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Abstract

A myriad of explainability methods have been
proposed in recent years, but there is little con-
sensus on how to evaluate them. While auto-
matic metrics allow for quick benchmarking,
it isn’t clear how such metrics reflect human
interaction with explanations. Human eval-
uation is of paramount importance, but pre-
vious protocols fail to account for belief bi-
ases affecting human performance, which may
lead to misleading conclusions. We provide
an overview of belief bias, its role in human
evaluation, and ideas for NLP practitioners on
how to account for it. For two experimental
paradigms, we present a case study of gradient-
based explainability introducing simple ways
to account for humans’ prior beliefs: models
of varying quality and adversarial examples.
We show that conclusions about the highest
performing methods change when introducing
such controls, pointing to the importance of ac-
counting for belief bias in evaluation.

1 Introduction

Machine learning has become an integral part of
our lives; from everyday use (e.g., search, transla-
tion, recommendations) to high-stake applications
in healthcare, law, or transportation. However, its
impact is controversial: neural models have been
shown to make confident predictions relying on arti-
facts (McCoy et al., 2019; Wallace et al., 2019) and
have shown to encode and amplify negative social
biases (Manzini et al., 2019; Caliskan et al., 2017;
May et al., 2019; Tan and Celis, 2019; González
et al., 2020; Rudinger et al., 2018).

Explainability aims to make model decisions
transparent and predictable to humans; it serves as
a tool for model diagnosis, detecting failure modes
and biases, and more generally, to increase trust
by providing transparency (Amershi et al., 2019).
While automatic metrics have been proposed to

Figure 1: Evaluation protocols considered in this work

evaluate various properties of explanations such as
faithfulness, consistency and agreement with hu-
man explanations (Atanasova et al., 2020; Robnik-
Šikonja and Bohanec, 2018; DeYoung et al., 2020),
these metrics do not inform us about human inter-
action with explanations.

Doshi-Velez and Kim (2017) suggested human
forward prediction, a simulation task in which hu-
mans are given an input and an explanation, and
their task is to predict the expected model out-
put, regardless of the gold answer. Recent stud-
ies include Nguyen (2018); Lage et al. (2019); ?);
Poursabzi-Sangdeh et al. (2021). Such protocols
are widely used and can provide valuable insight
into human understanding of explanations. How-
ever, prior work has not accounted for how humans’
prior beliefs (belief biases) interact with the evalua-
tion; simulating model decisions becomes an easier
task when the model being evaluated makes pre-
dictions which align with human expectations. We
argue that not considering belief bias in such pro-
tocols may lead to misleading conclusions about
which explainability methods perform best.

Other protocols have evaluated participant’s abil-
ity to select the best model based on explanations
offered by different interpretability methods (e.g.
decide which model would generalize ‘in the wild’)
(Ribeiro et al., 2016a). However, comparisons have
been made between a model which is clearly in line
with human beliefs, and another which exploits
spurious correlations diverging from human expec-
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tations. When differences are less obvious, humans
may not be able to leverage their belief biases, and
conclusions may change.

This paper, which includes evaluations for both
of the previously mentioned tasks, closes an im-
portant gap: to the best of our knowledge, no prior
work in NLP addresses the interaction of belief bias
with current human evaluations of explainability.

Contributions. We provide an overview of belief
bias meant to highlight its role in human evaluation
and provide some preliminary ideas for NLP practi-
tioners on how to handle such cases. Using human
forward prediction and best model selection (Fig-
ure 1), we present a case-study where we compare
two gradient-based explainability methods in the
context of reading comprehension (RC), introduc-
ing conditions to take into account belief bias. We
find that both explainability methods are helpful to
participants in the standard settings (in line with
most previous work), but the conclusions about the
best performing models change when incorporat-
ing additional control conditions, reinforcing the
importance of accounting for such biases.

2 Belief Bias

Belief bias is a type of cognitive bias, defined
in psychology as the systematic (non-logical) ten-
dency to evaluate a statement on the basis of prior
belief rather than its logical strength (Evans et al.,
1983; Klauer et al., 2000; Barston, 1986). Cog-
nitive biases are not necessarily bad; they help
us filter and process a great deal of information
(Bierema et al., 2020), and have been widely stud-
ied in real human-decision making (Tversky and
Kahneman, 1974; Kahneman, 2003; Furnham and
Boo, 2011). However, in evaluations involving hu-
man participants, such biases may alter results and
affect conclusions (Anderson and Hartzler, 2014;
Wall et al., 2017).

Classic psychology studies of belief bias have
assessed how prior beliefs affect syllogistic rea-
soning (Newstead et al., 1992; Klauer et al., 2000;
Evans et al., 1983; Markovits and Nantel, 1989;
Evans and BT). Consider the following example by
Anderson and Hartzler (2014):

(a) If all birds are animals, and if no animals can fly,
then no birds can fly.

(b) If all cats are animals, and if no animals can fly,
then no cats can fly.

In syllogistic reasoning, the task for humans is to
assess the logical validity of such arguments while

ignoring believability. While both arguments are
logically valid, most work converges on the finding
that humans will rate argument (a) as invalid more
often than (b), biased by the fact that the premise
in (a) is less believable.

In psychology, belief bias has been tied to the
dual-processing theory, which assumes that rea-
soning is performed by two competing cognitive
systems: (1) system 1 which takes care of fast,
heuristic processes and (2) system 2 which handles
slower, more analytical processes (Evans, 2003;
Trippas and Handley, 2018; Evans and Curtis-
Holmes, 2005; Croskerry, 2009). Generally, hu-
mans tend to have a cognitive preference for re-
lying on fast, intuitive system 1 processes, rather
than engaging in the slow and more analytical sys-
tem 2 processes. Belief bias is attributed to system
1 (Evans and Curtis-Holmes, 2005; Evans, 2008;
Evans and Frankish, 2009; Stanovich and West,
2008) due to several factors, reviewed in detail by
Evans (2003); Caravona et al. (2019).

For the purposes of NLP studies relying on
crowd workers, one relevant finding is that time
pressures exacerbate reliance on previous be-
liefs (Evans and Curtis-Holmes, 2005). Since
crowd workers generally are incentivized to work
as quickly as possible to maximize their hourly pay,
reliance on belief bias is to be expected.

Another relevant finding for NLP is that threaten-
ing or negatively charged arguments (e.g. content
violating political correctness and social norms)
leads to greater engagement of system 2, whereas
neutral content leads to increased reliance on
belief bias (Goel and Vartanian, 2011; Klaczynski
et al., 1997). Since NLP studies tend to be per-
formed on neutral content such as passages from
Wikipedia – content which may not sufficiently en-
gage participants’ system 2 processes – belief bias
is more likely to play a role in human performance.

This study aims to highlight the phenomenon
of belief bias to encourage NLP practitioners to
assess the role it plays in their evaluations, and
introduce mechanisms to account for belief bias
effects. We illustrate how belief bias effects can
significantly affect the results of human evaluation
of explainability for two paradigms: human for-
ward prediction and best model selection.

3 Related Work

Human forward prediction. Human forward
prediction experiments have been recently pre-
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sented in the context of synthetic data (Poursabzi-
Sangdeh et al., 2021; Lage et al., 2019; Slack et al.,
2019) to evaluate explainability methods for their
ability to make model decisions predictable to hu-
mans. In this paradigm, humans are presented
with explanations and tasked with predicting the
model’s decision regardless of the ground truth
(Doshi-Velez and Kim, 2017).1

In NLP, Nguyen (2018) introduced human for-
ward prediction for LIME explanations (Ribeiro
et al., 2016b) of sentiment analysis of product re-
views and correlated the results with automatic
evaluations. Unlike with synthetic data, partici-
pants have prior beliefs on what the true outcome
is. Since participants in Nguyen (2018) had no
training phase to learn how explanations correlate
with predictions and the model being evaluated suf-
ficiently matched human behavior, humans likely
relied exclusively on their prior knowledge and be-
liefs to complete the task at hand.

? improved on this protocol by adding a train-
ing phase. This is something we also do in our
experiments (section 5), but it is unlikely to solve
the belief bias problem because even after training,
humans will naturally opt for fast, heuristic mech-
anisms (e.g. belief bias) in order to simplify tasks
(Wang et al., 2019); this is particularly true if the
model is high performing (i.e. likely aligns with
human beliefs).

The protocol by ? had another key feature: they
leave out the explanations for the test data points.
This would seem like an advantage for evaluating
explainability methods in the context of reading
comprehension where explanations can, in theory,
simply highlight the answer span, making it easy
to guess the model output from the explanations.
However, it is easy to control for the amount of ex-
planation provided by the explanation methods we
compare; in our experiments below, we highlight
the top 10 tokens with highest attribution scores.
This key feature in their protocol is problematic for
two reasons:

• It makes the human learning problem much
harder, and we argue it is infeasible to expose
participants to enough examples to make hu-
man forward prediction learnable (unless the
task is made very easy on purpose; again by

1Using synthetic data from fictitious domains effectively
controls for belief bias (Lage et al., 2019; Slack et al., 2019).
Slack et al. (2019), for example, evaluate explanations in the
domain of recommending recipes and medicines to aliens.

only evaluating high performing models). If
it is not learnable, participants fall back on
belief bias.

• It introduces a systematic bias between the
training and test scenarios.

The protocol in ? also does not randomize the
order in which participants are exposed to problems
with or without explanations.

We improve on the above protocol by introduc-
ing a condition which can help account for belief
bias effects: evaluating explainability methods on
low-quality models, the predictions of which sub-
stantially differ from human beliefs. This means
that in order to succeed in the task, humans can-
not simply rely on their previous beliefs, therefore,
helping us assess the ability of explanations in help-
ing humans to realign their expectations of model
behavior. The predictions of reading comprehen-
sion models can also be made different from hu-
man answers by introducing distractor sentences
that fool machine reading models, but not humans
(Jia and Liang, 2017). If in human forward pre-
diction, participants predict the true answer rather
than spans in the distractor sentences, this suggests
participants may be relying on their belief biases.

Best model selection. Ribeiro et al. (2016b) pre-
sented an evaluation of explainability methods for
text classification, where explanations for decisions
of two different models on the same instance are
presented side by side, and humans decide which
model is likely to generalize better. With some
exceptions (Lertvittayakumjorn and Toni, 2019),
there has not been much follow up work on this
task, but this scenario is important: it mimicks the
decisions about what model is safer for deployment.
Ribeiro et al. (2016b) and Lertvittayakumjorn and
Toni (2019) both make a single comparison be-
tween a model which clearly diverges from human
intuition, and a model that generalizes and aligns
with humans’ beliefs. Accounting for the extent
to which belief biases are leveraged (e.g. by intro-
ducing additional model comparisons where differ-
ences are not so obvious or where models are of
low quality) is important in such paradigms, and
can allow us to better evaluate where explanation
methods may fail.

In the following sections, we show that intro-
ducing conditions which take into account belief
biases can have an effect on the conclusions for
both human forward prediction and best model se-
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lection. We emphasize that many other potential
strategies can be introduced and this is largely de-
pendent on the goals of the evaluation protocol; we
merely provide one example case with the follow-
ing strategies:

(1) Introducing low quality models which con-
siderably diverge from humans’ prior beliefs
(human forward prediction)

(2) Introducing evaluation problems with distrac-
tor sentences (human forward prediction)

(3) Introducing model comparisons where relying
on belief bias is not enough to obtain high
performance (best model selection)

4 Experimental Setup

This section introduces the general setup of the ex-
periments, with details specific to each experimen-
tal paradigm described in section 5 and section 6.

4.1 Models

We evaluate explanations produced by three BERT-
based (Devlin et al., 2019) models:

(a) a high performing model (HIGH): BERT-
base, fine-tuned on SQuAD 2.0. This model
is more aligned with human beliefs.

(b) a medium performing model (MEDIUM):
tinyBERT, a 6-layer distilled version of BERT
(Jiao et al., 2020), fine-tuned on SQuAD 2.0.
It performs about 20 F1 points below HIGH.
This model somewhat aligns with human intu-
ition, but performs significantly lower.

(c) a low performing model (LOW): BERT-base,
fine-tuned to always choose the first occur-
rence of the last word of the question. This
system mimicks a rule-based system2; how-
ever, we evaluate gradient-based methods re-
quiring a neural model. This model diverges
significantly from human beliefs.

4.2 Data

We use SQuAD 2.0 (Rajpurkar et al., 2018), a RC
dataset consisting of 150k factoid question-answer
pairs, with texts coming from Wikipedia articles.
We opt for this data as it contains short passages
that can be read by humans in a short time. In the
human forward prediction experiments, we refer to
experiments using this data as ORIG. As described

2This model achieves about 0.90 F1 for this task, but in
the results we show its performance on the actual RC task

in section 2, Wikipedia texts could by themselves
induce people to rely on their belief bias, but this
particular dataset allows us to also introduce con-
trols for the bias: the adversarial version of the data
(Jia and Liang, 2017), has been shown to distract
models but not humans. This means that in order
to perform the task with success, humans need dis-
regard their belief biases, and in some cases align
with distractor sentences. We refer to this data in
our simulation experiments as ADV.

4.3 Explainability Methods

We focus on gradient-based approaches, as they
require no modifications to the original network,
and are considerably faster than perturbation-based
methods. We compare two explainability methods:

Gradients. Computing the gradient of the pre-
diction output with regard to the features of the
input is a common way to interpret deep neural net-
works (Simonyan et al., 2013) and capture relevant
information regarding the underlying model.

Integrated gradients. Integrated gradients ap-
proach (IG) (Sundararajan et al., 2017) attributes an
importance score to each input feature by approxi-
mating the integral of gradients of the model’s out-
put with respect to the inputs along the path, from
the references to the inputs. IG was introduced to
address the sensitivity issues which are present in
vanilla gradients and implementation invariance.

5 Experiment 1: Human Forward
Prediction

Human forward prediction for evaluating explain-
ability was proposed by Doshi-Velez and Kim
(2017). They argue that if a human is able to simu-
late the model’s behavior, they understand why the
model predicts in that manner. For the reasons pre-
viously outlined, we suspect that belief biases may
be affecting performance and the conclusions once
can draw from this task. We investigate this by
asking the following: Can humans predict model
decisions, if model behavior considerably diverges
from their own beliefs?

Stimuli presentation. We include: (i) HIGH,
which is finetuned to solve SQuAD 2.0 and (ii)
LOW, which is finetuned to select the first appear-
ance in the context of the last word in the ques-
tion. We evaluate each of the two models twice:
with or without adversarial data. We contrast using
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vanilla gradients and IG with a baseline condition,
in which no explanations are shown (BASELINE).

We highlight the top-10 tokens3 with the highest
attribution scores wrt. the start and end positions
of the predicted span, and zero out the rest.4 The
two sets of tokens often overlap.

Participants were provided with a question and
a passage (with or without explanations) and were
told to pick the shortest span of text which matched
the model prediction. They saw the actual model
answers before the next example (done for both
baseline and explanation conditions), which was an
important part of training to infer model behavior.
Before the model prediction was shown, their an-
swers were locked to prevent any further changes.
An example of our interface can be found in Fig-
ure 2 and the instructions are shown in Appendix A.

We ran these experiments on Amazon Mechan-
ical Turk, recruiting participants with approval
ratings greater than 95%5 and ensuring different
groups of participants per condition by specifying
that participation is only allowed once, otherwise
risking rejection6. We paid participants $5.25 for
about 20 minutes of work (to ensure at least a $15
hourly pay) and obtained at least three annotations
per example. The data included 120 unique ques-
tions divided into small fixed batches (the same
questions across conditions). About 75% of ques-
tions are accurate in the HIGH model, and around
15% are accurate for the LOW model. In total, we
obtained 4,300 data points across 123 participants
(35 data points per participant).

Results. As humans often did not select the exact
span that was provided as ground truth, we manu-
ally labeled the spans as correct or incorrect. We
also inspected the impact of training in human for-
ward prediction, e.g., the learning effect of multiple
exposures on annotator accuracy. Both with vanilla
gradients and integrated gradients, we observe an
increase in the participants’ accuracy at around 15
examples. In contrast, in our baseline condition,
performance either stays constant or drops slightly.
To reduce the noise introduced due to the training
period, we remove the first 15 examples of each
participant. The results without this preprocessing

3Explanations should be selective (Mittelstadt et al., 2019)
4Ribeiro et al. (2016a) use the top 6 attributes; we opt for

10 given that our texts are slightly longer.
5Previous research has shown that proper filtering and

selection of participants on Mechanical Turk, can be enough
to ensure high quality data (Peer et al., 2014).

6We also remove such (few) repetitions at analysis

Figure 2: Interface for Experiment 1 for LOW condi-
tion. To select model predictions, participants clicked
on tokens to select the start and end of the span. Then
they would see the actual model prediction.

(Appendix A) suggest that the effect of training
differed across explainability methods, as will
be discussed later in the section.

Using the average human accuracies per exam-
ple, we run a one-way ANOVA to test for signif-
icant differences across the groups. As we ob-
tained statistically significant results, we then ran
the Tukey honest significant difference (HSD) test
(Tukey, 1949), comparing the means of every con-
dition to the means of every other condition. The
results are presented in Table 1.

As expected, in the absence of explanations
(BASELINE), humans rely on belief bias and pre-
dict the gold standard answer more often than
the model prediction (y in Table 1). Even with
training (seeing the true model prediction), humans
fail to catch onto the simple rule used by the LOW

model, when no explanations are presented.
Overall, explanations derived from both of the

gradient-based approaches lead to statistically sig-
nificant improvements over the baseline. This in-
dicates that the explanations allow humans to re-
align their expectations of the model behavior,
better than with no explanations.

For HIGH-ORIG, the standard setting explored
in previous evaluations, both IG gradients and
vanilla gradients perform well, with IG gradients
performing better. Given these results and the the-
oretical advantages of IG over vanilla gradients,
one could arrive at the conclusion that IG are better
for simulatability. However, the differences be-
tween the two gradient-based methods are re-
versed in the conditions where humans cannot
rely on their previous beliefs (LOW). The gap be-
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MODEL HUMAN

CONDITION F1 ŷ y SEC

BASELINE

LOW-ORIG 0.17 0.16 0.48 33.9
LOW-ADV 0.15 0.12 0.34 63.3

HIGH-ORIG 0.79 0.45 0.46 34.6
HIGH-ADV 0.66 0.38 0.48 36.1

INTEGRATED (IG)

LOW-ORIG ∗0.58 ∗0.22 ∗16.8
LOW-ADV ∗0.63 ∗0.18 ∗22.3

HIGH-ORIG ∗0.84 ∗0.88 36.1
HIGH-ADV ∗0.52 ∗ 0.35 ∗18.9

GRADIENTS

LOW-ORIG ∗0.69 ∗0.06 32.6
LOW-ADV ∗0.72 ∗0.15 ∗25.6

HIGH-ORIG ∗0.79 ∗0.81 47.4
HIGH-ADV 0.49 ∗0.60 48.4

Table 1: Human forward prediction results
(HUMAN(ŷ)) for LOW and HIGH models, compared
to no explanations (BASELINE). Each experiment is
run on vanilla SQuAD 2.0 data (ORIG) and adversarial
SQuAD 2.0 data (ADV). HUMAN(y) is the dataset
ground truth and an indicator of belief bias. Statisti-
cally significant results are indicated with an asterisk.
Time is the average time per question. The best ŷ
results in each condition are bolded.

tween gradients and IG as large as 0.11, and being
statistically significant. This finding is surprising
and points again to the importance of not drawing
incorrect conclusions about the best performing
method using the standard paradigm.

Finally, in the HIGH conditions, model behav-
ior decreases about 13% F1 score with the pres-
ence of adversarial examples, meaning that the
model we used does get affected by adversar-
ial inputs. We observe that human performance
is considerably lower in HIGH-ADV as opposed
to HIGH-ORIG. With vanilla gradients, perfor-
mance is more aligned with the ground truth
labels than with model behavior, showing that
in this condition humans are also relying on their
prior beliefs. With IG, where performance is
less aligned with prior beliefs (ground truth),
the end performance increases, but it seems that
this condition is considerably more difficult for
humans.

Effect of training. In BASELINE, training does
not affect either the LOW or HIGH conditions (see
Table 3 in Appendix A for the raw results). For the

LOW model, multiple factors can be taking place
(possibly at the same time): (1) the task is too far
from the humans’ beliefs and there is no mecha-
nism to help participants realign their expectations,
(2) participants may not be incentivized to seriously
engage and look for patterns, (3) participants opt
for a mixed strategy, where for some questions they
go with their prior beliefs and for others, choice is
random (as seen in their performance in y).

For HIGH conditions in BASELINE, performance
remains higher than LOW but this is likely due to
belief bias and not training, given that performance
remains constant after removing the training data
points. We hypothesize that for HIGH, instances
where the model does not align to human intuition
might be more detrimental than in explanation con-
ditions. More specifically, if humans are aware
that the model aligns with their beliefs after some
examples but encounter instances where it doesn’t
(model is not 100% accurate), they will likely de-
velop an expectation that the model is bound to
make some errors, without any indication of when.

In addition, our raw results suggest IG required
longer training. While this does not mean IG is a
worse method than vanilla gradients, explanations
derived from IG may have confused participants
due to containing information which was irrelevant
to them. It may be that experts (e.g. system engi-
neers knowledgeable about neural networks) can
take better advantage of such explanations; how-
ever, we leave this exploration of the interaction of
human expertise with explanations as a direction
for future work.

6 Experiment 2: Best Model Selection

This section presents the setup and results of our
model selection experiments; a task where humans
select the model that is more likely to succeed in
the wild. We present the participants with the ex-
planations from two models (HIGH vs LOW and
HIGH vs MEDIUM), and ask them to decide which
model is likely to perform better. As a follow-up,
we also experimented with soliciting explanations
about what leads the worse model to fail. Intu-
itively, comparative evaluation difficulty depends
on how clear the difference is between the com-
pared objects. Explanations should at least show
the difference between a high-performing model
and a low-performing one, enabling human partici-
pants to predict which is better (standard setting).



2936

Stimuli presentation. We presented participants
with saliency information from both models (a high
performing model + one of the lower performing
models), and their task was to determine which
model performs best in the wild. We shuffled the
order at random so that the best model would not
remain in a fixed position. We obtain 120 samples
(question-context pairs), and show the explanations
next to each other as seen in Figure 1. The partic-
ipants are told that the highlighted attributes are
the words the model found important in making its
decision. A screenshot of the UI is shown in Fig-
ure 4 in section B and the instructions provided to
the participants are also shown in section B. These
experiments were also ran on Amazon Mechanical
Turk with the same general procedures and pay.
The same subset of 120 examples is used in all
conditions. We obtained at least three annotations
per example and ended with a total of 1440 data
points across 48 participants (30 examples each).

Results. For each example shown to annotators,
we obtained the average accuracy scores and per-
formed a standard T-test to compare the perfor-
mance of the two methods. The results are shown
in Table 2. Using explanations from both methods,
when shown the HIGH and LOW model, humans
are clearly able to correctly select the better one.
With IG, humans achieve 0.95 accuracy on aver-
age, while with vanilla gradients they achieve 0.89.
The difference is not statistically significant. The
fact that users are consistently able to discriminate
between HIGH and LOW models is expected, and
serves as a sanity check that these explanations are
meaningful for humans.

Condition Gradients IG

HIGH VS LOW 0.89 0.95
HIGH VS MEDIUM* 0.85 0.52

Table 2: Both methods do well in (HIGH VS LOW).
In HIGH VS MEDIUM, performance drops dramatically
for IG. * = statistical significant difference (ρ < 0.001)

When the same experiment was repeated in the
HIGH vs MEDIUM condition, we found clear and
statistically significant differences between the two
explainability methods. Using IG, participants
reach only 0.52 accuracy, while with vanilla gradi-
ents their performance is 0.85. This is surprising,
given that the difference in performance between
the two models is still quite large (about 20% F1);
the expectation is that both methods would cap-

ture this difference relatively well. It appears that
when both models more or less align with human
beliefs, the task is much more difficult. To solve
the task, humans now need to engage in more an-
alytical thinking and cannot simply rely on belief
biases to solve the task. We further investigate
these differences through qualitative coding.

Qualitative analysis. After each instance, we
asked participants to describe how the worse model
will fail. We do not provide detailed guidelines in
order to not further bias the participants by intro-
ducing specific criteria. The instructions given to
the participants are shown in Appendix B.

We collected 1440 responses, which were all
inspected manually to uncover categories (codes).
After multiple iterations, we tagged each response
with one code (categories are mutually exclusive,
no response can be placed in two). A description
of the categories and their distribution are shown
in Figure 3, and examples of feedback per category
are provided in the Appendix B.

In the HIGH vs LOW condition, feedback for
both methods was generic (about 70-80% of the
time), e.g., model B is likely incorrect so it is worse.
This was expected: this task should be easy when
model differences are large and humans can rely
on their system 1 processes to get through the task
without thinking deeply about the explanations.

In the HIGH vs MEDIUM condition, the distri-
bution of the feedback categories is very differ-
ent. For IG, 50% of the time participants felt the
highlighted tokens where irrelevant. This is not
the case for gradients, where only about 15% of
responses fell in that category. Additionally, for
vanilla gradients, 50% of feedback is generic, sig-
naling that in this condition, it may have been an
easy task as well; explanations are making model
behavior clear enough. It remains an open ques-
tion whether IG explanations may in fact be more
faithful to the model reasoning. In that case, expert
users (e.g. a system engineer debugging a system)
may not find IG attributions irrelevant and would
be able take better advantage of the information
provided. For this reason, other kinds of human
participants may show different results. Neverthe-
less, as evaluating on non-experts (crowdsourced
workers for example) is common, this preliminary
result is important: it shows that conclusions can
shift dramatically when introducing additional
model comparisons which reduce the participants’
ability to rely on prior knowledge.
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Figure 3: Feedback categories and their distribution. We observed that the HIGH vs MEDIUM condition results are
considerably different from the HIGH vs LOW condition, with more participants giving generic answers for vanilla
gradients, and emphasizing the irrelevant terms highlighted in the IG condition.

7 Discussion: Mitigating Belief Bias

This study introduced additional conditions in
which the human participants could not rely on
their belief biases to facilitate the task at hand. We
presented a case study on evaluating reading com-
prehension models in model selection and human
forward prediction paradigms, and we showed that
this simple addition led to different conclusions in
the evaluation and a better understanding of how
humans interacted with explanations. Other tasks
and paradigms might call for different setups, but
generally including conditions with models of vary-
ing quality would be helpful both for the purposes
of bias control, and for simulation of real-life use
of explainability techniques to support decisions
about which model is safer to deploy.

To conclude, we will briefly mention other direc-
tions for mitigating belief biases that can also be
explored in future work and which should be kept
in mind when developing evaluation protocols for
explainability.

Reducing ambiguity. Ambiguity of task instruc-
tions leads humans to align interpretations to their
own prior beliefs (Heath and Tversky, 1991); this
may lead to misinterpretation and results which do
not reflect the intended interaction with explana-
tions. Ambiguity may also be present in other parts
of the evaluation setup. For example, Lamm et al.
(2020) evaluate the effectiveness of explanations
in helping humans detect model errors for open-
domain QA, but the data they use contains ques-
tions where multiple answers can be true. Users
may deem an answer to be correct or incorrect

based on their understanding of the question, which
makes the effect of explanations blurry. Removing
ambiguous instances from the data can be a way of
reducing such confounds.

Removing time constraints. Time constraints
exacerbate reliance of system 1 processes, which
leads to humans relying on belief biases. In crowd-
sourced evaluations, it is common practice to to
provide workers with enough time to perform tasks,
but workers may have intrinsic motivations for per-
forming tasks quickly. A major challenge for evalu-
ation research with crowd workers is creating better
incentives for engaging in system 2 processes, e.g.
pay schemes which encourage workers to be more
analytical and accurate (Bansal et al., 2019).

Include fictitious domains. Using data from do-
mains from which subjects have no prior beliefs e.g.
fictitious domains, may be an efficient way of con-
trolling for belief bias in some tasks7. This strategy
has been used outside of NLP (Poursabzi-Sangdeh
et al., 2021; Lage et al., 2019; Slack et al., 2019),
where subjects are asked to imagine alternative
worlds such as scenarios involving aliens. In QA
for example, one could introduce context-question
pairs that describe facts about fictitious scenarios
that sufficiently differ from human reality.

8 Conclusion

The main contribution of this paper is bringing
the discussion of belief bias from psychology into
the context of evaluating explainability methods in

7Again, we emphasize that some strategies are task depen-
dent; fictitious domains may not be relevant in some tasks.
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NLP. Belief bias is a phenomenon which plays a
role in human decision making and which interacts
with previous evaluations in a way which may af-
fect the conclusions we draw from these paradigms.
We provide an overview of belief bias, making a
connection between findings in psychology and the
field of NLP, and present a case study of evaluating
explanations for BERT-based reading comprehen-
sion models. We show that introducing models
of various quality and adversarial examples can
help to account for belief bias, and that introduc-
ing such conditions affects the conclusions about
which explainability method works better. Finally,
we provide additional insights and ideas for how to
account for belief bias effects in human evaluation.

9 Broader Impact Statement

The work presented here makes strides towards a
better understanding about the interaction of hu-
mans with explanations of model decisions. We
have highlighted a phenomenon studied in psychol-
ogy with hope that this opens the door to more
NLP research involving a wider and more interdis-
ciplinary understanding of humans, and the effect
of explainability.

This study involved human participants recruited
on Mechanical Turk platform. No personally iden-
tifiable data was collected from the participants,
they were made aware that the data would only be
used for research, and they were not exposed to any
emotionally traumatizing or offensive stimuli. We
ensured a minimum $15 hourly wage.
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A Experiment 1: Human Forward
Prediction

Below we show the instructions provided to the
participants, as well as an example of the saliency
maps presented to participants for adversarial ex-
amples.

Instructions. Question-answering systems are a
particular form of artificial intelligence. The task
here is for you to learn to predict how the system
answers questions. In other words, when in a bit,
you are presented with questions, the task is not to
provide the right answer, but to guess the answer
the system provided. For each question, you will
also see a context paragraph. The answer is a span
of text in this paragraph. Instead of writing out the
answer, you can simply mark the relevant span.

If you want to select a new answer, please click
reset answer, if you are ready to see the model
answer, please click show answer. Note that your
answer will lock at that time.

Raw Results. In our evaluation, we use the first
15 points as training, therefore, we discard them
from the main evaluation but show them in this
section. Overall, we see that training, for the most
part has a positive effect, or not so much of an
effect. These scores can be seen in Table 3.

MODEL HUMAN

BASELINE

LOW-ORIG 0.17 0.14 0.52 52.27
LOW-ADV 0.15 0.10 0.36 54.36

HIGH-ORIG 0.79 0.53 0.58 37.12
HIGH-ADV 0.66 0.35 0.48 47.64

INTEGRATED (IG)

LOW-ORIG ∗0.34 0.35 41.68
LOW-ADV ∗0.36 0.28 44.38

HIGH-ORIG ∗0.71 0.76 46.87
HIGH-ADV 0.46 0.47 42.99

GRADIENTS

LOW-ORIG ∗0.64 ∗0.09 ∗32.16
LOW-ADV ∗0.63 0.23 ∗30.05

HIGH-ORIG ∗0.82 ∗0.84 44.65
HIGH-ADV ∗0.57 ∗0.62 ∗52.30

Table 3: Raw scores, before removing data points on
training session

B Experiment 2: Best Model Selection

Below we show the instructions given to the par-
ticipants, and more details about the qualitative

analysis of the feedback we obtained.

Instructions. Question-answering (QA) systems
are a particular form of artificial intelligence. We
have trained two QA systems and have extracted
the most important words the model uses to make
its final decision. Based on these highlighted words,
your task is to select the model that you think is
more likely to perform best. Additionally, please
write how the low-performing model fails and/or
how it could be better (try to be detailed)

User Interface. An example instance, as shown
to the participants, can be seen in Figure 4.

Figure 4: Experiment 1 UI: LOW(bottom) vs
HIGH(top) condition.

Qualitative analysis of feedback. In Table 4,
we include a few examples of the sentence that
were categorized using the qualitative codes. Un-
surprisingly, once participants found a strategy for
giving feedback , they mostly stuck to it.

After categorizing all the feedback into each cat-
egory, we visualize the distribution per condition.
This can be found in Figure 3. We find that for the
HIGH vs LOW conditions, the distribution is very
similar between gradients and integrated gradients.
Many participants gave very generic feedback , for
example by simply saying that ”model A is better
because it is correct, and model B is wrong”. This
was not surprising, as here the differences were
supposed to be clear and it is likely most partici-
pants did not have to think too hard before making
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QUALITATIVE
CODES

EXAMPLES

Irrelevant (q) 1. Model A only extracted some important words but also some punctuations in
the question which is insufficient to derive to a good answer. Model B extracted
a number of key important words that would lead to the correct answer.
2. Option b chose quantitative statements, while option A seems confused about
what it’s looking for since it highlights all sorts of things in the question.

main entity (q)
1. The words ”year” and ”norman” in the question were not extracted by Model
A. The Model will not be able get the correct answer without knowing what to
look for.
2. The question was asking about the year lavoisier’s work was published but
neither of the key words in this question were highlighted. Model A had no idea
where to locate the answer without considering those key words.

main entity (a) 1. The answer requires a year; it hasn’t highlighted any years as part of the
answer.
2. Answer needed to be a name and option A chose nothing that could be a
name.

Irrelevant (a)
1. Model B has highlighted many extra words in the answer
2. Both models selected the correct terms, but model A selected more irrelevant
terms in the answer too, so it’s less likely to choose the correct one from those
numerous options.
3. B highlighted the answer but also too much unneeded info.

Generic/correctness 1. Model A does not highlight the right answer
2. Model B is wrong and model A is correct

Table 4: Examples of some of the feedback categorized into these classes

a decision. However, the distribution is very differ-
ent for the HIGH vs MEDIUM conditions. Here, for
standard gradients, the feedback followed a simi-
lar pattern as in the previous condition, but about
30% less examples received generic feedback than
before. For integrated gradients, most examples
received feedback regarding the irrelevant terms
being highlighted, showing that even when the dif-
ference in performance between models is large
(20 F1 points), this method makes the distinction
difficult for the best model selection task.


