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Abstract

The exploitation of syntactic graphs (SyGs)
as a word’s context has been shown to be
beneficial for distributional semantic models
(DSMs), both at the level of individual word
representations and in deriving phrasal repre-
sentations via composition. However, notwith-
standing the potential performance benefit, the
syntactically-aware DSMs proposed to date
have huge numbers of parameters (compared
to conventional DSMs) and suffer from data
sparsity. Furthermore, the encoding of the
SyG links (i.e., the syntactic relations) has
been largely limited to linear maps. The
knowledge graphs’ literature, on the other
hand, has proposed light-weight models em-
ploying different geometric transformations
(GTs) to encode edges in a knowledge graph
(KG). Our work explores the possibility of
adopting this family of models to encode SyGs.
Furthermore, we investigate which GT better
encodes syntactic relations, so that these repre-
sentations can be used to enhance phrase-level
composition via syntactic contextualisation.

1 Introduction

Representing words in terms of their syntactic
co-occurrences has been long proposed, both for
count-based (Padó and Lapata, 2007; Weir et al.,
2016), and neural (Hermann and Blunsom, 2013;
Levy and Goldberg, 2014; Komninos and Man-
andhar, 2016; Czarnowska et al., 2019; Vashishth
et al., 2019) models of word meaning. Tested on
benchmark word similarity tasks, such models of-
ten perform favourably to models based on proxi-
mal co-occurrence, particularly when the similar-
ity or substitutability of two words is considered
rather than their relatedness (Levy and Goldberg,
2014). However, the real promise of distributional
models based on syntactic rather than proximal
co-occurrence, is the potential for carrying out
syntax-sensitive composition. For example, in the

Anchored Packed Tree (APT) model (Weir et al.,
2016) lexemes, phrases, and sentences are repre-
sented as collections of typed occurrences, and
composition is carried out by contextualising each
element in its syntactic role. This leads to syntax-
sensitive representations for phrases. For exam-
ple, glass window and window glass have different
representations due to the different syntactic roles
played by each constituent.

Alongside count-based models, a variety of
neural ones have been proposed to encode syn-
tactic structure, focusing on different depths of
the graph (Levy and Goldberg, 2014; Komninos
and Manandhar, 2016; Marcheggiani and Titov,
2017; Vashishth et al., 2019; Emerson, 2020)).
Of particular note here, Levy and Goldberg
(2014) and Komninos and Manandhar (2016) each
proposed models (DEP and EXT, respectively)
which learn from local dependency relations, by
extending the Skip-Gram with Negative sampling
(SGNS) architecture from word2vec (Mikolov
et al., 2013). Given a tuple of (target, context)

words, e.g. (rain,like), a standard SGNS model can
be trained to encode the probability of it being a
true or a randomly sampled tuple. DEP and EXT,
on the other hand, make use of both standard and
syntactically contextualised tuples e.g., (rain dobj,
like)1. Whilst DEP was tested solely on word sim-
ilarity tasks, Komninos and Manandhar (2016) ap-
plied large neural architectures to sentence level
tasks and were thus able to demonstrate a positive
impact of applying an additive composition strat-
egy to syntax-aware representations.

There is of course an explosion in the number
of parameters to be learnt in both DEP and EXT
due to the many possible word-relation combina-
tions which form the target vocabulary for these
models (see Table 1). A possible solution, pro-

1dobj indicating the inverse of the dobj relation
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posed by Czarnowska et al. (2019), is the Depen-
dency Matrix (DM) model which uses linear maps
in the form of square matrices to encode relations.
Here, the training objective is changed from pre-
dicting (target, context) pairs to (target, relation,

context) triples, e.g., (rain,dobj,like). This model
produced comparable results with DEP and EXT
at the word level. Furthermore, compositional ex-
periments on short phrases, specifically relative
clauses, produced encouraging results when using
the learned transformations. Yet, despite consider-
ably reducing the number of parameters, this model
still makes use of large word spaces and the square
linear map is still costly to train.

Model Learnable Parameters
DEP 223M
DM 51.6M
MuRE 21.5M
RotE 21.5M
RefE 21.5M
AttE 21.6M

Table 1: Learnable parameters for each model, given
the same word (72k) and relation (88) vocabularies
from the text8 (parsed) corpus, and vector size of
n=300.

The reformulation of the SGNS objective intro-
duced by DM (i.e., moving from (target,context)

tuples to (target,relation,context) triples) closely
resembles a common practice in the knowledge
graphs (KGs) literature (e.g. (Trouillon et al., 2017;
Balazevic et al., 2019; Chami et al., 2020)). Here,
large, mainly factual, graphs are fed to neural mod-
els in the form of (head,relation,tail). Compared
to the syntactically-aware DSMs discussed above,
many of the models proposed to encode KGs make
use of a substantially lower number of parameters
to encode both word and relations, as shown in
Table 1. Furthermore, in order to represent the het-
erogeneous types of relations in KGs, researchers
have experimented with models based on different
types of geometric transformations (GTs). These
include, but are not limited to, stretch (Balazevic
et al., 2019), rotation (Sun et al., 2019; Chami et al.,
2020), reflection (Chami et al., 2020) and attention
(Chami et al., 2020). However, in the KG litera-
ture, limited attention has been paid to the compo-
sitional nature of phrases. Single-token oriented
vocabularies (where New York is represented by
New York), used in most KGs, work well for real-
world entities, such as people or cities, but are prob-

lematic when considering compositional phrases
such as small cake. As discussed by Toutanova
et al. (2015), treating these phrases in the same way
forces the vocabulary to grow immensely, and pre-
vents the model from reasoning over new phrases
in a compositional fashion. Hence, developing suc-
cessful composition strategies is of interest to the
KG community as well as more widely in Natural
Language Inference (NLI).

Given the success that DM and other models
have obtained in modelling syntax and syntactically
driven composition, we propose to overcome the
parameter and word-relation vocabulary problems
by using GT models to encode syntactic graphs.
We focus our investigation on four state of the
art models from the knowledge-graphs literature,
namely MuRE (Balazevic et al., 2019), and the
three GTs-based models proposed by Chami et al.
(2020): RotE, RefE and AttE. Despite the simplic-
ity, MuRE has obtained competitive results, when
compared to more complex models (Chami et al.,
2020)). Rotation has been used to model composi-
tion of relation representations (Sun et al., 2019).
Attention has been frequently proposed as a plausi-
ble mechanism for composition (e.g. Hudson and
Manning (2018); Tay et al. (2019); Yin et al. (2020);
Russin et al. (2020)), whilst reflection is relatively
under-studied (Chami et al., 2020). Furthermore,
as discussed in Section 3, these models allow for
an interesting comparison, as they can be grouped
into three categories: tail modifiers (DM), head
modifiers (RotE, RefE, AttE), and full modifiers
(MuRE). Hence, we explore some of the transfor-
mational properties required to enable the success-
ful encoding of syntactic relations, where success is
defined in terms of their potential to support phrasal
composition.

Our contributions are as follows. First, we show
how lighter-weight models based on GTs can be
used to encode both word and syntactic relations,
frequently outperforming DM both in word simi-
larity and compositional benchmarks. Second, for
each model, we propose a tailored composition
strategy, based on syntactic contextualisation of
one (or more) of the phrase constituents. We hence
show how to exploit the learned syntactic repre-
sentations for composition, by comparing syntax-
driven strategies for composition with simple ad-
dition. Third, we provide an analysis of which
type of GTs better encode relations for syntactic
contextualisation and enhanced composition.



3345

2 Related Work

Knowledge graphs are complex data structures
where nodes are concepts or entities (usually con-
tent words like dog or Campari) and edges are
relations (e.g. is a, produced in) connecting
entities to one another (e.g. dog is a mam-

mal, Campari produced in Italy). Table 2
reports the number of distinct entities, relations
and triples for three of the most investigated
KGs, namely, FB15k-237 (Toutanova and Chen,
2015) YAGO3-10 (Mahdisoltani et al., 2015), and
WN18RR (Dettmers et al., 2018), as well as a syn-
tactic graph (SyG) constructed from the parsed cor-
pus text8. The way these graphs are structured
can vary significantly. Chami et al. (2020) showed
how, among the presented KGs, only WN18RR has
a significantly hierarchical structure.

Dataset entities relations triples graph type
WNRR18 31k 11 87k KG
FB15k-237 15k 237 272k KG
YAGO3-10 123k 33 1M KG
text8 72k 88 12M⇤ SyG

Table 2: Statistics for the training splits of different
datasets (* number of unique items, with observed rep-
etitions, items raise to 18M).

Research on models for representing KGs
has mainly focused on the ability to predict
new connections between existing nodes. To
overcome the problem of testing items that do
not occur in the training set, many models have
adopted negative sampling (NS) strategies in the
training phase. The vocabulary of KG datasets
is also largely single-token oriented. Models
able to handle multi-token items have been
proposed (Toutanova et al., 2015, 2016; Sun
et al., 2019), but they focus on the composition
of relations rather than entities, e.g., how a
complex relation such as married to:son of
might be split into multiple constituents and
composed. Also relevant, Toutanova and
Chen (2015) showed how syntax-augmented
triples extracted from documents (e.g.
(Obama,nsubj:born in:obj, USA))
can be beneficial for KGs models, but did not
investigate representing syntax or composition via
embeddings.

Previous works (e.g. (Marcheggiani and Titov,
2017; Vashishth et al., 2019)) showed how SyGs
could be encoded via graph convolutional networks
(GCN) (Kipf and Welling, 2017). These large mod-

els are able to encode larger graphs (up to the sen-
tence level), via sequences of convolutions along
the edges of the graph. Such convolutions are fre-
quently relation-specific and are also encoded via
square matrices.

3 Theoretical Approach

In both the semantic (KG) and syntactic (SyG)
domain, the starting point is typically a dataset
D of positive triples (h, r, t), with h, t 2 V =
{1, .., |V |} and r 2 R = {1, .., |R|}, where V and
R are the sets of the indexes for the vocabulary
of entities / words and relations, respectively. In
both domains, the shared goals are: i) map enti-
ties v 2 V to embeddings ev where e 2 R|V|⇥n, n
being the dimensionality of the vectors; ii) map
relations r 2 R in one – or more – space R|R|⇥⇤.
In this work, we focus on constructing a syntactic
dataset of positive training triples from a corpus as
in Czarnowska et al. (2019). All of the models we
investigate rely on a negative sampling mechanism
that generates a dataset D0 of false triples. Each
model was presented in its own original work with
a tailored way to generate D

0 . Unless otherwise
stated, we make use of the original mechanism.

As already discussed, we are interested in both
word level and compositional level evaluation. Test-
ing at the word level, e.g., using word similarity
benchmarks, simply requires extraction of the word
embeddings. Compositional tests, on the other
hand, also require syntactic analysis of the phrase
and extraction and application of the relation em-
beddings. The first step, is to generate a parsed
version of the phrase. For example, syntactic analy-
sis of the phrase pour tea will produce the root-as-
head (Rh) (h, r, t) triple (pour, dobj, tea), and the
root-as-tail (Rt) (h, r, t) triple (tea, dobj, pour).
Such duplicity of representations was handled in
DM by obtaining both representations and then
summing the cosine similarities obtained when
comparing each of the two representations with a
given target. Whilst reasonably effective in the DM
evaluation, this does not provide a single phrase-
level representation and would become unwieldy
for longer phrases and sentences. Weir et al. (2016)
argued in favour of considering the syntactic root as
the main element of any multi-token linguistic item.
In our example, to compare pour tea with drink wa-

ter, this would require us to consider the syntactic
root in the context of its dependent i.e., how similar
is the verb pour when contextualised by the direct
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object tea to the verb drink when contextualised
by the direct object water? In models which
modify the head of the triple (e.g., (Chami et al.,
2020), this would correspond to using the root-as-
tail (Rt) analysis of the phrase. Here, we compare
the two strategies empirically. Further, inspired by
the growing success of (very large) bi-directional
models such as ELMo (Peters et al., 2018) and
BERT (Devlin et al., 2018) and also by recent evi-
dence from the neuroscientific literature (Mollica
et al., 2020; Fedorenko et al., 2020), suggesting
that sentence processing strongly relies on iden-
tifying and composing smaller units of meaning,
such as phrases, regardless of order of their con-
stituents, we also propose a third compositional
strategy which is bi-directional in nature. Here,
the phrase-level representation is the sum of the
root-as-head and the root-as-tail representations,
making it more agnostic to the direction of the re-
lation as well as the word order. However, phrases
with different structures such as glass window and
window glass will still have different representa-
tions due to the different roles played by each word
in each relation.

In summary, we propose and investigate three
different syntax-aware (syn) composition strategies:
syn-Rh and syn-Rt, different solely in where the
root is placed in the (head, relation, tail) triple;
and syn-BiD (for bi-directional), constructed by
adding the representations obtained by syn-Rh and
syn-Rt. We now describe in detail the models inves-
tigated, together with our tailored syn composition
strategy for each of them.

DM This model is an extension of SGNS, where
a linear map, in the form of a n⇥n matrix, projects
a word from the context space (e0) into the target
space (e), as in Equation 1:

u = e
T
h · (Wre

0
t) (1)

where e, e
0 2 R|V|⇥n, and W 2 R|R|⇥n⇥n. Since

the tail word is projected into the space occupied
by the head word, we refer to this model as a tail-
modifier. u is then used to compute standard SGNS
loss (Equation 2):

X

(h,r,t) 2 D

log �(u) +
X

(h,r,t) 2 D0

log �(�u) (2)

Phrase representations will be constructed follow-
ing our three syntactic composition strategies. As

a baseline, common to all models, we use addition
(add) of the queried head and tail entities embed-
dings, as in Equation 3 2:

eadd = eh + et (3)

We propose syn composition for the DM model to
be obtained via u (Equation 1), as in Equation 4:

esyn = eh + (Wre
0
t) (4)

MuRE This architecture falls into the family of
translation models (Chami et al., 2020). Here, both
the entities go through a transformation and so
we refer to this model as a full-modifier. The tail
entity is shifted with a translation (i.e. offset), and
a stretch, in the form of a n⇥n diagonal matrix, is
applied to the head entity. Embeddings are then
fed to a distance function d(x, y) = kx� yk and
the model minimises the Bernoulli negative log-
likelihood loss, using Equation 5, to estimate the
probability of the triple being from D:

p(h, r, l) = �(�d(Wreh, et+wr)
2+bh+bt) (5)

Here, W 2 R|R|⇥n⇥n contains |R| diagonal ma-
trices (each corresponding to a relation-specific
stretch), w 2 R|R|⇥n hosts |R| translation vectors,
and b 2 R|V|⇥n the entity biases. Again, additive
composition is carried out by adding the queried
embedding for the phrase’s constituents. Syntac-
tic composition is implemented by adapting the
model’s score function (Equation 6):

esyn = Wreh + (et + wr) (6)

RotE, RefE These models optimise a full cross-
entropy loss. Like MuRE, square distance between
two vectors is used as a score function. Unlike
the previous model, they apply a Givens rotation
(Rot) or reflection (Ref), as defined in Chami et al.
(2020), and a translation to the head entity. Thus,
we refer to these models as head-modifiers. Syntac-
tic composition is defined via the score functions
in Equations 7 and 8:

esyn = (Rot(Tr)eh + tr) + et (7)

esyn = (Ref(Fr)eh + fr) + et (8)

where T, F 2 R|R|⇥n
2 each contain |R| diagonal

matrices (each corresponding to a relation-specific
Givens rotation or reflection), and t, f 2 R|R|⇥n are
relation-specific translations.

2This corresponds to simple-sum composition in the origi-
nal work by Czarnowska et al. (2019).
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AttE Intuitively, AttE is designed to model the
contribution of different GTs (in this case just ro-
tation and reflection). This is achieved via a self-
attention mechanism. Given two embeddings x,
y, and an attention vector a, attention scores are
computed via Equation 9:

(↵x,↵y) = Softmax(aTx, aT y) (9)

These scores are then averaged (Equation 10):

Att(x, y; a) = (↵xx+ ↵yy) (10)

To actively select the most suitable transformation
for a given triple, rotation and reflection are applied
to the head-entity embedding (Equation 11):

qRot = Rot(Tr)eh, qRef = Ref(Fr)eh (11)

The two representations are than combined using a
self attention mechanism (Equation 12):

Q(h, r) = Att(qRot, qRef; ar) + pr (12)

with p 2 R|R|⇥n as the relation-specific translation.
Q and the et are then used as arguments for d as in
Equation 5. Syntactically contextualised composi-
tion (syn) for AttE is implemented via Equation 13:

esyn = Q(h, r) + et (13)

4 Experiments

Our main aim is to investigate the potential of mod-
els in terms of constructing high quality word rep-
resentations and their support for composition. To
this end, experiments were carried out with a set of
models trained on KGs, and a second set of models
trained on SyGs. This allows us to investigate the
value of encoding distributional information from
SyGs or whether KGs alone might be a sufficient
source of data to obtain competitive results. We
hypothesise that when using KGs alone: i) word
similarity tasks might yield high results; ii) com-
positional evaluation will yield poor results. As
for models trained on SyG, we expect to see: i)
a generally improved performance on most tasks,
when compared to models trained on KGs; ii) larger
models to be penalised across benchmarks and for
syntactically-contextualised (syn) composition.

4.1 Experimental setup

Benchmarks We divide our quantitative experi-
ments between word similarity and composition

tasks. For the word similarity tasks, we focus
on SimLex (Hill et al., 2015), MEN (Bruni et al.,
2014), and both similarity (WS s) and relatedness
(WS r) split of the WordSim353 (Finkelstein et al.,
2001) datasets. For every word pair, we produce
a model’s prediction using cosine similarity (CS).
We compare model predictions and human judge-
ments using Spearman’s ⇢.

For the compositional investigation, we focus
on the Mitchell and Lapata (2010) (ML10) dataset.
Items in this benchmark consist of pairs of two-
token phrases (e.g. (pour tea–drink water)) paired
with human judgements on their similarity. Phrases
are composed using the four different presented
strategies and the obtained representations are com-
pared via CS. Again, CS and human ratings are
compared via ⇢. We selected this benchmark for
two main reasons: i) the models’ structures lend
themselves straightforwardly to syntactically con-
textualised (syn) composition strategies for a two-
token item3; ii) the dataset is pre-split into three
syntactic-relation classes (i.e. adjective-nouns
(AN), verb-objects (VO) and noun-nouns (NN))
and this division offers an opportunity for a more
in-depth investigation on how different models and
operations manage to embed different syntactic re-
lations.

We trained each set of models with three random
initialisation, and report the mean and standard
error (SE) of the obtained ⇢s.

Implementation For MurE, RotE, RefE and
AttE we adapt the original PyTorch code. Since
an official release of the DM is not available, we
implemented a PyTorch version of the model4.

We trained the first set of GT models on the
WN18RR dataset, tuning negative sampling rate
(NS), optimiser and learning rate using mean recip-
rocal rank (MRR) on the development set5. Epochs
were kept stable at 50 and n to 300. We focused on
WN18RR as YAGO3-10 shares a minimal vocab-
ulary with the selected word-similarity and com-
positional benchmarks. FB15k-237, on the other
hand, has all the entities encrypted. The models ob-
tained from this training set were then evaluated on
both word-similarity and compositional tasks (see
Table 3) to provide a baseline for the SyG models.

3Czarnowska et al. (2019) proposed a more complex com-
position strategy, specifically for relative clause phrases which
we do not consider here.

4https://github.com/lorenzoscottb/
findings_ACL2021

5using the dataset’s original splits.

https://github.com/lorenzoscottb/findings_ACL2021
https://github.com/lorenzoscottb/findings_ACL2021
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Simlex MEN WS s WS r Adjective Nouns Verb Objects Noun-Noun
MuRE .38±.01 .45±.00 .42±.01 .21±.03 .19±.03 .31±.00 .13±.01
RotE .35±.01 .54±.00 .59±.00 .30±.02 .18±.03 .33±.00 .20±.02
RefE .36±.01 .54±.00 .57±.00 .30±.01 .16±.04 .37±.01 .14±.02
AttE .36±.01 .54±.00 .58±.01 .29±.00 .20±.00 .32±.00 .18±.00

Table 3: Spearman ⇢s’ (mean ± SE) obtained on all selected benchmarks, for knowledge-graph models trained on
WN18RR dataset.

A second set of models was trained on the
text86 corpus, parsed with spaCy (Honnibal
and Johnson, 2015). Following Czarnowska et al.
(2019), minimum item count, epochs, NS, opti-
miser and learning rate were fine-tuned on Sim-
Lex. Hyperparameters are selected from the union
of the ones proposed in (Balazevic et al., 2019;
Czarnowska et al., 2019; Chami et al., 2020). All
the models share the same number of dimensions,
i.e., n = 300. For a fair comparison, all exper-
iments for this set have been conducted on the
vocabulary shared across the models. Final cov-
erage and best hyperparamenters are reported in
Appendix A.2 and A.1. All models were trained
using NVIDIA Titan V GPUs.

4.2 Results

WN18RR trained models We begin our quan-
titative investigation evaluating models from the
knowledge graph literature, trained on WN18RR,
on all benchmarks. Looking at Table 3, we note
that these models, compared to models trained on
text8 or similar distributional models trained on
much larger corpora, achieve competitive results on
the word similarity benchmarks, especially in the
historically challenging SimLex dataset, despite
the small vocabulary and training samples.

A possible explanation for these results lies in
how entities co-occur in the training data. First
of all, WN18RR has a limited vocabulary (see Ta-
ble 2), and is poorly populated by adjectives. Fur-
thermore, noun and verbs, two part of speech (POS)
that frequently co-occur between each other in nat-
ural language, here mainly occur within each other
(i.e. verb with verb, noun with noun). In few cases,
especially for verbs, the co-occurrences are not
only limited to the same POS, but interest the very
same word. All models perform much worse on
the relatedness split of WS-353 than the similarity
split. This might be expected, for models trained
on WordNet data. As predicted, the performance
is generally poor for composition benchmarks. An

6http://mattmahoney.net/dc/textdata

exception seems to be the VO subset, where mod-
els achieve results that, as will be presented shortly,
are competitive also for text8-trained models.

Word similarity Our motivation for experiments
with models trained on text8 is to understand
whether models previously proposed for represent-
ing KGs are competitive with distributional models
such as DM in their ability to embed word and
syntactic relations. Results for word-similarity are
presented in Table 4.

Simlex MEN WS s WS r
DM .12±.01 .60±.01 .59±.02 .51±.03
MuRE .17±.01 .64±.00 .69±.01 .58±.00
RotE .17±.00 .64±.00 .70±.00 .58±.01
RefE .18±.01 .63±.01 .70±.01 .56±.00
AttE .16±.00 .61±.00 .69±.01 .57±.01

Table 4: Spearman ⇢s’ (mean ± SE) obtained on word-
word similarity benchmarks, with models trained on
text8 corpus.

First, scores on SimLex are much lower than:
i) those achieved by the KG-trained models; ii)
those presented elsewhere for DM in the literature
(Czarnowska et al., 2019). We note that the cor-
pus we used to train the models is significantly
smaller than the one used to train DM by the orig-
inal authors, and we assume that this, combined
with the low frequency of SimLex items in our
corpus, is the main reason for these differences.
Results for DM on the other word similarity bench-
marks are much closer to the performance achieved
by the original authors and, on these benchmarks,
DM clearly outperforms the baseline of models
trained on WN18RR. However, most notably, GT
models trained on the same data as DM, not only
achieve comparable results to DM, but they al-
most always outperform it, both in similarity-based
and relatedness-based benchmarks. Moreover, DM
seems to show the highest variation, especially for
WN s and WN r.

Composition Table 5 shows the results for
all text8-trained models on the compositional

http://mattmahoney.net/dc/textdata
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Adjective Nouns Verb Objects Noun-Nouns Average

DM

add .39±.02 .31±.03 .43±.03 .37±.02
syn-Rh .26±.02 .18±.02 .25±.03 .23±.02
syn-Rt .32±.03 .14±.02 .20±.02 .22±.02
syn-BiD .33±.02 .14±.02 .34±.03 .27±.02

MuRE

add .47±.01 .35±.01 .40±.00 .41±.00
syn-Rh .51±.01 .34±.01 .44±.01 .43±.00
syn-Rt .49±.01 .36±.01 .43±.01 .43±.01
syn-BiD .49±.01 .36±.01 .46±.01 .44±.00

RotE

add .49±.00 .37±.00 .43±.00 .43±.00
syn-Rh .48±.01 .36±.01 .41±.01 .42±.01
syn-Rt .47±.02 .35±.01 .41±.01 .41±.00
syn-BiD .49±.00 .38±.00 .45±.01 .44±.00

RefE

add .48±.01 .36±.00 .43±.01 .42±.00
syn-Rh .49±.01 .36±.01 .43±.01 .43±.01
syn-Rt .48±.01 .34±.02 .43±.01 .42±.01
syn-BiD .48±.00 .38±.01 .46±.01 .44±.01

AttE

add .46±.01 .35±.01 .41±.01 .41±.00
syn-Rh .47±.01 .35±.00 .43±.01 .41±.01
syn-Rt .45±.01 .29±.01 .43±.01 .39±.00
syn-BiD .48±.02 .36±.00 .46±.00 .43±.00

Table 5: Spearman ⇢s’ (mean ± SE) obtained on Mitchell and Lapata (2010) benchmark, with models trained on
text8 corpus. Phrasal composition is carried out by element-wise addition (add), and the three proposed syntax
(syn) aware strategies: root as head (syn-Rh), root as tail (syn-Rt) and bidirectional (syn-BiD). Best results for

each Phrase Type.

benchmark. Again, GT models show competitive
results, and generally outperform DM, which fails
at improving its performance with syn composition.
This last evidence is reversed in all other models.
That is, they all achieve best performance with one
of the syntax-aware composition methods. Look-
ing closer, we can see that, in most cases, the best
syn method is the bi-directional one, with the ex-
ceptions of MUuRE, RotE and RefE’s AN phrases.
Notably, syn-BiD is almost never a mere average
of the two representations that originated it. In
many cases, and especially for AttE, syn-BiD rep-
resentations produce a significantly larger gain in
performance, when compared to both syn-Rt and
syn-Rh. From the single model perspective, the
best performing one is RefE. Syntax-aware meth-
ods based on reflection always outperform the ad-
ditive baseline, and also obtained the best score in
the average sections, via bi-directional composi-
tion. Again, DM is the model showing the highest
variation in results. This provides further evidences
in favour of the lightweight models taken from the
KG literature

4.3 Statistical Analysis

All correlations were tested for significance, adopt-
ing the Holm correction (Holm, 1979) to account
for the large number of tests, and we observed no
p < .05. As the main interest of our work was the

compositional investigation (reported in Table 5), a
global comparison was conducted to test whether
observed differences in correlations were also sig-
nificant. We adopted a paired two-tail bootstrap
analysis (Berg-Kirkpatrick et al., 2012; Søgaard
et al., 2014; Dror et al., 2018), performed indepen-
dently between results from the three seeds. Given
the large number of comparisons, a Holm correc-
tion was adopted within the same Phrase Type. Re-
sults (see A.3 for more details) showed that, among
all models, the only one that generated a number
of insignificant differences was DM, mainly per-
taining to different strategies for composing NN
items.

4.4 Qualitative Analysis

We now investigate the impact of relation represen-
tations on word vectors and composition from a
qualitative point of view. Here, we focus on the
model that quantitative tests indicated as the most
promising one: RefE. We will start at the word
level, looking at syntactically contextualised single
words. The interest here, is to see if clear relation-
driven clusters can be identified within a reduced
space. To do so, we contextualise the set of roots
from ML10 (e.g. amount in vast amount), and
reduce the dimensions through PCA. Results in
Figure 2 suggest that the three syntactic relations
adopted for contextualisation (i.e. amod, dobj,
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(a) syn-Rt (b) syn-Rh (c) syn-BiD

Figure 1: PCA visualisation of RefE vector space. Images show the same word (•) and add-composed vectors (⇥),
in the context of representations composed with the four different syntax-aware (⌅) composition methods. All
composed vectors represent the set of phrases from the Mitchell and Lapata (2010) benchmark.

nmod) appear to generate as many distinguishable
clusters. Despite being limited, these results sup-
port evidence for syntactic subspace probed out of
mBert (Chi et al., 2020).

Figure 2: PCA visualisation of syntactically contextu-
alised root-items from ML10 phrases using RefE and
reflection. AN roots are contextualised using amod(⇥),
VO via dobj (•), NN via nmod (⌅).

Concluding, we explore how composition strate-
gies behave with respect to the word representa-
tions. To do so, we concatenate representations
obtained by add-composing the set of ML10 items
with the full original space, and each syntax-aware
strategy separately. The three obtained sets of con-
catenation (i.e. word–add–syn-Rt; word–add–syn-
Rh; word–add–syn-BiD) is then independently re-
duced to n=2 through principal component analysis
(PCA). Results are reported in Figure 1. As it
can be observed throughout the three reductions,

and mostly in Figure 1c, phrase representations
obtained via simple addition mainly lie within the
perimeter of the word space. A similar pattern is ob-
served in Figure 1a, with syn-Rt. Phrases composed
by using the root as the head of the triple are still
fairly close to the word-space perimeter, but tend
to abandon its centre. Lastly, Figure 1c shows how
bi-directional representations lie scattered fairly
distant from the word and add-composed represen-
tations. This last observation is contrary to theo-
ries suggesting that representations at every level
(word, phrase, sentence, etc..) should lie within the
same space (e.g. Weir et al. (2016)). However, it
may support recent work from neuroscience (e.g.
Ding et al. (2016)) suggesting that the brain net-
works processing word, phrases and sentences do
not completely overlap.

5 Discussion

Our results strongly suggest that light-weight mod-
els presented in the knowledge-graphs literature
can be efficiently applied to syntactic-graphs, and
be converted to distributional models that are con-
sistently able to make use of the learned word
and relation representations to improve semantic
phrase-composition. From the model-theoretical
point of view, evidence suggests that constrain-
ing linear maps with a reflection (together with
a non-linear translation) seems to be the most ef-
ficient way of encoding syntactic relations. Our
quantitative results also contribute to the debates
on how sequential language data, or English at
least, should be processed and what the role of
syntactic information should be. As mentioned in
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Section 3, the models selected distinguish between
being tail (DM), head (RotE, RefE and AttE) and
full (MuRE) modifiers. Further, we can change the
syntactic focus of any of these models by adopt-
ing the syn-Rt composition strategy instead of the
syn-Rh strategy. However, in our experiments, the
head-modifier models (RotE, RefE and AttE) out-
performed the tail-modifier and full models (DM
and MuRE) and achieved a better results with the
syn-Rh strategy than the syn-Rt strategy, i.e., when
the syntactic root of the phrase was taken as the
head of the triple rather than as the tail. In other
words, it appears better to contextualise the root
and compose with its dependent, which opposes
the linguistic arguments put forward by Weir et al.
(2016). However, even more notably, the syn-BiD
composition strategy, which combines the syn-Rh
and syn-Rt representations, generally gave a further
boost to performance. This is further evidence that
bi-directional information is more informative than
uni-directional information, not just in large neural
models such as LSTMs and transformers, and sup-
ports recent theory from neuroscience which argues
that what is crucial for composition is not the over-
all structure nor the root, but that we can identify
a phrase’s constituents and the relation they have
(Mollica et al., 2020). Evidence in favour of the
fact that composition strongly relies on local depen-
dencies based on syntactic structure was also found
by Saphra and Lopez (2020). Such work suggests
that LSTMs learn to compose following a hierar-
chical structure, driven by syntax, and that they
rely on the learned short sequences to build longer
and more reliable ones. Taken altogether, the evi-
dence from different language-related fields is be-
coming more compelling that syntax and phrase
composition should play an important role in the
composition of larger units of meaning.

6 Conclusions and Further Work

We have shown how GT models previously pro-
posed for encoding KGs can be adapted to encode
syntactic information in a distributional model. We
have demonstrated the high quality nature of the
distributional word representations and the poten-
tial for using syntactically-contextualised composi-
tion strategies for phrases. In particular, we have
demonstrated the competitiveness of lighter-weight
GT models when compared to more general models
based solely on unconstrained linear maps, such as
DM. Further, our analysis has shown how learned

representations for syntactic relations can be effi-
ciently exploited at the word level, transforming a
word through part-of-speech related regions of the
space, and at the phrase level, generating superior
composed representations. Furthermore, we have
shown, among the different GTs, reflection seems
to be the most promising for encoding syntactic
relations. Future work will focus on composition
on larger scale, syntactic-relation composition, and
whether syntactic and semantic graph can be simul-
taneously embedded using this framework.
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Sebastian Padó and Mirella Lapata. 2007. Dependency-
based construction of semantic space models. Com-

putational Linguistics, 33(2):161–199.

https://doi.org/10.18653/v1/W19-0408
https://doi.org/10.18653/v1/W19-0408
https://doi.org/10.18653/v1/W19-0408
https://arxiv.org/abs/1707.01476
https://arxiv.org/abs/1707.01476
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.1038/nn.4186
https://doi.org/10.1038/nn.4186
https://doi.org/10.18653/v1/P18-1128
https://doi.org/10.18653/v1/P18-1128
https://doi.org/10.18653/v1/2020.acl-main.367
https://doi.org/10.18653/v1/2020.acl-main.367
https://doi.org/10.18653/v1/2020.acl-main.367
https://doi.org/10.1016/j.cognition.2020.104348
https://doi.org/10.1016/j.cognition.2020.104348
https://doi.org/10.1016/j.cognition.2020.104348
https://www.aclweb.org/anthology/P13-1088
https://www.aclweb.org/anthology/P13-1088
https://www.aclweb.org/anthology/P13-1088
https://doi.org/10.18653/v1/D15-1162
https://doi.org/10.18653/v1/D15-1162
https://doi.org/10.18653/v1/D15-1162
https://openreview.net/forum?id=S1Euwz-Rb
https://openreview.net/forum?id=S1Euwz-Rb
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.18653/v1/N16-1175
https://doi.org/10.18653/v1/N16-1175
http://www.aclweb.org/anthology/P14-2050
http://www.aclweb.org/anthology/P14-2050
https://doi.org/10.18653/v1/D17-1159
https://doi.org/10.18653/v1/D17-1159
https://doi.org/10.18653/v1/D17-1159
https://doi.org/10.1162/nol_a_00005
https://doi.org/10.1162/nol_a_00005


3353

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference

of the North American Chapter of the Association

for Computational Linguistics: Human Language

Technologies, Volume 1 (Long Papers), pages 2227–
2237. Association for Computational Linguistics.

Jacob Russin, Jason Jo, Randall O’Reilly, and Yoshua
Bengio. 2020. Compositional generalization by fac-
torizing alignment and translation. In Proceedings

of the 58th Annual Meeting of the Association for

Computational Linguistics: Student Research Work-

shop, pages 313–327, Online. Association for Com-
putational Linguistics.

Naomi Saphra and Adam Lopez. 2020. LSTMs
compose—and Learn—Bottom-up. In Findings

of the Association for Computational Linguistics:

EMNLP 2020, pages 2797–2809, Online. Associa-
tion for Computational Linguistics.

Anders Søgaard, Anders Johannsen, Barbara Plank,
Dirk Hovy, and Hector Martı́nez Alonso. 2014.
What’s in a p-value in NLP? In Proceedings of the

Eighteenth Conference on Computational Natural

Language Learning, pages 1–10, Ann Arbor, Michi-
gan. Association for Computational Linguistics.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. RotatE: Knowledge graph embedding
by relational rotation in complex space. In Interna-

tional Conference on Learning Representations.

Yi Tay, Anh Tuan Luu, Aston Zhang, Shuohang Wang,
and Siu Cheung Hui. 2019. Compositional de-
attention networks. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
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