

2. What impact do different input embeddings
have on behavior in such a setup?

3. When a treebank is paired with a non-parallel
treebank possessing noticeably different syn-
tactic annotations, do trends hold?

2 Related Work

The use of multiple treebanks has been success-
fully incorporated in parsing strategies. Recent
multilingual multi-treebank work by Schuster et al.
(2019) extended the Biaffine parser by Dozat and
Manning (2017) to incorporate deep contextual-
ized multilingual embeddings in combination with
multiple treebank sources, demonstrating gains for
zero-shot parsing. Smith et al. (2018a) noted us-
ing smaller groups of closely related languages
is preferable to larger datasets of dissimilar ones.
Multiple synthetic treebanks derived from closely
related languages were used to parse Faroese by
Barry et al. (2019), though a single language source
model yielded the best results.

More directly related work is Johansson (2013),
who shares features between two treebanks of the
same language that differ in annotation schemes
by identifying overlapping features. Using a graph-
based parser, he achieved noticeable relative error
reduction in UAS for four language pairs, with
the largest performance gains on the smaller tree-
banks. This was followed by Johansson and Ade-
sam (2020) using a neural transition-based parser
and leveraging a mixture of treebanks, three de-
pendency and two constituency, against a single

constituency treebank in a multi-treebank setup.
They find that in all settings, performance on the
target constituency treebank improves, with the
highest gain coming from using all five as an auxil-
iary treebank. Kankanampati et al. (2020) use the
Multidimensional Easy First approach introduced
by Constant et al. (2016) to parse the Arabic CATiB
(Habash and Roth, 2009) and its converted UD rep-
resentation in a multi-task setup. They note that
both treebanks showed error reduction, but that im-
provements were due to partial dependencies, and
not primarily driven through lexical sharing.

Little direct work exists on extensive empirical
investigations between UD and SUD with parsers.
Recent work by Kulmizev et al. (2020) performed
probing experiments across a set of languages to
extract dependency graphs from BERT (Devlin
et al., 2019) and ELMO (Peters et al., 2018) lan-
guage models, finding that both models prefer UD,
with tree shape directly correlated to preference
strength.

One of the advantages of MTL is the ability to
share information as well as altering objective func-
tions between tasks. Early work examined the im-
pact different loss functions have on downstream
applications (Hall et al., 2011) and how in a hierar-
chy of tasks, sharing of individual layers benefits
other tasks differently, with lower level task sharing
most beneficial (Søgaard and Goldberg, 2016).

Both hard and soft sharing of parameters have
proven successful. Duong et al. (2015) exploited
soft parameter sharing between different cross-
lingual treebanks possessing the same annotation
schemes achieving results on the target language
with only half the needed annotated data. Soft
sharing of parameters allows nuances between lan-
guages of the same treebank when hard sharing all
other parameters (Stymne et al., 2018).

Parameter sharing has proven effective in both
monolingual (Guo et al., 2016) and multilingual
parsing (Ammar et al., 2016; Kitaev et al., 2019).
However, what are the optimal parameters to share,
and where to do so in the architecture, particu-
larly in cross-lingual setups, is not consistent as
shown by de Lhoneux et al. (2018) in extensive
experiments in sharing word and character LSTM
parameters.
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What can we do about it ?
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Figure 1: UD and SUD annotation example from English EWT Treebank

Treebank ar-padt de-gsd el-gdt en-ewt fi-tdt fr-gsd hu-szeged ko-gsd ru-gsd tr-imst vt-vtb zh-gsd
UD Train Non-Proj .0892 .0950 .0596 .0523 .0606 .0399 .2572 .1620 .0623 .1105 .0314 .0233

Dev Non-Proj .0825 .0626 .0521 .0275 .0689 .0407 .3356 .1568 .0587 .1204 .0213 .0014
SUD Train Non-Proj .2331 .2118 .1420 .0948 .1423 .0857 .3384 .1764 .0901 .1444 .0957 .4412

Dev Non-Proj .2090 .1815 .1266 .0679 .1645 .0800 .4082 .1684 .0933 .1478 .1075 .4320
Total Train 6075 13814 1662 12543 12217 14449 910 4400 3850 3664 1400 3997
Total Dev 909 799 403 2002 1364 1476 441 950 579 988 800 500

Table 1: Proportion of Non-Projective Trees in UD and SUD Train and Dev Sets

3 Experimental Setup

3.1 Data

UD have become a de facto standard as a source
for treebanks for dependency parsing. A main anno-
tation choice in UD is the prioritization of content
words as the head. While some functional distinc-
tions are kept, such as those between subjects and
objects, many other are merged, such as comple-
ments and adjuncts. Importantly, function words
are dependents of the content words.

SUD were developed as a counter-balance to
UD with the belief that UD are not syntactically
motivated enough, with a particular linguistically
argued objection to the prioritization of content
words as heads, stemming from the belief that the
distributional context of words should drive head-
edness. While many individual labels are kept,
several are collapsed into a single label (e.g. nsubj
& csubj → subj). The primary result of function
words becoming heads is the inherent reversal of
syntactic relationships of many words.

Fig. 1 is an example of how the SUD conversion
alters an English sentence from its original UD rep-
resentation. One of the more noticeable differences
is that the projective UD tree is now non-projective
in the SUD schema. The main cause, in this exam-
ple, is because the auxiliary verb can is now the
root in SUD, rather than the content word do in UD.
Furthermore, the only word to retain the same head
word between the two sentences is what, while all
others have new heads. We wish to emphasize how-
ever, that not all trees show such stark contrasts,

but simply want to highlight how a simple choice
in annotation can produce distinctly different trees,
and the resultant impact on non-projectivity.

By using UD and SUD, we eliminate one of the
variables in many multi-treebank setups, the differ-
ent distribution of the underlying vocabulary. This
effectively eliminates domain differences between
the treebanks (see section 3.2), as both parsers will
get more similar outputs from the BiLSTM layer,
and identical ones in a joint loss setting.

We Use UD and SUD version 2.7 and select
12 different language from 10 language families.
This was done in order capture sufficient linguis-
tic variation in terms of how UD and SUD may
impact various linguistic phenomena found in ty-
pologically different languages, and subsequently
annotation schemes.1 Table 1 presents statistics on
the treebanks in respect to their variation in train-
ing and dev sizes. Additionally, we also note the
proportion of non-projective trees found in each
annotation scheme.2 All languages show higher
number of non-projective trees in SUD when com-
pared to their UD counterparts, but for some it is
much more substantial. A noticeable example is
Chinese (zh) which has 40% more absolute non-
projective trees in its SUD treebank compared to
its UD counterpart. Noticeable increases can also
be seen in Arabic and German, but most languages
show only moderate differences. Hungarian (hu) is

1We restrict ourselves to treebanks that contained complete
training, dev, and test splits.

2We note that this is not always entail explicit linguistic
non-projectivity, as in many cases punctuation is the source of
non-projectivity which can be viewed as non-linguistic.
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Figure 2: Multi-task model architecture.

interesting as it is the only language that shows a
high proportion of non-projective trees in UD and
only a moderate increase for SUD.

3.2 MTL Parsing Architecture
We use the PyTorch (Paszke et al., 2019) implemen-
tation of the Biaffine parser of Dozat and Manning
(2017) provided by Zhang et al. (2020),3 and ex-
tend it to an MTL architecture.4

We modify the base parser by treating parsing
of each annotation scheme as a separate task. Each
task shares the BiLSTM layer that is used to en-
code the concatenation of all input embeddings.
These BiLSTM encodings are then passed through
dimension reducing MLPs to strip away arc and
relationship information information deemed not
relevant. We implement two MLP schemes, one in
which we share them across tasks (shared; Figure
2A) and the other in which each task has its own
MLP layers (unshared; Figure 2B). Considering
the overlap in the annotation schemes, a shared
MLP setting allows us to examine the behavior of
sharing information between the two annotation
scheme when irrelevant information is minimized.
Finally, in order for the model to learn task specific
information, we apply task specific biaffine atten-
tion layers to the MLP outputs to produce scores
for both arcs and labels.

The common practice in MTL is to have sepa-
rate losses for different tasks and to optimize for
each of them separately (alternating loss; Ruder,

3https://github.com/yzhangcs/parser
4Our code is available at https://github.com/

zeeshansayyed/multiparser

2017). This is particularly the case when the dif-
ferent tasks do not share the same input. However,
our dataset contains parallel sentences albeit with
different annotations. It thus then becomes possible
to experiment with using a joint loss for training
both tasks as the parsers receive the same input,
and a joint loss has shown improvements when
joint learning POS tags and dependency parsing
(Li et al., 2018). We do this by optimizing for the
sum of losses of each of the tasks. Since the losses
of both tasks are of nearly the same magnitude, we
do not have to worry about imbalance and a simple
sum suffices.5 We experiment with both types of
losses.

In the alternating loss setting, we randomly
choose a task from the given tasks and then ran-
domly choose a batch of sentences along with their
annotations from that task before calculating the
loss of that batch and backpropagating the errors.
In a given epoch we chose sentences without re-
placement. For joint loss, we randomly choose a
batch of the same sentences from both the tasks,
along with their different annotations. Losses are
calculated based on those annotations and summed
together before backpropagating the errors. We
posit that joint loss should allow for faster conver-
gence as both the tasks affect the parameter updates
of the shared layers simultaneously, thus helping
the optimization process to move towards the goal
more quickly.

The two choices of losses combined with the op-
5When losses in an MTL setting do not have comparable

magnitude, then the joint loss tends to more influenced by the
task with larger loss; thus, producing a learning bias.

https://github.com/yzhangcs/parser
https://github.com/zeeshansayyed/multiparser
https://github.com/zeeshansayyed/multiparser
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Figure 3: Heatmap illustrating the mean LAS scores for the four MTL settings across all languages and embedding
types. UD-LAS is represented in the left column and SUD-LAS in the right column for each embedding input.

tional sharing of MLP layers gives rise to four dif-
ferent experimental settings: alternating-unshared,
alternating-shared, joint-unshared, and joint-shared.
In addition, we experiment with internally ran-
domly initialized word and POS6 embeddings, ex-
ternal embeddings (FastText; Bojanowski et al.
(2017)) and BERT (Devlin et al., 2019)), and their
concatenations as inputs to the BiLSTM layers.
All results are reported on the dev sets using the
CoNLL 2018 Shared Task Scorer (Zeman et al.,
2018).

4 Results

The overall performances of the four experimen-
tal settings, namely alternating vs joint loss and
shared vs unshared MLP layers, are very close to
each other. The convergence statistics for joint and
alternating loss settings are reported in Table 2.7 It
can be noted that despite taking a greater number of
epochs to converge when compared to alternating
loss, joint loss converges faster in terms of time be-
cause it performs the forward propagation through
the shared layers only once for both tasks, whereas
alternating loss has to perform it separately for each
task.

As we are more interested in the MTL parser

6We use gold POS tags.
7All experiments were performed on Nvidia V100 GPUs.

Tables 2 and 3 analyses do not include BERT experiments.

behavior across experimental settings, we report
the mean LAS score over the four MTL settings in
all our experiments to capture the general trends of
the MTL parser.

Parameter # Epochs Time (seconds)
Joint Loss 342 2 774

Alternating Loss 297 3 907

Table 2: Convergence statistics for Joint and Alternat-
ing Loss

To analyze the impact of different embedding
types on the MTL parsing setup, we change the
specificity of information by using different em-
bedding types with the MTL parser as discussed in
section 3.2, results of which are presented in Fig
3. We see that adding more information yields in
higher LAS across languages (moving from left to
right on the heatmap) with the concatenation of all
embeddings (rightmost columns) performing the
best.

However, given that we are more interested in
examining whether the parallel UD-SUD treebanks
can benefit from an MTL setup, we choose instead
to focus on how the MTL parsers compare to the
single UD and SUD baseline parsers across the dif-
ferent embedding choices. Fig. 4 shows a heatmap
depicting the difference of the mean LAS of all four
settings with respect to the corresponding single
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Figure 4: Heatmap illustrating the performance difference between MTL parsers compared to corresponding single
task baseline parser. Each block represents the difference between the mean LAS score of four MTL settings and
the respective single task baseline LAS score.

baseline parser, for each embedding input.8

The mean drop in LAS scores for MTL set-
tings when compared to the baselines across all
languages and all the different feature embeddings
(432 runs) are reported in Table 3, with lower num-
bers indicating better performance. No particular
setting shows a significant improvement over the
other. Keeping this in consideration, we still see
that joint loss performs slightly better than alternat-
ing loss. Sharing of MLP layers seems to help a
little compared to the setting where we have task
specific layers. As mentioned in section 3.2, the
role of dimension reducing MLPs is to remove all
the information that is not necessary for perform-
ing the task at hand. This would indicate that the
two tasks remove similar unnecessary information,
thereby sharing the signal necessary for making
parsing decisions.

One of the most striking observations is that ran-
domly initialized word embeddings (seen in the
far left two columns) are noticeably lighter across
all languages. This stands in stark contrast to the
subsequent FastText (FT), word+char and FT+char

8We also experimented with task-specific fine-tuning fol-
lowing Liu et al. (2019) on MTL parsers. While it did lead to
improvements, the overall distribution across all the different
settings and languages was not considerably different. Also
see Appendix for additional heatmaps contrasting shared vs
unshared and alternating vs joint loss settings. The overall
pattern remains the same.

Parameter Mean Drop (LAS)
Joint Loss 0.70

Alternating Loss 0.75
Shared MLP 0.69

Unshared MLP 0.76

Table 3: Mean drop in LAS compared to baseline

embeddings. Hungarian shows particularly notice-
able improvements, though it may be due to its size.
However, given that we also see some moderate
improvements for English, Greek and Russian, the
size of the treebanks is not the only contributing
factor.

Once inputs include word embeddings initialized
with FT embeddings or randomized char embed-
dings, we see some interesting trends. Finnish,
Hungarian, Korean, Turkish, and Russian show
consistent degradation in performance with any in-
clusion of character-based embeddings. Some lan-
guages show more stable results, regardless of the
input embeddings, namely Greek, English, French,
and Chinese. Vietnamese clearly performs worse
when using FT embeeddings to initialize the word
embeddings, but otherwise is rather stable in other
settings. However, even with BERT (B) embed-
dings, we do not see any noticeable improvement
over the baselines.
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When we begin incorporating POS tag embed-
dings, we see that drops relative to the baseline
for these languages become less pronounced, but
few languages ultimately show improvements, with
Hungarian being the noticeable exception. The pat-
tern in the reduction in degradation of performance
when including POS tag embeddings continues
across all settings. The exception being Finnish,
which still shows large drops in almost all settings,
but show slightly reduced drops when including
BERT embeddings.

5 Discussion

5.1 UD vs SUD

We see, in general, a systematic decrease in perfor-
mance when using parallel UD and SUD treebanks
in an MTL setup across many languages. When
looking for linguistic behaviors, we can clearly see
that agglutinative languages (Hungarian, Finnish
Turkish, and Korean) all suffer severe performance
drops when using character-based embeddings, but
the concatenation of POS embeddings helps mit-
igate the degradation. The absolute differences
of Hungarian and Finnish are noticeably different
compared to one another. This may be somewhat
unexpected, given they are in the same language
family. However, the modern forms are quite dif-
ferent and treebank sizes may play a role, as input
embeddings pattern similarly overall between the
two.

The morphological complexity of other lan-
guages in relation to their behavior is not neces-
sarily a good predictor of behavior. However, if
we view the other eight remaining languages on
a continuum of fusional and analytical properties,
we can see some general patterns.

Russian, a fusional language, patterns with the
agglutinative languages in its behavior with charac-
ter embeddings, but is also one of the more morpho-
logically rich languages (MRL) of the non aggluti-
native languages. The other more fusional MRLs,
German and Greek, also do not see as much volatil-
ity, although German tends to be worse respective
to the baseline, while Greek shows some more pos-
itive results, but this could again be due to treebank
sizes. English and French are more analytical than
the other fusional languages and contain far less
morphology. While both show rather consistent
minimal degradation regardless of the input embed-
ding, English occasionally shows some improve-
ment, while French virtually none.

Arabic and Vietnamese, however, are some-
what odd cases. Arabic is both fusional and an
MRL, whereas Vietnamese is much more analyt-
ical. Vietnamese, though, patterns more with the
other MRLs, while Arabic patterns more like the
analytical language, particularly with its less over-
all performance degradation compared to baselines
across settings. Vietnamese shows one of the larger
performance drops relative to the baseline com-
pared to the other eight languages when using FT
embeddings in the input, but this is diminished
when combined with additional embeddings.

Chinese, an extremely analytical language,
presents an additionally interesting case. The LAS
for SUD is usually on average 10% absolute lower
than its UD counterpart, which can be seen in
Fig. 3. This probably is a direct result of the
SUD treebank having 40% absolute more non-
projective trees. However, this massive disparity
in non-projectivity has seemingly not resulted in
additional performance degradation in the MTL
setup (as seen in Fig. 4), suggesting that sharing
between treebanks that show large differences in
non-projectivity is not necessarily detrimental.

Given the general behavior across settings, per-
formance degradation can most likely be attributed
to negative transfer derived from the different an-
notation preferences UD and SUD encode, which
is not seen in the single model baselines. When
different embeddings are used, the negative transfer
is either accentuated depending upon the language,
as seen with character embeddings, or some em-
beddings seem to help mitigate the negative trans-
fer, as with POS embeddings. Interestingly, al-
though character-based embeddings show signifi-
cant improvements in the single baseline models
compared to word embeddings, the signals they
encode seem to be detrimental in an MTL setting,
as performances drops relative to their respective
single model baselines. This would seemingly sug-
gest that in an MTL setup, word and POS embed-
dings are encoding more beneficial signals that help
both annotation schemes, reducing possible nega-
tive transfer from each treebank, whereas character
embeddings are maximally beneficial when used
to train a single model. This is in line with recent
work showing that the linguistic information POS
tags convey, when highly accurate or gold, still
have value for specific use cases, and are beneficial
in certain dependency parsing architectures or as
auxiliary tasks (Anderson and Gómez-Rodrı́guez,
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Arabic German Hungarian

Exp. MLP
Char + FastText Char + FastText Char + FastText

UD SUD UD SUD UD SUD
UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

baseline 86.59 82.25 86.50 81.44 89.18 85.11 87.81 84.98 84.73 79.97 84.03 79.02
UD-SUD unshared 86.33 81.93 86.34 81.33 87.95 84.06 86.74 83.70 84.28 79.42 83.53 78.56

shared 86.33 81.97 86.22 81.33 87.83 84.08 86.76 83.73 84.50 79.72 85.83 79.05
SPMRL unshared 87.78 83.47 87.52 82.62 90.16 86.44 89.81 87.18 87.04 82.23 86.99 82.73

shared 87.50 83.24 87.38 82.46 90.01 86.39 89.36 86.50 72.16 82.76 87.91 83.32

Table 4: Results for MTL experiments with SPMRL dataset. All MTL experiments are trained with the alternating
batch loss setting to allow for comparison with experiments involving SPMRL. We cannot use joint loss when
training SPMRL with either UD or SUD as they are not parallel treebanks. The UD-SUD experiment shows
results for UD and SUD when they are trained together in an MTL setting, whereas the SPMRL experiment shows
results for UD and SUD when each of them is separately trained along with the corresponding SPMRL dataset
instead of each other (UD-SPMRL & SUD-SPMRL).

2020; Zhou et al., 2020).
One specific often overlooked annotation issue

that helps convey this point is punctuation.9 In
both annotation schemes, punctuation attachment
is rather straight forward. However, as seen in Fig
1, it is one of the competing annotation decisions.
In both annotation schemes, punctuation is sim-
ply attached directly to the root. However, in UD
the root is a content word, while in SUD the root
is a function word. Thus, while straight forward
form an annotation perspective for both schemes,
an MTL system is now learning both attachment
possibilities simultaneously and preferences and
errors regarding both are now being encoded in
the global attachment decisions. When looking at
specific attachment errors, across almost all exam-
ined experiments, there were substantial increases
in punctuation attachment errors. This can be seen
as a direct result of switching the content versus
function oriented headedness and creates system-
atic, competing attachment decisions for an MTL
parser exposed to both attachment possibilities.

5.2 UD and SUD vs SPMRL

To further explore whether the competing annota-
tion decisions between UD and SUD are indeed
contributing to the noticeable performance degra-
dation, we choose to compare a subset of languages
in an MTL setup but with a differently annotated
treebank. Using a different treebank runs the risk

9The CoNLL 2018 evaluation scores punctuation. We are
not, however, making a claim as to whether punctuation is or is
not a linguistic issue, rather simply highlight it is an annotation
attachment issue that illustrates different possible attachment
distributions between the annotation schemes. From a linguis-
tic perspective, punctuation can be argued to be irrelevant,
from a parsing perspective, unless removed, it still influences
attachment decisions.

of adding additional domain issues into our experi-
ments; however, character-level embeddings have
proven effective at handling OOV words (Balles-
teros et al., 2015; Vania et al., 2018), thus domain
differences should be reduced.

We perform experiments where we use the Ara-
bic (Habash and Roth, 2009), German (Brants et al.,
2004), and Hungarian (Vincze et al., 2010) tree-
banks from the SPMRL Shared task (Seddah et al.,
2013, 2014), each of which were annotated with
language specific linguistic phenomena in mind.10

To mitigate size difference issues as the smaller
treebank tends to benefit more in a multi-treebank
setup (Johansson, 2013), we randomly select a train
and dev set from the SPMRL data respectively to
match the corresponding size of the UD-SUD tree-
banks.11

Results for the SPMRL experiments using
char+FT embeddings are presented in Table 6.12

All results in UD-SPRML and SUD-SPMRL MTL
experiments show improved performance over the
baseline. Importantly, this includes settings in
which the UD-SUD MTL experiments show notice-
able decreases relative to the baseline, and specifi-
cally we see that character-based embeddings are
able to yield benefit in an MTL setup relative to the
baseline.

These results suggests that the annotation
10We refer to the reader to the cited papers for more detailed

information on the individual treebank annotations.
11We note that the both German and Hungarian UD-SUD

Treebanks are derived from a small section of the TiGer and
Szeged Treebanks respectively, which are also the treebanks
for the SPMRL data, thus there is a possibility of sentence
overlap in the random selection. The UD-SUD Arabic tree-
bank is derived from the Prague Arabic Dependency Treebank
(Hajič et al., 2004) but is also annotated on newswire.

12Results using word+POS embeddings are provided in the
Appendix.
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schemes are indeed contributing to why UD and
SUD make poor tasks for each other in an MTL
setup, and not strictly the embeddings themselves.
Rather, the information conveyed by each individ-
ual annotation scheme is important in terms of the
possible gains that MTL parsers can make over
the baseline parsers. It may simply be that how
the annotations are embedded into the architecture
and shared are more influential in what signals are
encoded in the network than the embeddings them-
selves in terms of how they benefit treebanks in an
MTL setup. If the annotations themselves encode
information that results in negative transfer in the
network due to their competing nature, an MTL
setup cannot benefit as effectively.

6 Conclusion

We implemented an MTL architecture leveraging
parsing UD and SUD as separate tasks to exam-
ine how their syntactic annotation overlaps and
differences influence parser behavior. We find
that models from an MTL setup perform generally
worse than their single model baselines, regardless
of input embeddings. Interestingly, POS embed-
dings seemingly help mitigate some of the perfor-
mance loss caused from negative transfer as the
POS information may help resolve possible linguis-
tic ambiguities with which character embeddings
struggle (Vania et al., 2018; Smith et al., 2018b).
This stands in contrast to much multi-treebanking
research which has yielded positive performance
gains when using multiple treebanks, particularly
if they are of the same language, though this is not
always the case (Barry et al., 2019).

We then further investigated the possible influ-
ence annotations have in an MTL setup by train-
ing a subset of SPMRL treebanks against their
UD-SUD counterparts, finding increases in per-
formance across the chosen languages and input
embeddings not seen when pitting UD and SUD
together. We argue that this indicates that in an
MTL setup, simply adding another treebank is not
inherently going to yield better performance, rather
the information that each additional treebank can
learn from the other, specifically from their anno-
tation schemes, and how this is then subsequently
encoded in the network is a more pivotal factor in
yielding performance gains.

We conclude that the syntactic annotation
schemes are pertinent when determining perfor-
mance gains in an MTL parsing setup, as extensive

competing annotations provides too many mixed
signals in an MTL architecture, hampering the abil-
ity of both parsers to benefit from shared informa-
tion, yielding worse results.

Future research will include incorporating more
treebanks with different annotation schemes to ex-
amine in which directions and annotations parsers
will optimize towards in MTL. We also wish to
further explore how constituency parsing and de-
pendency parsing can be leveraged against each
other in similar MTL setups.
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Appendix

A Heatmaps for Shared and Unshared MLP layer settings

Unshared UAS Shared UAS

Figure 5: Heatmaps depicting the shared and unshared MLP layers settings. Each block represents the mean UAS
score across alternating and joint loss setting for the corresponding embedding and MLP setting.

Unshared LAS Shared LAS

Figure 6: Heatmaps depicting the shared and unshared MLP layers settings. Each block represents the mean LAS
score across alternating and joint loss setting for the corresponding embedding and MLP setting.
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B Heatmaps for Alternating vs Joint Loss settings

Alternating Loss (UAS) Joint Loss (UAS)

Figure 7: Heatmaps depicting the when joint loss or alternating loss settings. Each block represents the mean UAS
score across shared and unshared MLP settings for the corresponding embedding and loss setting.

Unshared LAS Shared LAS

Figure 8: Heatmaps depicting the when joint loss or alternating loss settings. Each block represents the mean LAS
score across shared and unshared MLP settings for the corresponding embedding and loss setting.
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C Training Hyperparameters

Hyperparameters Value
Embedding Dimensions 300
Character Embedding Dimension 50
POS Tag Embedding Dimension 100
Bert Mapping Dimenstion 100
Number of BERT Layers Used 4
Embed Dropout 0.33
Number of LSTM Layers 400
LSTM Hidden Layer Dimension 400
LSTM Dropout 0.33
MLP (Arc) Output Dimension 500
MLP (Rel) Output Dimension 100
MLP Dropout 0.33
Optimizer Adam
Patience 50
Batch Size 20000 tokens
Learning Rate 2e-3
Eps 1e-12
Betas (.9, .9)
Clip 5.0
Decay 0.75
Decay Steps 5000

Table 5: Hyperparameter settings

D UD-SUD vs SPRML MTL Results Table

Arabic German Hungarian

Exp. MLP
Word + POS Char + FastText Word + POS Char + FastText Word + POS Char + FastText

UD SUD UD SUD UD SUD UD SUD UD SUD UD SUD
UAS LAS UAS LAS UA LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

baseline 86.66 83.30 86.87 82.40 86.59 82.25 86.50 81.44 88.50 84.22 86.64 83.63 89.18 85.11 87.81 84.98 65.20 52.26 65.80 54.35 84.73 79.97 84.03 79.44
UD-SUD unshared 86.79 83.49 86.79 82.39 86.33 81.93 86.34 81.33 87.15 82.84 86.23 83.13 87.95 84.06 86.74 83.70 69.05 57.02 69.16 58.92 84.28 79.42 83.53 78.56

shared 87.05 83.70 87.17 82.94 86.33 81.97 86.22 81.33 88.68 84.43 86.97 84.03 87.83 84.08 86.76 83.73 68.58 57.16 69.15 59.14 84.50 79.72 85.83 79.05
SPMRL unshared 87.52 84.13 87.69 83.15 87.78 83.47 87.52 82.62 89.25 85.40 88.93 86.28 90.16 86.44 89.81 87.18 71.86 60.95 73.68 63.37 87.04 82.23 86.99 82.73

shared 87.62 84.39 87.67 83.15 87.50 83.24 87.38 82.46 89.27 85.34 88.91 86.09 90.01 86.39 89.36 86.50 72.16 61.64 73.42 63.67 87.63 82.76 87.91 83.32

Table 6: Results for MTL experiments with SPMRL dataset. All MTL experiments are trained with the alternating
batch loss setting to allow for comparison with experiments involving SPMRL. We cannot use joint loss when
training SPMRL with either UD or SUD as they are not parallel treebanks. The UD-SUD experiment shows
results for UD and SUD when they are trained together in an MTL setting, whereas the SPMRL experiment shows
results for UD and SUD when each of them is separately trained along with the corresponding SPMRL dataset
instead of each other (UD-SPMRL & SUD-SPMRL).


