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Abstract

In this paper, we investigate few-shot joint
learning for dialogue language understanding.
Most existing few-shot models learn a sin-
gle task each time with only a few exam-
ples. However, dialogue language understand-
ing contains two closely related tasks, i.e., in-
tent detection and slot filling, and often bene-
fits from jointly learning the two tasks. This
calls for new few-shot learning techniques that
are able to capture task relations from only a
few examples and jointly learn multiple tasks.
To achieve this, we propose a similarity-based
few-shot learning scheme, named Contrastive
Prototype Merging network (ConProm), that
learns to bridge metric spaces of intent and
slot on data-rich domains, and then adapt the
bridged metric space to specific few-shot do-
main. Experiments on two public datasets,
Snips and FewJoint, show that our model sig-
nificantly outperforms the strong baselines in
one and five shots settings.

1 Introduction

Few-Shot Learning (FSL) that committed to learn-
ing new problems with only a few examples (Miller
et al., 2000; Vinyals et al., 2016) is promising to
break the data-shackles of current deep learning.
Commonly, existing FSL methods learn a single
few-shot task each time. But, real-world applica-
tions, such as dialogue language understanding,
usually contain multiple closely related tasks (e.g.,
intent detection and slot filling) and often benefit
from jointly learning these tasks (Worsham and
Kalita, 2020; Chen et al., 2019; Qin et al., 2019;
Goo et al., 2018). In few-shot scenarios, such re-
quirements of joint learning present new challenges
for FSL techniques to capture task relations from
only a few examples and jointly learn multiple
tasks.

*Equal contributions.
†Corresponding author.

Train Domain 1

Support Examples:
This skirt product has stains issue. | intent: ReturnExchange
Search for red feature dress product. | intent: FindProduct

Query Example:
This waistcoat is not the right size.

Train Domain 2

Support Examples:
Play the Harry Potter film on the TV device . | intent: PlayVideo
Read the book Harry Potter book on headphones device. | intent: PlayVoice

Query Example:
Play The Lord of the Rings on my mobile.

Multi-Media
Domain

Test Domain

Shopping
Domain

Support Examples:
Where can I buy face masks product nearby? | intent: FindShop
Find the nearest barbecue food. | intent: FindRestaurant

Query Example:
Where can I buy bread.

Map Domain

Figure 1: Examples of the few-shot joint dialogue lan-
guage understanding. On each domain, given a few la-
beled support examples, the model predicts the intent
and slot labels for unseen query examples. Joint learn-
ing benefits from capturing the relation between intent
and slot labels, but such relation is hard to learn from a
few sparse examples and hard to transfer across differ-
ent domains.

This paper explores the few-shot joint learning
in dialogue language understanding as an early at-
tempt for this issue. As shown in Figure 1, FSL
models are usually first trained on source train-
ing domains, then evaluated on an unseen target
test domain. Although joint learning can improve
dialogue language understanding by utilizing the
relation between intents and slots, e.g., “Harry Pot-
ter” is “film” in “PlayVideo” intent and “book”
in “PlayVoice” intent, it faces serious challenges
when engaging to FSL setting. Firstly, it is hard
to learn generalized intent-slot relations from only
a few support examples. Secondly, because the
intent-slot relation differs in different domains, it is
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hard to directly transfer the prior experience from
source domains to target domains. For instance, the
intent-slot relation, “PlayVideo”-“film”, has never
appeared in source domains.

To tackle the aforementioned joint learning chal-
lenges in few-shot dialogue language understand-
ing, we propose the Prototype Merging, which
learns the intent-slot relation from data-rich train-
ing domains and adaptively captures and utilizes
it to an unseen test domain. The intent-slot rela-
tion is learned with cross-attention between intent
and slot class prototypes, which are the mean em-
beddings of the support examples belonging to the
same classes. Such intent-slot relation adaptively
connects the metric spaces of the two tasks.

Further, to jointly refine the intent and slot met-
ric spaces bridged by Prototype Merging, we claim
that related intents and slots, such as “PlayVideo”
and “film”, should be closely distributed in the met-
ric space, otherwise, well-separated. To achieve
this, we propose Contrastive Alignment Learn-
ing, which exploits class prototype pairs of re-
lated intents and slots as positive samples and non-
related pairs as negative samples. With these sam-
ples, it regularizes the FSL process with a margined
contrastive loss.

Overall, we named the above novel few-shot
joint learning framework as Contrastive Prototype
Merging network (ConProm), which connects in-
tent detection and slot filling tasks by bridging the
metric spaces of them. Two main components of
it cooperate to accomplish this goal. As shown in
Figure 2, Prototype Merging builds the connection
between two metric spaces, and Contrastive Align-
ment Learning refine the bridged metric space by
properly distributing prototypes.

Experiments on two public datasets show both
Prototype Merging and Contrastive Aligning Ob-
jective significantly boost the few-shot joint learn-
ing effects and outperform strong baselines. In
summary, our contribution is three-fold: (1) We
investigate the few-shot joint dialogue language
understanding problem, which is also an early at-
tempt for few-shot joint learning problem. (2) We
propose a novel Prototype Merging mechanism to
build intent-slot connections adaptively. (3) We
introduce a Contrastive Alignment Learning ob-
jective to jointly refines the metric spaces of in-
tent detection and slot filling. For reproducibil-
ity, our code for this paper is publicly available at
https://github.com/AtmaHou/FewShotJoint.

Prototype Merging

Slot Space

𝐶𝑓𝑖𝑙𝑚
𝐶𝑏𝑜𝑜𝑘

𝐶𝑃𝑙𝑎𝑦𝑉𝑜𝑖𝑐𝑒

𝐶𝑑𝑒𝑣𝑖𝑐𝑒

𝐶𝑃𝑙𝑎𝑦𝑉𝑖𝑑𝑒𝑜

Contrastive Alignment Learning

Intent Space

Cross-Attention 
Fusion

𝐶𝑓𝑖𝑙𝑚

𝐶𝑃𝑙𝑎𝑦𝑉𝑖𝑑𝑒𝑜

𝐶𝑏𝑜𝑜𝑘

𝐶𝑃𝑙𝑎𝑦𝑉𝑜𝑖𝑐𝑒

𝐶𝑑𝑒𝑣𝑖𝑐𝑒

Bridged Metric Space

Inter loss (Attract)
Intra loss (Repel)
Moving direction

Support Examples: 
Play the Harry Potter Film on the TV device .  | intent: PlayVideo
Read the book Harry Potter Book on headphones device.  | intent: PlayVoice

Query Instance:
Play The Lord of the Rings on TV

Multi-Media
Domain

Figure 2: Illustration of two main components of the Con-
Prom model: Prototype Merging and Contrastive Alignment
Learning. C denotes prototypes. To ease understanding, we
omit the repelling Inter loss in Bridged Metric Space, e.g, loss
between Cbook and CPlayVideo.

2 Background

Before start, we introduce the background of dia-
logue language understanding and few-shot learn-
ing.

2.1 Dialogue Language Understanding

Dialogue language understanding contains two
main components: intent detection and slot filling
(Young et al., 2013). Intent detection is a sentence-
level classification problem that classifies a user
utterance into one of N intent categories.

Different from intent detection, slot filling aims
to extract key entities within user utterances, which
is often achieved by assigning slot tags to each to-
ken of a user utterance and is usually formulated
as a sequence labeling problem. Given input utter-
ance x = 〈x1, x2, . . . , xn〉 as a sequence of words,
joint dialogue language understanding predicts the
corresponding semantic frame y = (l, t), where
l is the intent label and t = 〈t1, t2, . . . , tn〉 is the
slot tags sequence of the utterance.

2.2 Few-shot Learning

Few-shot learning (FSL) extracts prior experience
that allows quick adaption to new problems. There-
fore, FSL models are usually first trained on a set
of source domains, then evaluated on another set
of unseen target domains. Figure 1 shows an exam-
ple of the training and testing process of few-shot
learning for dialogue language understanding.

A target domain only contains a few labeled
examples, which is called support set S ={
(x(i),y(i))

}|S|
i=1

. S includesK examples (K-shot)
for each of N classes (N-way). Taking classifica-
tion problem as an instance: given an input query

https://github.com/AtmaHou/FewShotJoint
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example x = 〈x1, x2, . . . , xn〉 and a K-shot sup-
port set S as references, we find the most appropri-
ate class y∗ of x:

y∗ = argmax
y

p(y | x,S).

State-of-the-art few-shot learning is often
similarity-based methods (Bao et al., 2020; Snell
et al., 2017). These methods conquer the extreme
lack of data by learning a general similarity metric
space on data-rich source domains. Then on few-
shot target domains, they classify a query example
according to example-class similarity, where class
representations are obtained from a few support
examples.

Prototypical network (Snell et al., 2017) is one
of the most classical similarity-based methods. It
obtains the class representation as to the mean em-
bedding of support examples belonging to the same
class, so called prototypes:

Ci =
1

|Si|
∑

(x,y)∈Si

E(x),

where Si is the set of support examples of the ith
class, and E(·) is the embedding function. The
probability of x belongs to the ith class is then
made as:

p(yi | x, S) =
exp (SIM(E(x), Ci))∑
j exp (SIM(E(x), Cj))

,

where SIM(·, ·) is a vector similarity function.

3 Proposed Method

In this section, we introduce the proposed
Contrastive Prototype Merging network (Con-
Prom). Firstly, we describe the few-shot intent
detection and slot filling with Prototypical network
(§3.1). Based on that, we present two key compo-
nents of ConProm: the Prototype Merging mecha-
nism that adaptively connects two metric spaces of
intent and slot (§3.2) and the Contrastive Align-
ment Learning that jointly refines the metric space
connected by Prototype Merging (§3.3).

3.1 Few-shot Intent Detection and Slot Filling

We build our few-shot intent detection and slot
filling model based on the Prototypical Network
described in Section 2.2. Given a query sentence x
and a support set S , we estimate the probability of
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Cross-attention Fusion

Figure 3: Illustration of cross-attention based information
fusion in Prototype Merge. Thicker lines indicate higher cross-
attention scores. For example, “PlayVideo” and “film” are
more related, so the corresponding score is larger.

x being associated with intent label li as:

p(li | x,S)

=
exp (SIM(Eintent(x), Cintenti))∑
j exp (SIM(Eintent(x), Cintentj ))

,

and estimates the probability of the kth token in x
belonging to the ith slot class as:

p(ti | k,x,S)

=
exp (SIM(Eslot(xk), Csloti))∑
j exp (SIM(Eslot(xk), Cslotj ))

,

where Cintenti and Csloti are prototypes derived
with support examples. Eintent(·) and Eslot(·) are
embedder functions for intent and slot respectively.
We adopt BERT (Devlin et al., 2019) as the em-
bedder, and the sentence embedding Eintent(x) is
calculated as the averaged embedding of its to-
kens. We use the dot-product similarity for function
SIM(·, ·).

3.2 Prototype Merging
To achieve few-shot joint learning and capture
the intent-slot relation with the similarity-based
method described above, we need to bridge the
metric spaces of intent detection and slot filling.
However, as mentioned in the introduction, intent-
slot relation differs in different domains, it is hard
to transfer the bridged metric space learned from
source domains to target domains.

To remedy this, we propose the Prototype
Merging that can bridge metric spaces adaptively.
As shown in Figure 3, Prototype Merging adap-
tively estimates intent-slot relevance with cross-
attention between intent and slot, and then merges
the intent and slot prototypes with attentive infor-
mation fusion. Such an attentive fusion process
enables both intent and slot prototype representa-
tions to reflect intent-slot relation and improves
domain transferability.
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On an unseen target domain, we estimate the
intent-slot cross-attention scores from the support
set with two methods: (1) use the statistic of co-
occurrence of different intents and slots; (2) esti-
mate the intent-slot relevance score using prototype
representations.

Firstly, for the statistic-based attention-score, we
estimate intent-slot attention scores AS by count-
ing the co-occurrence of different intents and slots,
where AS

i,j records the normalized number of co-
occurrence times for the ith intent and the jth slot
(normalized by row).

Secondly, for representation-based attention-
score, we estimate the cross-attention scores with
the Additive Attention (Bahdanau et al., 2015):1

AR
i,j = V >tanh(WCintenti + UCslotj ),

where AR is the attention matrix, and AR
i,j records

the cross-attention score between the ith intent and
the jth slot. U , V andW are parameters learned on
source domains,which preserve the general experi-
ence of estimating relevance with representations.
Cintenti and Cslotj are prototypes of ith intent and
the jth slot respectively. We normalize AR by row
with softmax function.

We obtain the final cross-attention score matrix
A by combining AS and AR.

A = λAS + (1− λ)AR,

where λ is the interpolation factor.
After obtaining the cross-attention scores, we

represent each intent by fusing the information of
related slot prototypes, where the attention scores
are used as fusing weights. Similarly, we use intent
prototypes to represent slots (See Figure 3). The
fusion process is as follows:

CF
intenti =

∑
j

Aij × Cslotj ,

CF
slotj

=
∑
i

Aij × Cintenti ,

where CF
intenti

and CF
slotj

are the fused prototypes
of ith intent and the jth slot respectively.

At last, we obtain the representation of merged
prototypes C ′ by combining the origin prototype

1We adopt additive attention because we find it outper-
forms common product-based attention in our setting. This
is mainly due to that additive attention interferes less with
product-based similarity calculations.

C with the fused prototype CF:

C ′intent = α× CF
intent + (1− α)× Cintent,

C ′slot = α× CF
slot + (1− α)× Cslot,

where the α is a hyper-parameter that controls the
importance of intent-slot relation.

3.3 Contrastive Alignment Learning
Similarity-based few-shot learning relies heavily
on a good metric space, where different classes
should be well separated from each other (Hou
et al., 2020a; Yoon et al., 2019). In joint-learning
scenarios, there are further requests to connect met-
ric spaces of joint learned tasks and jointly optimize
these metric spaces.

In response to the above requests, we argue that
the distribution of prototypes of dialogue language
understanding should fit these intuitions: (1) dif-
ferent intent prototypes should be far away and
the same as slot prototypes (Intra-Contrastive); (2)
the slot prototypes should close to the related in-
tent prototypes and should be far away from the
unrelated intent prototypes (Inter-Contrastive).2

To achieve these, we introduce a Margined Con-
trastive Loss to force the model to learn the sepa-
ration and alignment of intent and slot prototypes.

Firstly, to encourage separation of prototypes
from the same task, we regularize the learning of
intent and slot prototypes with Intra-Contrastive
loss LIntra = 1

2(LIntra−intent+LIntra−slot), where
both the LIntra−intent and LIntra−slot are calculated
as:

LIntra =
1

N2

∑
i

∑
j

max(0,m− ‖Ci − Cj‖)2,

where m is the margin value and N is the number
of prototypes. The margin m is important since it
can protect metric space from excessive dispersion.

Next, we learn the alignment (separation) be-
tween intent prototypes and slot prototypes with
Inter-Contrastive loss LInter:

LRi =
1

2|Ri|
∑
j∈Ri

(
∥∥Cintenti − Cslotj

∥∥2),
LUi =

1

2|Ui|
∑
k∈Ui

max(0,m− ‖Cintenti − Cslotk‖)
2,

LInter =
NI∑
i

(LRi + LUi ),

2A slot is related to an intent means that they used to
co-occur in the same semantic frame.
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where Ri is the set of slots related to the ith in-
tent and Ui is the set of slots that are not related
to the ith intent. NI is the number of intents.
Here, we simply obtain the relatedness with the
co-occurrence matrix MS in Section 3.2.

Finally, the Margin Contrastive Loss is calcu-
lated as:

LContrastive = LInter + LIntra

3.4 Learning Objective
In dialogue language understanding task, we joint
learn the intent detection task and slot filling by op-
timizing both losses at the same time. Specifically,
we use CrossEntropy (CE) to calculate the loss for
intent detection and slot filling. Combining with
the loss of Contrastive Alignment Learning, we
train the entire model with the following objective
function:

Lall = CEintent +CEslot + LContrastive

4 Experiments

We evaluate our method on the dialogue language
understanding task of 1-shot/5-shot setting, which
transfers knowledge from source domains (train-
ing) to an unseen target domain (testing) containing
only 1-shot/5-shot support set.

4.1 Settings
Dataset We conduct experiments on two public
datasets: Snips (Coucke et al., 2018) and FewJoint
(Hou et al., 2020c). Snips is a widely-used dataset
for dialogue language understanding, containing
seven single-intent domains together with 53 slots.
The other dataset FewJoint is joint dialogue lan-
guage understanding used in the few-shot learning
contest of SMP2020-ECDT Task-1.3 It contains
59 multi-intent domains, 143 different intents, and
205 different slots.

In the few-shot learning setting, we train mod-
els on several source domains and test them on
unseen target few-shot domains. For Snips, we
follow Krone et al. (2020a) and combine single-
intent domain into multi-intent domain to achieve
the classification of intents. After that, we split the
Snips dataset into 3 parts: the training domain with
3 intents, the developing domain with 2 intents and
the testing domain with 2 intents. FewJoint is al-
ready a few-shot learning benchmark. Therefore,

3The Eighth China National Conference on Social Media
Processing https://smp2020.aconf.cn/smp.html

we follow the original data split and there are 45
domains for training, 5 domains for developing and
9 domains for testing.

Few-shot Dataset Construction To simulate the
few-shot learning situation, we follow previous
few-shot learning works (Vinyals et al., 2016;
Krone et al., 2020a; Finn et al., 2017) and construct
the dataset into a few-shot episode style, where
the model is trained and evaluated with a series of
few-shot episodes. Each episode contains a sup-
port set and query set. However, different from
the single-task problem, joint-learning examples
are associated with multiple labels. Therefore, we
cannot guarantee that each label appears K times
while sampling examples for the K-shot support
set. To remedy this, we build support sets with
the Mini-Including Algorithm (Hou et al., 2020a),
which is intended for such situations. It constructs
support set generally following two criteria: (1) All
labels appear at least K times in support set. (2)
At least one label will appear less than K times in
the support set if any support example is removed
from the support set. For Snips, we construct 200
few-shot episodes for training, 50 for developing,
and 50 for testing. We set the query set size as 16
for training and developing, 100 for testing. For
FewJoint, we use the few-shot episodes provided
by the original dataset.

Evaluation We adopt three metrics for evalua-
tion: Intent Accuracy, Slot F1-score, Joint Accu-
racy.4 For joint dialogue language understanding,
Joint Accuracy is the most important metric among
all three metrics (Hou et al., 2020c). It evaluates the
sentence level accuracy, which considers one sen-
tence is correct only when all its slots and intents
are correct.

To conduct a robust evaluation under few-shot
setting, we validate the models on multiple few-
shot episodes (i.e., support-query set pairs) from
different domains and take the average score as fi-
nal results. To control the non-deterministic neural
network training (Reimers and Gurevych, 2017),
we report the average score of 5 random seeds for
all results.

4.2 Baselines

We compare our model with two kinds of strong
baseline: fine-tune based transfer learning methods

4We calculate the Slot F1-score with the conll-
eval script https://www.clips.uantwerpen.be/
conll2000/chunking/conlleval.txt

https://smp2020.aconf.cn/smp.html
https://www.clips.uantwerpen.be/conll2000/chunking/conlleval.txt
https://www.clips.uantwerpen.be/conll2000/chunking/conlleval.txt
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Models Snips FewJoint

Intent Acc. Slot F1 Joint Acc. Intent Acc. Slot F1 Joint Acc.

SepProto 98.23±0.66 43.90±1.98 9.47±2.10 66.35±0.51 27.24±1.10 10.92±0.89

JointProto 92.57±0.57 42.63±2.03 7.35±1.70 58.52±0.28 29.49±1.01 9.64±0.47

LD-Proto 97.25±0.71 47.81±2.53 10.67±1.99 67.70±0.65 27.73±0.35 13.70±0.52

LD-Proto+TR 97.53±0.30 51.03±2.40 17.32±2.62 67.63±1.42 34.06±4.75 16.98±2.14

ConProm (Ours) 96.67±1.45 53.05±0.81 21.72±0.97 65.26±0.23 33.09±1.66 16.32±0.75

ConProm+TR (Ours) 96.17±0.76 55.84±0.85 29.72±1.30 65.73±0.55 37.97±0.70 19.57±1.19

JointTransfer 71.07±4.31 38.24±2.19 13.28±0.45 41.83±2.40 26.89±2.72 12.27±2.09

Meta-JOSFIN 71.38±0.76 31.47±0.29 8.88±0.18 57.92±0.66 29.26±0.45 15.00±0.66

LD-Proto+FT 83.85±6.21 45.76±5.24 17.70±2.67 64.70±0.50 32.15±1.28 21.32±1.80

ConProm+FT (Ours) 88.20±3.22 52.41±2.01 23.05±1.70 61.24±0.81 42.02±0.77 24.63±1.30

ConProm+FT+TR (Ours) 90.45±0.52 56.04±1.75 27.80±2.33 63.67±0.94 42.44±0.51 27.72±0.95

Table 1: Scores on 1-shot dialogue language understanding task on Snips and FewJoint datasets. +FT denotes finetune model.
+TR denotes using the trick of transition rule, which blocks illegal slot prediction, such as “I” tag after “O” tag. Results above
the mid-line are from non-finetune based methods, and results below the mid-line are from finetuning based methods.

Models Snips FewJoint

Intent Acc. Slot F1 Joint Acc. Intent Acc. Slot F1 Joint Acc.

SepProto 99.53±0.11 53.28±1.85 14.40±3.00 75.64±1.51 36.08±0.65 15.93±1.85

JointProto 99.17±0.09 50.63±2.01 13.40±1.44 70.93±2.45 39.47±1.05 14.48±1.11

LD-Proto 99.40±0.08 48.96±1.85 20.93±3.00 78.29±1.51 39.88±0.65 22.91±1.85

LD-Proto+TR 99.20±0.30 54.87±3.79 29.40±2.90 75.75±0.95 51.62±2.82 27.59±2.31

ConProm (Ours) 98.50±0.42 61.03±1.77 32.20±2.06 78.05±1.04 39.40±1.75 24.18±1.29

ConProm+TR (Ours) 98.99±0.14 65.13±1.46 40.20±2.24 75.54±1.85 50.28±1.03 28.69±1.61

JointTransfer 88.87±5.04 49.62±1.87 25.50±3.09 57.50±6.09 29.00±4.35 18.81±4.45

Meta-JOSFIN 92.47±1.26 56.85±1.25 25.87±0.31 78.91±0.53 53.88±1.63 36.63±1.01

LD-Proto+FT 81.07±8.61 59.27±3.61 26.33±2.38 80.50±0.97 55.33±2.55 38.11±2.60

ConProm+FT (Ours) 96.23±1.19 66.66±2.46 39.87±2.60 78.33±1.14 62.34±0.26 40.25±1.19

ConProm+FT+TR (Ours) 98.40±0.20 72.98±0.41 52.95±0.85 78.43±1.86 69.44±0.39 46.54±0.72

Table 2: Scores on 5-shot dialogue language understanding task on Snips dataset and FewJoint dataset.

(JointTransfer, Meta-JOSFIN) and similarity-based
FSL methods (SepProto, JointProto, LD-Proto).

JointTransfer is a domain transfer model based
on the JointBERT (Chen et al., 2019). It consists
of a shared BERT embedder with intent detection
and slot filling layers on the top. We pretrain it on
source domains and finetune it on target domain
support sets.

Meta-JOSFIN (Bhathiya and Thayasivam,
2020) is a meta-learning model based on the
MAML (Finn et al., 2017). The meta-learner
model here is a BERT-based joint dialogue
language understanding model similar to Joint-
Transfer. It learns initial parameters that can fast
adapt to the target domain after only a few updates.

SepProto is a prototypical-based dialogue lan-
guage understanding model with BERT embedding,

that learns intent detection and slot filling sepa-
rately. During the experiment, it is pre-trained on
source domains and then directly applies to target
domains without fine-tuning.

JointProto (Krone et al., 2020a) is all the same
as SepProto except that it jointly learns the intent
and slot tasks by sharing the BERT encoder.

LD-Proto is also a prototypical model similar to
JointProto. The only difference is that it is en-
hanced by the logits-dependency tricks (Goo et al.,
2018), where joint learning is achieved by depend-
ing on the intent and slot prediction on the logits of
the accompanying task.

Implements For both ours and baseline models,
we determine the hyperparameters on the develop-
ment set. We use ADAM (Kingma and Ba, 2015)
for training and set batch size as 4 and learning rate
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as 10−5. We adopt embedding tricks of Pairs-Wise
Embedding (Gao et al., 2019; Hou et al., 2020a)
and Gradual Unfreezing (Howard and Ruder, 2018).
The λ and α in Section 3.2 are both set as 0.5. We
implement both our and baseline models with the
few-shot platform MetaDialog.5 Besides, to use the
information in target domains and make a fair com-
parison with fine-tuning baselines, we explore the
performance of the similarity-based model under
fine-tuning setting (+FT) and enhance the model
with a fine-tune process similar to Meta-JOSFIN.
In addition, following the suggestions of Hou et al.
(2020a), we investigate adding Transition Rules
(+TR) between slot tags, which bans illegal slot
prediction, such as “I” tag after “O” tag.

4.3 Main Results

In this section, we present the evaluation of the pro-
posed method on both 1-shot and 5-shot dialogue
understanding setting.

Result of 1-shot setting As shown in Table 1,
our method (ConProm) achieves the best perfor-
mance on Joint Accuracy, which is the most impor-
tant metric. Among all metrics, ConProm only lags
a bit than LD-Proto on intent accuracy. We address
this to the fact that there are many slots shared
by different intent, and representing an intent with
slots may unavoidably introduce noise from other
intents. Considering the huge improvements on
Slot and Joint performance over LD-Proto, we ar-
gue that the limited loss is a worthy compromise
here. Since similarity-based models predict slot
tags independently for each token, they tend to pre-
dict illegal tags. We employ a simple transition rule
(+TR) to remedy such defects and further improves
the performance. For fairness, we also enhance LD-
Proto with TR trick and our model still outperforms
the enhanced baseline.

For those non-finetuned methods, ConProm out-
performs LD-Proto by Joint Accuracy scores of
11.05 on Snips and 2.62 on FewJoint, which show
that our model can better capture the relation be-
tween intent and slot. Our improvements on Snips
are higher than those on FewJoint, which is mainly
because that there is clearer intent-slot dependency
in Snips. The performance of JointProto is even
lower than SepProto, which demonstrates that few-
shot joint learning is not a trivial issue as simply
sharing the embeddings

5https://github.com/AtmaHou/MetaDialog

Setting Snips FewJoint

1-shot 5-shot 1-shot 5-shot

Ours 21.72 32.20 16.32 24.18
- PM -1.90 -2.63 -4.90 -8.39
- CAL -5.19 -12.73 -1.78 -3.78

Table 3: Ablation study over two main components of pro-
posed framework: Prototype Merge (PM) and Contrastive
Alignment Learning (CAL). The score is Joint Accuracy.

When finetuning brings significant improve-
ments for all methods, our model (ConProm+FT)
still achieves the best performance. Interestingly,
we observe that finetuning often hurts the intent
prediction. This shows that finetuning brings lim-
ited gains on sentence-level domain knowledge but
leads to overfitting.

Result of 5-shot setting Table 2 shows the 5-
shot results. The results are consistent with 1-shot
setting in general trending and our methods achieve
the best performance. While more learning shots
improve the performance for all methods, the su-
periority of our best performed baseline is further
strengthened. This shows that the model can bet-
ter exploit the richer intent-slot relations hidden in
5-shot support sets.

4.4 Analysis

Ablation Test To inspect how each component
of the proposed model contributes to the final
performance, we conduct ablation analysis. As
shown in Table 3, we independently removing two
main components: Prototype Merge (PM) and Con-
trastive Alignment Learning (CAL).

When PM is removed, the intent and slot pro-
totypes are represented only with corresponding
support examples, and Joint Accuracy drops are
witnessed. There is more loss on FewJoint. Be-
cause there are much more slots shared by different
intents in FewJoint, and the attention mechanism
of PM is important for identifying relatedness be-
tween intents and slots.

For our model without CAL, we train the model
with only cross entropy loss and get lower scores
on all settings. There are more performance drops
on Snips. This is mainly because that there much
clearer intent-slot relation in Snips, which can be
easily handled by CAL.

In terms of contribution, there are opposite per-
formance for CAL and PM on two dataset, which
shows that PM and CAL complement each other
and reach a balance for various situations.

https://github.com/AtmaHou/MetaDialog
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Figure 4: Visualization of the prototype distribution of Joint-
Proto and Ours (ConProm) with tSNE (step=500).

Models Snips FewJoint

F1. Acc. F1. Acc.

JointProto 42.63 8.08 29.49 15.73
LD-Proto 47.81 10.72 27.73 20.44
LD-Proto+TD 51.03 17.53 34.06 24.69
ConProm 53.05 22.30 33.09 22.38
ConProm+TD 55.84 30.47 37.97 26.31

JointTransfer 38.24 14.38 26.89 26.37
Meta-JOSFIN 31.47 9.73 29.26 21.73
LD-Proto+FT 45.76 21.92 32.15 35.75
ConProm+FT 52.41 25.97 42.02 39.62
ConProm+TD+FT 56.04 27.91 42.44 40.71

Table 4: Analysis for sentence level slot accuracy.

Visual Analysis of Prototype Distribution To
get further an understanding of the model effects
on bridging the metric spaces of intent and slot, we
visualize the prototype distributions in the metric
space. As shown in Figure 4, it is exciting to see
that our model successfully refine the prototype
distribution by aligning the slots to related intent
and making prototypes properly well-separated.

Sentence level slot accuracy analysis There is
some confusion in Table 1 and Table 2 that there
are huge performance differences of Joint Accu-
racy score when Intent Accuracy scores and Slot
F1 scores are similar. We inspect this issue by eval-
uating the Sentence Level Slot Accuracy, which
considers a sentence to be correct when all slots are
correct. As shown in Table 4, there is a huge gap
in the slot accuracy score between LD-Proto and
ConProm, which explains the gap in Joint score.

5 Related Work

Few-shot learning is one of the most important di-
rection for machine learning area (Fei-Fei, 2006;
Fink, 2004) and often achieved by similarity-based
method (Vinyals et al., 2016) and fine-tuning based

method (Finn et al., 2017). FSL in natural language
processing has been explored for various tasks, in-
cluding text classification (Sun et al., 2019; Geng
et al., 2019; Yan et al., 2018; Yu et al., 2018), entity
relation classification (Lv et al., 2019; Gao et al.,
2020; Ye and Ling, 2019), sequence labeling (Luo
et al., 2018; Hou et al., 2018; Shah et al., 2019;
Hou et al., 2020a; Liu et al., 2020).

As the important part of a dialog system, dia-
logue language understanding attract a lot of atten-
tion in few-shot scenario. Dopierre et al. (2020);
Vlasov et al. (2018); Xia et al. (2018) explored few-
shot intent detection technique. Luo et al. (2018)
and Hou et al. (2020a) investigated few-shot slot
tagging by using prototypical network. Hou et al.
(2020b) explored few-shot multi-label intent detec-
tion with an adaptive logit adapting threshold. But
all of these works focus on a single task.

Despite a lot of works on joint dialogue under-
standing (Goo et al., 2018; Li et al., 2018; Zhang
et al., 2019; Qin et al., 2019; Wang et al., 2018; E
et al., 2019; Wu et al., 2020; Gangadharaiah and
Narayanaswamy, 2019; Liu et al., 2019; Qin et al.,
2020), few-shot joint dialogue understanding is less
investigated. Krone et al. (2020b) and Bhathiya and
Thayasivam (2020) make the earliest attempts by
directly adopt general and classic few-shot learning
methods such as MAML and prototypical network.
These methods achieve joint learning by sharing the
embedding between intent detection and slot fill-
ing task, which model the relation between intent
and slot task implicitly. By contrast, we explicitly
model the interaction between intent and slot with
attentive information fusion and constrastive loss.
Experiment results also demonstrate the superiority
of our method on this task.

6 Conclusion

In this paper, we propose a similarity-based few-
shot joint learning framework, ConProm, for di-
alogue understanding. To adaptively model the
interaction between intents and slots, we propose
the Prototype Merging that bridges the intent met-
ric and slot metric spaces with cross-attention be-
tween intent and slot. To learn better bridged met-
ric space for intent and slot, we propose the Con-
trastive Alignment Learning to align related cross-
task labels in metric space and force unrelated la-
bels properly separated. Experiment results vali-
date that both Prototype Merging and Contrastive
Alignment Learning can improve performance.
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