
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 3114–3123
August 1–6, 2021. ©2021 Association for Computational Linguistics

3114

IgSEG: Image-guided Story Ending Generation
Qingbao Huang1,2,6, Chuan Huang1, Linzhang Mo1

Jielong Wei1, Yi Cai2,5∗, Ho-fung Leung3, Qing Li4
1School of Electrical Engineering, Guangxi University, Nanning, Guangxi, China

2School of Software Engineering, South China University of Technology, Guangzhou, China
3Dept. of Computer Sc. & Engin, The Chinese University of Hong Kong, Hong Kong, China

4Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China
5Key Laboratory of Big Data and Intelligent Robot (SCUT), MOE of China

6Institute of Artificial Intelligence, Guangxi University, Nanning Guangxi, China
qbhuang@gxu.edu.cn, chuanhuangqy@gmail.com, mlz1997@163.com

Abstract

In this work, we propose a new task call-
ed Image-guided Story Ending Generation
(IgSEG). Given a multi-sentence story plot and
an ending-related image, IgSEG aims to gen-
erate a story ending that conforms to the con-
textual logic and the relevant visual concepts.
In contrast to the story ending generation task,
which generates open-ended endings, the ma-
jor challenges of IgSEG are to comprehend the
given context and image sufficiently, and mine
the appropriate semantics from the image to
make the generated story ending informative,
reasonable, and coherent. To address the chal-
lenges, we propose a Multi-layer Graph con-
volution and Cascade-LSTM (MGCL) based
model which mainly comprises of two collab-
orative modules: i) a multi-layer graph convo-
lutional network to learn the dependency rela-
tions of sentences and the logical clue of the
context; ii) a multiple context-image attention
module to generate the story endings by gradu-
ally incorporating textual and visual semantic
concepts. Our MGCL is thus capable of build-
ing logically consistent and semantically rich
story endings. To evaluate the proposed model,
we modify the existing VIST dataset to ob-
tain the VIST-Ending dataset. Empirically, our
MGCL outperforms all the strong baselines on
both automatic and human evaluation.

1 Introduction

As two challenging subtasks of story generation,
the story ending generation (SEG) and visual story-
telling (Huang et al., 2016; Zhao et al., 2018) have
attracted more attention recently. The former gen-
erates text-based story endings (Zhao et al., 2018;
Li et al., 2018; Guan et al., 2019). While, the lat-
ter generates photo-streams-based stories (Huang
et al., 2016; Wang et al., 2018; Hu et al., 2020) or
one-image-based stories (Gaur, 2019). Distinctly,
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Figure 1: In SEG, existing methods tend to generate
generic, safe, and inane story endings, e.g., (c). IgSEG
is designed to generate specific, reasonable and infor-
mative endings induced by the given ending-related im-
age. (d) is generated by the proposed MGCL model.

both of them are input with single-modal informa-
tion merely. Actually, people often confront with
demands to handle multi-modal inputs for generat-
ing a sentence or paragraph, e.g., comments gener-
ation given a news story and an image and picture
composition with a leading paragraph. However,
to our best knowledge, the SEG task incorporating
a context and an image is still under-explored.

Furthermore, due to the limited textual informa-
tion of the story context, the generated endings of
SEG models remain tending to be generic, safe,
and inane. To make the generation of story end-
ings more coherent, specific, and informative, we
consider introducing visual information to enrich
the generation of story endings. For example (cf.
Figure 1), the story context (a) mainly narrates that
the experience of someone went for gun training.
The story ending generated by SEG (c) just talks
about the feeling (e.g., happy) of the day, which
seems to be generic, safe, and unattractive for lack
of interesting events, imaginative conception, and
evocative plots. Meanwhile, Image Captioning (e)
generates the description of a given image (b) with-
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out any story context plot. Here, we introduce
the image to induce the development of the story
plot and guide the generation of the ending. The
image-guided story ending (d) is associated with
the senior semantic (e.g., proud) and events (e.g.,
hits) from the visual information. Obviously, this
ending seems to be high-quality compared with the
one generated by SEG.

We herein propose an Image-guided Story End-
ing Generation (IgSEG) task, which aims at gen-
erating a story ending with contextual plots and
an ending-related image. Models need to compre-
hend the story plots and the image information,
and grasp the visual semantic concepts strongly
related to the story plots (e.g., event, behavior, and
emotion). The main challenges of this task are
three-fold: (i) How to accurately select and capture
appropriate visual concepts matching the develop-
ment trend of the story plot from the image. (ii)
How to fuse the language and visual information
and model inter- and intra-modality relations ef-
ficiently. (iii) How to make the utmost of high-
level semantics mined from the image to write co-
herent, semantically-informative, and imaginative
story endings.

To capture the text contextual plots and merge vi-
sual features effectively, we propose a Multi-layer
Graph convolution and Cascade-LSTM (MGCL)
model. A multi-layer graph convolution module
is constructed to capture and encode the clues in-
formation (e.g., dependency relations (Zhang et al.,
2018)) hidden in context. In detail, following
(Huang et al., 2021), for each sentence, we con-
struct a graph over the dependency parsing tree and
conduct convolutional operations by Graph Convo-
lution Networks (GCN). We then employ attention
mechanism to compress each graph as one node
and deliver the node from low layer to high layer
for aggregation of inter-sentence information. Fur-
thermore, inspired by the work (Anderson et al.,
2018), we design a Multiple Context-Image Atten-
tion (MCIA) module to merge the contextual fea-
tures and the image features. Specifically, we apply
attention mechanism to weight sentence features
and image features separately, then concatenate
and feed them to the next Long Short Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
cell. We perform experiments on the VIST-Ending
(VIST-E) dataset which is modified from the VIST
(Huang et al., 2016).

Our contributions can be summarized as follows:

• We define a new task termed IgSEG to gener-
ate coherent, specific, and informative story
endings guided by an ending-related image.
To our best knowledge, this is the first story
generation task with multi-modal inputs.

• We propose a model called MGCL, which
employs multi-layer graph convolutional op-
erations to capture story contextual plots and
multiple context-image attentions to merge
visual features effectively.

• Experiments show that our model outperforms
several strong baselines on the VIST-E dataset.
Human evaluations show that our model can
generate story endings with better grammati-
cality, logicality, and relevance.

2 Related Work

The IgSEG task is related to (i) Story Ending Gen-
eration (SEG) and (ii) Visual Storytelling (VIST).
SEG (Zhao et al., 2018) is a subtask of story gen-
eration, which aims to understand the context and
generate a coherent story ending. Many researchers
have made great efforts on SEG. To improve the
diversity and rationality of the generated story end-
ings, (Li et al., 2018) tried to employ a Seq2Seq
model based on adversarial training. Similarly,
(Guan et al., 2019) made the model generate a
reasonable ending by introducing external com-
monsense knowledge. Further, (Wang and Wan,
2019) adopted a transformer-based conditional au-
toencoder to capture contextual clues to improve
coherence of story endings. (Guan et al., 2020) pro-
posed a knowledge-enhanced pretraining approach
for generating more reasonable stories. (Huang
et al., 2021) proposed a multi-level GCN to capture
the dependency relations of input sentences. Al-
though previous studies have made great progress,
due to the limitations of the SEG task itself, the
generated endings tend to be generic and safe to
some extent.

IgSEG is relevant to VIST as well. VIST aims
to generate a coherent story according to an im-
age stream. The main difficulty of VIST is how
to generate image-relevant sentences. The previ-
ous works on VIST can be roughly divided into
three categories. The first category focuses on de-
signing specific model architectures to improve the
quality of the generated stories (Kim et al., 2018;
Wang et al., 2019). The second one generate more
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Figure 2: The Multi-layer Graph Convolutional Networks structure for context encoding. For intra-sentence in-
formation, each sentence is constructed as a graph over dependency parsing. For inter-sentence information, each
graph is compressed as one node and is delivered to next layer. The output representation of each graph (i.e., S1,
S2, S3, S4) are feed into decoder.

expressive output with reinforcement learning and
adversarial training (Wang et al., 2018; Huang et al.,
2019; Mo et al., 2019; Hu et al., 2020). The third
one generates more common-sense stories by incor-
porating external knowledge. (Yang et al., 2019; Li
et al., 2019; Wang et al., 2020; Jung et al., 2020).

However, the inputs of both SEG and VIST are
single-modal information. The work on generating
story endings given a textual sequence and an im-
age simultaneously is unexplored. Therefore we
propose the IgSEG task.

3 Methodology

3.1 Overview
The proposed IgSEG task aims to generate a story
ending conforming the given contextual and vi-
sual information. Given a story context X ={
X1, X2, · · · , Xµ

}
and an ending-related image

V, where Xµ = xµ1x
µ
2 · · ·x

µ
c represents the µ-th

sentence with c words, IgSEG aims at generating a
story ending E = y1y2 · · · ym with m words.

To generate the contextual-consistent and image-
related story endings, we propose a Multi-layer
Graph convolutional networks and Cascade-LSTM
(MGCL) model based on the encoder-decoder
framework. In the encoder, we propose a Multi-
layer Graph Convolutional Networks (MGCN) over
dependency trees to learn the context representa-
tion (cf. Figure 2), and we extract the image fea-
tures with ResNet-152 (He et al., 2016). When

I went   to   a   gun            training                  class

nsubj compound compound

obj
case

det

Figure 3: Dependency parsing of a sentence.

decoding, we generate the story ending with the
cascaded LSTM framework. Specifically, we em-
ploy Top-Down LSTM to joint the context features
and image features. And we devise a Multiple
Context-Image Attention (MCIA) module to grasp
the image-related context and contextual-relevant
information of image for text generation. We will
introduce each part of MGCL below.

3.2 Story Context Representation
Graph Construction We parse the sentences with
Stanford Dependency tool (De Marneffe et al.,
2014) (cf. Figure 3). To capture the relations of
words in a sentence, we construct a graph G over
the dependency parsing tree for each sentence. Re-
garding the words x as nodes Ok, the word repre-
sentation ni as node feature, and the corresponding
relations on the dependency parsing tree as edges
ξk, the graph Gk of k-th sentence (k=1,2,3,4) can
be constructed:

Gk = (Ok, ξk). (1)

Multi-Layer GCN To deliver inter-sentence infor-
mation, we utilize attention mechanism to weight
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Figure 4: Illustration of the Cascade-LSTM framework. The Cascade-LSTM consists of TD and MCIA modules.
The MCIA module consists of µ LSTM. The v̄ denotes the mean-pooled image features, the s̄ denotes the mean-
pooled context features. The symbol “· · · ” denotes the omitted parts of MCIA module.

each node and sum them together as a new node
n
(k)
a for the (k + 1)-th layer GCN (cf. Figure 2):

Sk = [nk1 · · ·nkc ], (2)

θ = softmax(W k
0 Sk + bk0), (3)

nka =
n∑
i=1

θnki , (4)

where nki denotes the features of the i-th word of the
k-th sentence, W0 and b0 are trainable parameters.

After updating the nodes of (k + 1)-th layer
GCN, the graph Gk+1 structure is represented by
a (λ + k) × (λ + k) adjacency matrix Ak+1 =
{Aij , (i, j) ∈ (λ+ k)}. The corresponding value
Aij is 1 if the relation exists between node i and
node j, otherwise it is 0. The representations of
node i and its neighbor node j ∈ φ(i) are nk+1

i and
nk+1
j , respectively. To obtain the correlation score
wk+1
ij between node i and node j, we learn a con-

nected layer over concatenation of nodes features:

wk+1
ij = wTk+1σ

(
W k+1

1 [nk+1
i ;nk+1

j ] + bk+1
1

)
,

(5)
where wk+1, W k+1

1 , and bk+1
1 are trainable param-

eters, σ is the non-linear activation function, (·)T
denotes transpose operation, and [; ] denotes the
concatenation operation.

We apply the softmax function over the correla-
tion score wij to obtain the weight αij :

αk+1
ij =

exp(wk+1
ij )∑

j∈φ(i) exp(wk+1
ij )

. (6)

In the adjacency matrix Ak+1, the value is αk+1
ij

if the relation exists between node i and node j,

otherwise is 0. The Ak+1
ij can be denoted as:

Ak+1
ij =

{
αk+1
ij nodes i, j are related

0 nodes i, j are unrelated
. (7)

For each node of the (k + 1)-th GCN layer, we
update the (h+ 1)-th representation of node nh+1

i

with aggregating the representations of h-th neigh-
boring nodes nhj . This procedure is denoted as:

nh+1
i = σ(Aiin

h
i +

∑
j∈φ(i)

Aij(W
h
2 n

h
j + bh2)), (8)

where W h
2 and bh2 are trainable parameters. By l

updates, the output Sk+1 of GCN is denoted as:

Sk+1 = [nk+1
1 · · ·nk+1

c ]. (9)

3.3 Decoder
The inputs of the decoder are the context features
S =

{
Sk
}4
k=1

and the image features v extracted
with the pre-trained model ResNet152 (He et al.,
2016), as shown in Figure 4.
Top-Down LSTM (TD) Following previous work
(Anderson et al., 2018), we employ Top-Down
LSTM to incorporate the visual information (cf.
Figure 4(a)). We operate LSTM over a single time
step in the decoder with the following notation:

ht = LSTM(xt, ht−1) (10)

where xt is the input vector of LSTM and ht is the
output vector. The inputs of TD module xDt con-
sists of the previous output hLt−1 of MCIA module,
the mean-pooled image features v̄, and the embed-
ding of the previously generated word E(wt−1),
where t denotes the current time step.

To incorporate the context information, we mod-
ify the original inputs of TD. Firstly, we calculate
the mean-pooled context features s̄:

s̄ =
1

µ

1

c

µ∑
k=1

c∑
i=1

nki , (11)
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where µ denotes the number of sentences, c de-
notes the number of words of each sentence, nki
denotes the representation of the i-th word of the
k-th sentence. Then, the vector xDt is denoted as:

xDt = [hLt−1; s̄; v̄;E(wt−1)]. (12)

Multiple Context-Image Attention (MCIA) To
merge the context features and image features, we
devise the MCIA module. The MCIA module con-
sists of four LSTM layers (cf. Figure 4(b)), which
share all the parameters. The output hDt of TD
is input to the MCIA module. Given the output
hkt of (k − 1)-th LSTM layer in MCIA module
(h1t = hDt ), at each time step, we calculate the
normalized attention weight aki,t for each of word
representations nki of the k-th sentence:

aki,t = (wka)T tanh(W k
a n

k
i +W hk

a hkt ), (13)

where wka , W k
a , and W hk

a are trainable parameters.
The convex combination of all words ŝkt can be
calculated by nki :

βki,t = softmax(akt ), (14)

ŝkt =
c∑
i=1

βki,tn
k
i . (15)

Likewise, we calculate the normalized weight bki,t
for features vi of each region of the image:

bki,t = (wkb )T tanh(W k
b vi +W hk

b hkt ), (16)

where wkb , W k
b , and W hk

b are trainable parameters.
The convex combination of the image v̂kt can be
calculated by the image features vi:

γki,t = softmax(bkt ), (17)

v̂kt =

M∑
i=1

γki,tvi, (18)

where M denotes the the number of region of the
image. We concatenate ŝkt , v̂kt , and hkt as inputs of
the next LSTM layer:

xk+1
t = [ŝkt ;h

k
t ; v̂

k
t ]. (19)

Given the output hLt of MCIA module, we calculate
the conditional distribution over possible output
words at each time step as follows:

p(yt|y1:t−1) = softmax(Wph
L
t + bp), (20)

where Wp and bp trainable parameters, and y1:m
is the notation to refer to a sequence of words
(y1, · · · , ym). Finally, the product of conditional
distributions can be obtained by:

p(y1:m) =
T∏
t=1

p(yt|y1:t−1). (21)

4 Experiments

4.1 Dataset
To serve the IgSEG task, we modify the VIST
dataset (Huang et al., 2016) to obtain a VIST-
Ending (VIST-E) dataset, as shown in Table 1.
Specifically, we keep the first four sentences, the
ending sentence, and the last image of the photo
stream of the VIST dataset. We have removed the
stories which have corrupted images and rigmarole
sentences over 40 words.

Dataset Total Training Validation Test

VIST 50,200 40,155 4,990 5,055
VIST-E 49,913 39,920 4,963 5,030

Table 1: Statistics of VIST and VIST-E.

4.2 Baselines
We compare our model with following models.
Seq2Seq is a stack RNN-based model (Luong et al.,
2015) with attention mechanisms. Transformer is
a parallel model based solely on attention mech-
anisms (Vaswani et al., 2017). IE+MSA incor-
porates external knowledge with incremental en-
coding model for story ending generation(Guan
et al., 2019). T-CVAE is a transformer-based con-
ditional variational autoencoder for missing story
plots generation (Wang and Wan, 2019). To adapt
the IgSEG task, we rebuild above baselines by
concatenating visual features as inputs. For fair
comparison and testing our model, two variants
of MGCL are created with the same inputs of the
baselines. MG+CIA: We keep one Context-Image-
Attention (CIA) unit in the decoder of MGCL.
MG+Trans: We replace the decoder of MGCL
with Transformer.

4.3 Evaluation Metrics
Automatic Evaluation We adopt four automatic
metrics: BLEU (B) (Papineni et al., 2002) eval-
uates n-gram overlap between generated ending
and a reference. METEOR (M) (Banerjee and
Lavie, 2005) evaluates a generated sentence with
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Model B1 B2 B3 B4 M C R-L Gram. Logic. Rele.

Seq2Seq†(Luong et al., 2015) 13.96 5.57 2.94 1.69 4.54 12.04 16.84 1.59 1.61 1.65
Transformer†(Vaswani et al., 2017) 17.18 6.29 3.07 2.01 6.91 12.75 18.23 3.01 2.15 1.96
IE+MSA†(Guan et al., 2019) 19.15 5.74 2.73 1.63 6.59 15.56 20.62 3.41 2.09 1.52
T-CVAE†(Wang and Wan, 2019) 14.34 5.06 2.01 1.13 4.23 11.49 15.51 1.89 1.76 1.25

MG+Trans† (ours) 19.43 7.47 3.92 2.46 7.63 14.42 19.62 3.46 2.77 2.60
MG+CIA† (ours) 20.91 7.46 3.88 2.35 7.29 19.88 21.12 2.80 2.35 1.97
MGCL (our full model) 22.57 8.16 4.23 2.49 7.84 21.46 21.66 3.51 3.17 2.75

Table 2: Experiments on the VIST-E dataset for the IgSEG task (p-value < 0.01). The bold / underline denotes the
best and the second performance, respectively. † denotes the image features are directly concatenated.

Model B2 B4 M C R-L

MGCL 8.16 2.49 7.84 21.46 21.66

w/o MGCN 7.11 2.03 7.23 20.26 19.74
w/o TD 5.18 1.04 6.74 10.33 18.93
w/o MCIA 7.17 2.17 7.13 17.62 19.75
w/o TD, MCIA 3.96 0.77 5.49 8.66 17.64

Table 3: Ablation studies. “w/o” means “without”.

direct word-ordering. CIDEr (C) (Vedantam et al.,
2015) evaluates the similarity of a generated sen-
tence against the references by human consensus.
ROUGE-L (R-L) (Lin, 2004) is applied to find the
length of the longest common subsequence.
Human Evaluation Considering the limitation of
automatic evaluation and the complexity of the
IgSEG task, it is necessary to conduct human eval-
uation. The criteria of human evaluation includes
three aspects: Grammaticality (Gram.) (Wang
and Wan, 2019) evaluates correct, natural, and
fluent of the generated story endings. Logicality
(Logic.) (Wang and Wan, 2019) evaluates whether
the story endings are reasonable and coherent. Rel-
evance (Rele.) (Yang et al., 2019) measures how
relevant the generated story endings and the input
images are. We randomly pick 100 generated story
endings from test-set for each model and employ
three professional annotators skills to make eval-
uation. Following (Yang et al., 2019), we apply a
5-grade marking system, with 5 as the maximum
grade and 1 as the worst. The final results are the
average of the scores given by the three annotators.

4.4 Experimental Settings

The dimension of word embedding is 300 from
GloVe.6B (Pennington et al., 2014). The update
times of each GCN is 5, the maximum number of
nodes in GCN is 43. The hidden layer dimension of
all LSTM is 512. The number of LSTM layer is 4
in MCIA module. The dimension of image features

is 7× 7× 2048 from ResNet-152 (He et al., 2016).
During training on the VIST-E dataset, the epoch is
set to 30 and the batch size is 128. The optimizer is
Adam with an initial learning rate of 4e-4. All base-
lines keep their own default settings. The dropout
rate is 0.5. Specially, inputs of Seq2Seq, Trans-
former, IE+MSA, and T-CVAE are concatenated
with context representations and image features.

4.5 Result Analysis

Automatic and Manual Evaluation
We perform experiments on the VIST-E dataset

comparing with several strong baselines, i.e.,
Seq2Seq, Transformer, IE+MSA, and T-CVAE.

The results of automatic and manual evaluation
are shown in Table 2. We have done significant test
comparing our model with these baselines by run-
ning all these models ten times. The results shows
that our model significantly outperforms them with
all p-values < 0.01. Specifically, our model im-
plements an improvement of 8.66 / 5.39 / 3.42 /
8.23 / 3.14 / 1.66 over the Seq2Seq / Transformer
/ IE-MAS / T-CVAE / MG+Trans / MG+CIA on
B1. As for B4, our model achieves an improve-
ment of 0.8 / 0.48 / 0.86 / 1.36 / 0.03 / 0.14 over
the Seq2Seq / Transformer / IE-MAS / T-CVAE
/ MG+Trans/ MG+CIA. With respect to M, our
model outperforms the Seq2Seq / Transformer /
IE-MAS / T-CVAE / MG+Trans / MG+CIA by 3.3
/ 0.93 / 1.25 / 3.61 / 0.21 / 0.55. And for R-L,
our model implements an improvement of 4.82 /
3.43 / 1.04 / 6.15 / 2.04 / 0.54 over the Seq2Seq
/ Transformer / IE-MAS / T-CVAE / MG+Trans /
MG+CIA. The results show that our MGCL model
can comprehend the context better with the MGCN
module, and merge the context features and image
features effectively with the MCIA module.

Our MGCL model also outperforms baselines
on all manual evaluation. Compared with the best
baseline, Gram. increases from 3.46 to 3.51, Logic.
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Model B1 B2 B4 M R-L

Seq2Seq 14.27 4.27 1.05 6.02 16.32
Transformer 17.06 6.18 1.57 6.55 18.69
IE+MSA 20.11 6.62 1.68 6.87 21.27
T-CVAE 20.36 6.63 1.88 6.74 20.98
Plan&Write 20.92 5.88 1.44 7.10 20.17
KE-GPT2 21.92 7.40 1.90 7.41 20.58

MG+Trans (ours) 18.55 6.76 2.33 7.31 19.02
MGCL (ours) 20.27 6.26 1.81 6.91 21.01

Table 4: Experiments on the VIST-E dataset (plain text)
for the SEG task. The bold / underline denotes the best
and the second performance, respectively.

increases from 2.77 to 3.17, and Rele. increases
from 2.60 to 3.75. It shows that our model can
generate the more coherent and reasonable story
endings than other baselines. Notably, our model
has a good performance on Rele., which shows that
MCIA module is helpful for enhancing the link of
the generated story endings with the images.
Ablation Study To explore the effectiveness of our
MGCL, we perform the ablation experiments on
VIST-E (cf. Table 3). When removing the MGCN
module and using the hidden features of the previ-
ous LSTM directly, the performance of our model
drops 0.46 on B4, 0.61 on M, 1.2 on C, and 1.92
on R-L, respectively. When removing the MCIA
and using hidden features of TD directly, the per-
formance drops 0.32 on B4, 0.71 on M, 3.84 on C,
and 1.91 on R-L, respectively. When removing TD
and MCIA and using a LSTM unit to decoder, the
performance drops 1.72 on B4, 2.35 on M, 12.8
on C, and 4.02 on R-L. All of the these show that
the MGCN module and MCIA module can help to
generate the more contextual-consistent and image-
related story endings.
Comparison on SEG To verify the effectiveness
of image guidance, we conduct experiments on
VIST-E dataset removing the image. The auto-
matic evaluation results are shown in Table 4. Com-
pared with the corresponding results in Table 2, the
Seq2Seq, Transformer, and our models have poor
performance overall, which indicates the image
is helpful for generating better endings. But for
IE+MSA and T-CVAE model, they have poor per-
formance when adding the image. One possible
reason is that they are designed for the textual story
generation specially, so it is hard to change to gen-
erate better story endings with an image. Further,
we also conduct the SEG experiments with another
two recent models, the Plan&Write model (Yao
et al., 2019) and the pretrained language KE-GPT2

model (Guan et al., 2020). The results show that
KE-GPT2 achieves the best performance on the
plain text dataset, while our models are close to it.

Task Noun Verb Adjective

IgSEG 11,659 11,050 6,508
SEG 9,808 9,027 5,835

Table 5: Statistics of Noun, Verb, and Adjective in the
generated sentences of our MGCL model.

To research the quantity transformation of part
of speech, we count the number of Noun, Verb, and
Adjective in the generated story endings (cf. Table
5). With the guidance of image, the story endings
achieves an improvement of 18.87%, 22.41%, and
11.53% on Noun, Verb, and Adjective, respectively.
The results indicates that the MGCL model can
enrich story endings on the IgSEG task.

4.6 Visualization and Case Study

To explicitly demonstrate our model, we present
the visualization and case study (cf. Figure 5).

The context (Figure 5(a)) is mainly about peo-
ple going to the seaside for a holiday. The context
is encoded by the MGCN module, and fed with
the image features together into the MCIA module.
Key words are marked in red by our model, the
darker means more important. The entities, events,
and emotion (e.g., We, go, trip, and exciting) are
assigned more attention weights by our model. It
shows that our model can understand the seman-
tic information of context sufficiently. Similarly,
we present visualization for image (Figure 5(b)).
The regions in darker red are where our model fo-
cuses on. Our model pays more attention to the
regions with the important objects (e.g., bridge,
city, and sky, which can be regarded as view). It
shows that our model can also capture the vital vi-
sual concepts in the image. As shown in Figure
5(c), we present the cases of baselines on SEG
and IgSEG, respectively. On SEG, the Seq2Seq
model generates a long ending with repeat words
, but it is still reasonable. The Transformer and
T-CVAE generate the generic endings with positive
sentiment. Our model generates the sentence de-
scribing how “we” ended the day, which is more
interesting. On IgSEG, all the models generate the
more specific endings where the visual concepts
are mentioned. These cases show that our model
can capture context-relevant image concepts and
generate informative story plots.
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GT: We spent the rest of the day on the water, it was a great day!

Visualization of Sentence Attention Weights

(a)

Visualization of Image Attention Weights

Att1 Att2 Att3 Att4

(b)

(c)

SEG IgSEGModel

Seq2Seq

Tramsformer

T-CVAE

Ours

At the end of the day,  we went back to location location and 
view what a beautiful sky, it was a trip home from many times.

At the end of the day, we had a great time.

We were glad to be going to the future.

We went to the bridge.

After that we decided to go back to the beach.

We these the tired enjoy my day in a nap.

We ended the day by watching the bridge and 
enjoy the view.

X1:Everyone was excited to be going on vocation.

X2:We stopped at a memorial and spent our time reading about

the history of it.

X3:It was fourth of July that day, we were proud to be American.

X4:We decided to go on a diving trip, it seemed exciting.

IE+MSA We were all gone, but we had fun all the time. We have the great time at the beach

MG+Trans(Ours) We ended the day with a beautiful sunset. It was a great day at the beach.

Ours
†

We ended the day with a beautiful view of the water.

We have the great time at the beach.We ended the day with a great view.

Figure 5: Visualization and case study. The regions where are dark in color of sentences and images mean that
model pays more attention to. GT denotes Ground True. (Best viewed in color)

We ended the day with a group of friends. They were very proud of the accomplishment.

GT: In the end we all became friends.
GT: Even though they were wet at the end of the day they 

felt as sense of accomplishment

(a) (b)

My company went on a team building adventure.

We took part in many games.

We learned how to work together.

We built our own raft.

My company went on a team building adventure.

We took part in many games.

We learned how to work together.

We built our own raft.

The team went on a team building exercise.

Some of the members of the group created rafts with tubes and long poles.

Other members of the group carried individual tubes on sticks to the water.

After the rafts were constructed many of the team members put them in the 
water to test them out.

The team went on a team building exercise.

Some of the members of the group created rafts with tubes and long poles.

Other members of the group carried individual tubes on sticks to the water.

After the rafts were constructed many of the team members put them in the 
water to test them out.

We ended the day with a group of friends. They were very proud of the accomplishment.

GT: In the end we all became friends.
GT: Even though they were wet at the end of the day they 

felt as sense of accomplishment

(a) (b)

My company went on a team building adventure.

We took part in many games.

We learned how to work together.

We built our own raft.

The team went on a team building exercise.

Some of the members of the group created rafts with tubes and long poles.

Other members of the group carried individual tubes on sticks to the water.

After the rafts were constructed many of the team members put them in the 
water to test them out.

Figure 6: Different story context guided by the same ending-related image for IgSEG.

To vividly demonstrate the impact of image on
IgSEG task, we show the generation cases (cf. Fig-
ure 6) which are offered the same ending-related
image but the different story context. The content
of image is that five people are very happy and
jump in front of camera. The generated endings (a)
and (b) are both coherent with their corresponding
context. The context (a) has the logic chain (e.g.,
team building → took part in games → work to-
gether → built raft), and the context (b) has the
logic chain (e.g., team building→ created raft→
carried tubes→ rafts test). According to different
logic chains, our model may focus on different re-
gions of image and generate the story endings with
the various semantics. The context (a) merely links
to number of people in the image (e.g., friends),
while the context (b) may be associated with peo-

ple’s postures and emotions (e.g., dump and laugh
mean proud). To some extent, our MGCL model
is able to capture some latent high-level semantics
(e.g., pride and celebration) hidden in the image.

5 Conclusion

We propose a new task termed Image-guided Story
Ending Generation. We transform the VIST dataset
to VIST-Ending for IgSEG. We propose a MGCL
model which uses a multi-layer graph convolu-
tional networks to capture intra- and inter-sentence
relations, a multiple context-image attention mod-
ule to merge the context features and image fea-
tures. Results on automatic and manual evaluation
show that our model outperforms all the baselines.
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