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Abstract
The automated transcription of spoken lan-
guage, and meetings, in particular, is be-
coming more widespread as automatic speech
recognition systems are becoming more accu-
rate. This trend has significantly accelerated
since the outbreak of the COVID-19 pandemic,
which led to a major increase in the number
of online meetings. However, the transcrip-
tion of spoken language has not received much
attention from the NLP community compared
to documents and other forms of written lan-
guage. In this paper, we study a variation of
the summarization problem over the transcrip-
tion of spoken language: given a transcribed
meeting, and an action item (i.e., a commit-
ment or request to perform a task), our goal
is to generate a coherent and self-contained
rephrasing of the action item. To this end, we
compiled a novel dataset of annotated meet-
ing transcripts, including human rephrasing of
action items. We use state-of-the-art super-
vised text generation techniques and establish
a strong baseline based on BART and UniLM
(two pretrained transformer models). Due to
the nature of natural speech, language is of-
ten broken and incomplete and the task is
shown to be harder than an analogous task
over email data. Particularly, we show that the
baseline models can be greatly improved once
models are provided with additional informa-
tion. We compare two approaches: one in-
corporating features extracted by coreference-
resolution. Additional annotations are used to
train an auxiliary model to detect the relevant
context in the text. Based on the systematic hu-
man evaluation, our best models exhibit near-
human-level rephrasing capability on a con-
strained subset of the problem.

1 Introduction

Most of natural language processing (NLP) re-
search focuses on written language, such as emails
or Web pages, and less on an increasingly large

body of spoken language converted to text via au-
tomatic speech recognition (ASR). Particularly, to-
day, more and more meetings are conducted online,
especially since the COVID-19 social distancing
constraints. Online meetings may be transcribed
upon request, generating a huge amount of spoken
language text.1

Spoken language has different characteristics
from written language, and, from our experience,
it is typically vaguer and harder to understand: sen-
tences tend to be broken, less orderly, incomplete
(relying on subtext), and prone to speech-to-text
transformation errors (see Section 5).

Action items (AIs) are a common and particularly
important part of workplace meetings. An AI is a
commitment or a request to perform a certain task
by any of the parties involved. For example,

“I will send you the file later today.”

AIs occur naturally during conversations, but are
not always clear without relevant context. For ex-
ample, the AI “I will do it” contains a commit-
ment to act, but the nature of this action is unclear.
Nevertheless, the context of the AI might make it
clearer; e.g., if the AI is preceded by a sentence
such as “Can you prepare a presentation for Thurs-
day?”. In the context of written communication,
action items have been researched in a variety of
ways, such as AI detection (Bennett and Carbonell,
2007, 2005), summarization and rephrasing of AIs
in emails (Mukherjee et al., 2020; Rambow et al.,
2004), and more. Verbal communication, in con-
trast, has not received much attention.

In this paper, we focus on the task of rephras-
ing an action item from a transcribed meeting into
a coherent and self-contained utterance. Such an
utterance may be also referred to as a paraphrase,

1For example, Microsoft Teams, a popular online commu-
nication platforms, has reached 115 Million daily users on
October 2020.
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or a summary. Conceptually, the rephrasing task
may be split into two sub-tasks: one is locating
those parts in the context that are relevant to the AI;
the other is forming a coherent and self-contained
AI sentence from the original AI and the relevant
context. While even “off the shelf” summarization
models (e.g., HIBERT (Zhang et al., 2020)) may do
well in forming an action item sentence, manual ob-
servation of the data showed that such models often
fail to locate relevant context in the transcript. As
we show in Section 6, the same applies to models
trained specifically for the rephrasing task too. To
overcome this, we introduce ”hints” – additional
annotations that are added to the rephrasing models’
input to help the model better locate relevant spans
of text (see Figure 1). We use two kinds of hints:
coreference hints, which are obtained from a pre-
trained model for the coreference resolution task,
and context hints that are generated by a model
trained specifically for the task based on our train
data.

Our contribution may be summarized as follows:

1. We created a new dataset (coined AIR) includ-
ing AIs extracted from transcribed meetings,
with human annotations of context and AI
rephrasing.

2. We show that models intended for AI rephras-
ing in email perform considerably worse
on transcript data. Accordingly, we train
transformer-based models for AI rephrasing –
both on email data, reporting new state-of-the-
art performance, as well as on transcript data –
so as to form a baseline for the task.

3. We show that the baseline can be greatly im-
proved by adding ”hints” to the model’s input.
This results in near-human-level performance
on a constrained subset of the problem. We be-
lieve that this approach may apply to various
other problems.

We support our claims by extensive experimenta-
tion and evaluation, including independent human
evaluation.

2 Related work

While AI extraction and summarization of emails
have been researched extensively (Lin et al., 2018;
Mukherjee et al., 2020; Rambow et al., 2004; Scerri
et al., 2010), meeting transcripts have not received
as much attention from the community. Closest to

(a) Predicted context annotations highlighted

(b) Predicted coreference annotations in square brackets (includ-
ing cluster indices c:<index>)

Figure 1: Meeting transcript from the test set annotated
by (a) context model; (b) coreference model. AI ap-
pears between solid triangles. Predicted rephrasing—
baseline: “Speaker A will try to work on SmartKom stuff”;
context: “Speaker A will help Speaker C with SmartKom
stuff”; coreference: “Speaker A will try to work on SmartKom
stuff and if he can finish it he will”; human: “Speaker A will
meet Jerry next week and will try to work on the SmartKom
stuff”.

our work is the work of Mukherjee et al (Mukherjee
et al., 2020), which focuses on the extraction and
rephrasing of AIs over emails. While their goal is
very similar to ours, rephrasing transcripts is very
different from rephrasing emails, as we show in
Section 5.

Einolghozati et al. (2020) applied a pre-trained
BART with a copy mechanism for the task of
rephrasing virtual assistance messages. However,
they are focused on style adaptation and personal
pronouns modification while we focus on context-
based enrichment.

Meeting summarization has been explored in the
past (Oya et al., 2014; Garg et al., 2009). How-
ever, these works focus on full meeting transcript
summarization, where we focus on extracting and
rephrasing information specific to a given AI. In
this perspective, our work can be viewed as a vari-
ation of the known query based summarization
problem (Rahman and Borah, 2016), where given
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a document and a query, the algorithm goal is to
extract information regarding the query from the
document. While this topic has been studied in
the past (Saggion et al., 2003; Bosma, 2003; Nema
et al., 2017), to the best of our knowledge, there
has been no work that relates to meeting transcripts,
especially in the context of AIs.

3 The AIR Dataset

We create AIR Action Item Rephrasing, a new
dataset focused on professional meetings AI
rephrasing. The dataset is composed of instances,
where each instance contains ten utterances, where
the 8th utterance includes an AI. The labels are a
human-produced rephrasing of the AI. The annota-
tion process was split into three parts; acquiring raw
data from multiple sources, AI extraction, and AI
rephrasing. We now describe each of these steps.

3.1 Dataset Construction

Several datasets of manually transcribed records
of meetings were used to accumulate action items
and generate rephrasing. The result is a diverse
dataset, containing a collection of different meet-
ing types, such as software development, product
design, financial, and board meetings2.

ICSI meeting corpus (Janin et al., 2003) con-
tains 75 meetings recorded in a conference room
at the International Computer Science Institute in
Berkeley.

Augmented Multi-party Interaction (AMI)
meeting corpus (Carletta et al., 2006) is a multi-
modal dataset consisting of 100 recording hours of
154 meetings, and their manually annotated tran-
scripts. Some of the meetings are naturally occur-
ring, and some are elicited, particularly using a
scenario in which the participants play different
roles in a design team, taking a design project from
kick-off to completion over the course of a day.

Board Meetings (LSC) is an open to public
board meetings transcripts of the legal services cor-
poration (LSC) and other transcribed board meet-
ings that were extracted from available public re-
sources.

2Each of the datasets was adjusted slightly to make rela-
tively uniform samples. e.g. all speakers roles were converted
to the form ”speaker X , where X is a running number

Figure 2: The UI used by the human annotators for AI
detection.

Internal Dataset (ID) that contains internal
***3 manually transcribed meetings which mostly
revolve around software development topics.

Parts of these datasets contain sensitive infor-
mation, so while datasets will be made publicly
available in the future, some parts of the data can-
not be shared.

Table 1 describes relevant AIR statistics. Note
that to better compare the two AIR versions, the
dev and test set are identical between the public
and restricted versions. Both development and test
sets were composed of ISCI dataset. we used ICSI
for the test and development set because ISCI sam-
ples contained the highest intra-judgment score as
discussed in Appendix A.

3.2 Action Items Detection
Action Items are rare in conversations and are
found in roughly 1% of sentences. To reduce an-
notation costs, we wish to increase the percentage
of AIs in the data. To this goal, the transcripts
are filtered by a pre-classifier – a list of regular
expressions. The pre-classifier filters out 93% of
the sentences, with a precision of 17% and recall
of 90% over Action Items.

AI candidates that passed the pre-classifier were
labeled using human annotators. The action item
annotation task was composed of five sequential
utterances. The sentence that includes the AI can-
didate was the third sentence and two previous and
following utterances were shown as context, as
seen in Figure 2. Each annotator was asked if the
third utterance contains an AI or not.

As preparation for the annotation task, each
judge reviewed the annotation guideline and was
required to successfully pass a test of ten samples
before granted access to the data. The candidate
sentences were tagged by five annotators. If the
agreement between judges was lower than 80%,
four more annotators were added. Each AI candi-
date was labeled as Action Item or not, according

3Organization name is omitted to preserve anonymity
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Name # of meetings Average # of utterances # of AIs # of rephrasing

ID 594 374 5356 14820
ICSI 75 1428 722 2487
AMI 145 820 461 1445
Board Meetings 206 787 1283 3286

Overall 1020 598 7957 22038
Overall public 426 911 2519 7218

Table 1: AIR Source datasets statistics including the number of meetings, number of utterances per meeting,
number of AIs extracted from the full dataset, and the number of rephrasing.

to a majority vote of the annotators.

3.3 Action Items Rephrasing

Action Items were rephrased by human annotators.
Similar to the AI detection stage, the datasets were
divided into samples that contain ten utterances,
seven utterances before the AI, and two utterances
after. Preliminary analysis showed an accelerated
decline in context relevance when moving away
from the action item, with less than 1% contribution
to the seventh sentence before the AI. This justified
the decision to present no more than seven pre-
AI sentences. The distribution of context over the
seven pre-AI and two post-AI utterances is shown
in Figure 3

Figure 3: Percentage of the instances containing rele-
vant context relative to the AI sentence.

While this truncation might make some AIs un-
clear due to lack of relevant content, this is a good
trade-off between loss of information and annota-
tion efficiency and accuracy. Human annotators
were asked to write a self-explanatory sentence
in their own words, based on the Action Items
and their surrounding context. In text rephrasing,
like other text generation tasks, there is not a sin-

Set # of AIs # of rephrasing

Train 2219 6318
Validation 150 450
Test 150 450

Table 2: Number of AIs and Rephrasings in train and
test sets for the public dataset.

gle correct answer. Therefore, each sample was
rephrased up to six times4. Multiple rephrasing
per Action Item also helped us to assess the qual-
ity of the rephrasing. The overall number of AIs
and Rephrasing ,train and test sets for the public
dataset are described in table 25. All samples in the
test and validation sets were chosen from the ISCI
dataset for uniformity (in both public and private
variations).

4 Model and Hints

In this section we show how to fine-tune a pre-
trained model using the AIR data set. Addition-
ally, we show how to add hints – extra annotations
that improve the model ability to find relevant con-
text, and generate more accurate and self-contained
rephrasing. Hints and several versions of model
rephrasing on the test set appear in Figure 1.

Base model The base model is based on BART
(Lewis et al., 2020), a transformer based model
(Vaswani et al., 2017), that was pre-trained by nois-
ing the input text and guiding the model to output,
a de-noised version of the input. The BART model
seems suitable for the rephrasing task. In this task,
similar to the BERT pre-training task, the output

4Initially each sample was rephrased multiple times to
check similarity of rephrasing and agreement. Later rehearsing
was tagged between one to three times.

5Test and validation set were contracted as described in
Appendix A
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is a better version of the input; the ambiguity is
cleaned from the AI and the output is a comprehen-
sible and full version of the input. The de-noising
ability of BART can also assist in overcoming noise
of ASR systems or the speaker’s partial and inco-
herent sentences. Our experiments in Section 6.2.2
further support this claim.

The model input is inspired by (Mukherjee et al.,
2020). The input includes the sentence with AI,
the previous seven sentences and the following two
sentences. For each utterance in the input, we add
the speaker name, and OOV markers to indicate
the speaker’s name and the AI, For example:

<speaker>John</speaker><AI>I will
send </AI>the presentation tomorrow.

The model is trained using teacher forcing and
cross entropy loss over the predicted token.

4.1 Hints

One of the shortcomings of the base model is its
limited ability to correctly identify relevant context
with regard to the AI. Therefore, the rephrased AIs
are often inaccurate and include irrelevant infor-
mation from unrelated parts of the input text. To
mitigate this, we propose two improvements to the
base model.

Coreference model Given an input text, the task
of coreference resolution (CR) aims to cluster enti-
ties that appear in different parts of the input text
but refer to the same entity. This task has been thor-
oughly researched (Sukthanker et al., 2020; Soon
et al., 2001), and in recent years gained a boost
in performance, thanks to neural architectures (Xu
and Choi, 2020; Joshi et al., 2020; Meged et al.,
2020; Caciularu et al., 2021; Cattan et al., 2020).
We hypothesize that CR models can capture seman-
tic relations that the base model will miss because
they are trained specifically for this task using vast
amounts of data.

We use the CR model from Allennlp (Gardner
et al., 2019), which uses SpanBERT for contextual-
ized embedding (Joshi et al., 2020) and (Lee et al.,
2017) method for CR. This model was trained on
the OntoNotes dataset (Hovy et al., 2006).

Using the coreference model, we add hints to
the text (see Figure 1b), identifying coreference
clusters within the text. Text embedding includes
cluster-marks appearing in square brackets around
each of the cluster spans. For example:

“[c:0 Jon ] works at the [c:1 cinema ] ,
[c:0 he ] loves working [c:1 there ] .”

We only mark clusters that have at least one in-
stance in the AI utterance. This annotated text is
input to the rephrasing model (both at the training
phase and inference phrase). Note that training is
applied only to the rephrasing model, whereas the
CR model’s weights are held constant.

Context detection model Another approach to
improve the rephrasing model’s ability to detect
relevant spans is to directly train a model to de-
tect them. To achieve this, we ask annotators to
mark spans of text that are relevant to the AI. This
data is used to train a context detection model.
Spans of relevant text are transformed into bi-
nary token labels (’relevant’ or ’irrelevant’). Ac-
cordingly, we train a token-classification model,
based on the RoBERTa (Liu et al., 2019) pretrained
transformer encoder, which is added to a fully-
connected layer to perform per-token classification,
given RoBERTa’s output representation of each to-
ken. The model is fine-tuned end-to-end over the
collected token annotations.

We found that the collected context information
suffers from a low agreement between the judges.
We use Kripendorff’s alpha (Hayes and Krippen-
dorff, 2007; Artstein and Poesio, 2008) coefficient
to measure the judges (dis)agreement.We measure
both an alpha score for the entire annotation task, as
well as the pairwise agreement between the judges –
both exhibiting values on the order of 0.4, which is
considerably low. One reason for a low agreement
may be an incomplete or incorrect understanding
of the text: annotators are detached from the larger
context of the meeting and from the subject matter;
oral communication tends to be implicit and relies
on pre-understanding; spoken sentences tend to be
broken and less organized. Another reason might
be the task itself, whose definition inevitably bears
some level of ambiguity and arbitrariness.

Low agreement between annotators does neces-
sarily undermine machine learning in its attempt
to generalize from the train set (see Sect. 4.1.4
in (Artstein and Poesio, 2008), (Reidsma and Car-
letta, 2008)). It is important, however, to account
for it when measuring classification performance
on the test set. Each test instance for the context
detection model consists of a transcript snippet con-
taining a set of tokens for binary classification, and
a human annotation of the tokens as relevant or
irrelevant. Per test instance, we measure: (a) token
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Model Rouge-1 Rouge-2

SmartToDo (BiLSTM) 0.6 0.41
Human annotator 0.6 0.37

BART 0.63 0.43
BART (only subject & AI) 0.628 0.43
BART (No subject) 0.58 0.39
BART (AI only) 0.56 0.33

Table 3: Different variations of the email AI dataset.

ranking by the model (in accordance to the model’s
output scores) is evaluated by average precision
(AP); (b) F1-score of model’s predictions. To ag-
gregate on the test set, we have taken the mean of
each value, resulting in mean average precision
(MAP) and mean F1-score (MF1).6

In order to assess the judges’ disagreement on
the test set, for each of the test instances, we col-
lected 3 to 6 annotations. Per test instance, the
optimal AP is obtained when ordering the token
according to their ”soft” label – mean of judges’
scores (0 or 1).7 We denote by oMAP the mean of
optimal AP over all test instances. Similarly, oMF1
is defined as the mean of instances’ F1-scores for
judges’ majority prediction per token.

The context model’s normalized MAP score
(namely, MAP

oMAP) and normalized MF1 score

(namely, MF1
oMF1) are both 0.82. Similarly to the CR

model, the context detection is used to add hints to
the rephrasing models’ input (see Figure 1a). Train-
ing the rephrasing model designates a second usage
of the corpus, now with human rephrasing annota-
tions.8 Despite a relatively low agreement between
the judges, context annotations significantly im-
prove the rephrasing model’s performance.

5 Comparison of Emails and Transcripts

AI rephrasing was applied over emails in (Mukher-
jee et al., 2020). We evaluate this model over
meeting transcripts and show that despite its suc-
cess over emails, it is less suitable for transcripts.
At a first glance, email and meeting transcript AI

6Due to the nature of the problem, there are considerably
more negatives than positives, and thus we choose two metrics
that embody the precision/recall tradeoff, which is indifferent
to true negative predictions, rather than the true-positive/true-
negative tradeoff.

7AP calculation takes token-level steps, updating precision
and recall according to all judges’ annotations at once.

8In the training phase, as in the inference phase, the context
model’s predictions are used, rather than the judges’ annota-
tions.

rephrasing might seem similar. In this section, we
challenge this assumption by highlighting three key
differences.

Email subject We use the dataset from (Mukher-
jee et al., 2020) to evaluate performance over
emails compared to transcript data. Their data
is based on the Avocado dataset (Douglas Oard,
William Webber, David A. Kirsch, 2015), where
each instance contains a pair of emails (an email
with an AI and the previous email in the corre-
spondence), and a rephrasing of the AI. To build a
rephrasing model, the authors used the following
approach: 1. Chose relevant sentences from each
email by similarity to the AI sentence. 2. Create
an input that contains the chosen sentences, the
mails authors, and the mails subjects, tagging each
part of the data with dedicated markers. 3. Learn
a model using a BiLSTM with copy mechanism
(Zeng et al., 2016).

We test a number of variations based on this ap-
proach. 1. We replace the BiLSTM with BART
(BART); 2. Similar to (1), but we omit the email’s
subject from the input (No subject); 3. Similar to
(1), but remove all the email’s body text besides
the AI sentence (only subject & AI); 4. Leaving
only the AI sentence (AI only). The results are
presented in Table 3. The BART base model un-
surprisingly outperforms the BiLSTM model. But
surprisingly, a model that is exposed to the Subject
alone performs almost as well as the full model.
Additionally, most of the improvement compared
to the base (AI only) model comes from adding the
email’s subject. This means that the body of the
emails play a minimal role in the email’s rephras-
ing. Unfortunately, meeting transcripts do not have
an equivalent to a subject, which forces the model
to rely solely on the transcript text.

Number of utterances While two emails often
supply enough context for rephrasing, transcript
samples contains ten utterances, which require the
model to “find” the right spans from a relatively
large pool of text.

Malformed language In contrast to written text,
spoken language is less formal. This results in
people making grammatical mistakes like stopping
at the middle of a sentence (”I will take the... yes,
that’s right” or repeating words (”I... ah... I... think
that it’s OK”). This new grammar is very different
from the pretrained text most pretrained models
were trained on.
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Model ROUGE-1 ROUGE-2 BLEU

Human 0.519 0.305 0.737
Base model 0.645 0.459 0.763

Table 4: ROUGE and BLEU score of the base model
and human rephrasing.

6 Experiments

We evaluate our various models compared to a hu-
man annotator, and between themselves, in two
ways. The first is automatic n-gram based metrics
and the second is direct human evaluation. All
models were trained using the Huggingface frame-
work(Wolf et al., 2019) with the following config-
uration: batch size: 8, lr: 3 · 10−5, epocs: 5 (20
with public dataset).

6.1 N-gram Based Metrics

There are a variety of n-gram based methods that
evaluate the quality of text generation tasks (Lin,
2004; Banerjee and Lavie, 2005; Papineni et al.,
2001). In this work, we use the ROUGE-1 and
ROUGE-2 (Lin, 2004) as it is a widely used mea-
sure for summarization evaluation.

We evaluate the base model vs. a gold rephrasing
produced by a human annotator. We also include
another human rephrasing that represents human
evaluation level. The results are shown in Table
4. Even the base model suppresses the human-
produced rephrasing and achieves a higher ROUGE
score. While this result looks impressive, we claim
it simply highlights the limitation of ROUGE, and
other n-gram based metrics to evaluate the rephras-
ing quality (see (Mathur et al., 2020)). We provide
the following rational:

Frequent words Not all words have the same
value when evaluating the quality of a sentence.
For example, entity mentions and verbs are more
relevant to the sentence meaning than stop words,
but n-grams models give each word an equal weight
for the overall score. While human annotators are
good at finding rare words that convey meaning,
automatic models are good at using very frequent
words. Using these words increase the model’s
score, while not contributing to the quality of the
rephrasing.

Lacking of ”true” gold samples Typically,
machine-learning algorithms are evaluated based
on a gold standard that is generated by humans. It is

also typical for ground truth to have some error rate,
and there are techniques to reduce the probability
of error, e.g., taking a majority vote. In contrast, in
the case of text generation, there are usually many
results (sentences) that can be considered ’good’,
having very different wording. BLEU (Papineni
et al., 2001) addresses this difficulty by comparing
the generated text to a number of different human-
generated labels. While this somewhat reduces the
chance that a good text generation will get a low
score, it does not eliminate it.

Models might outperform humans as we show
in Section 6.2.1, our models might achieve higher
quality than the human-produced rephrasing. N-
gram based models treat each deviation from the
human model as an error, although it might achieve
a better paraphrasing9.

For these reasons, we turn to human evaluation
as the main models’ evaluation method.

6.2 Human Evaluation

We evaluate our models by using the following pro-
cedure - Each instance contains the model input
(transcript + speakers + AI) and three10 different
rephrasings. The judges were instructed to assign
each rephrasing a score from the set {1,2,3}, while
considering these questions (arranged by impor-
tance):

1. Does the action described in the rephrasing
accurately describe the action in the context +
AI?

2. Does the rephrasing contain all the details that
are described in the context + AI?

3. Is the rephrasing grammatically correct?

4. How easy was it to understand the rephrasing?

The judges UI is shown in Figure 5 on Appendix
B.

6.2.1 Main Results
Using the AIR-internal dataset, we compare the
three models with each other and with a human-
produced rephrasing. We applied two evaluations.
First, we compare the human-produced rephrasing,
the base model, and the coreference model. The

9This indicates that the automatic metrics might underesti-
mate automatic models.

10We use three models per instance (instead of four) to
reduce the load from the judges.
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Models Result

Human/Coref 56.0% / 44.0%
Human/Base 68.2% / 31.8%
Base/Coref 39.4% / 60.6%
Context/Coref 59.1% / 40.9%
Human/Context 50.9% / 49.1%

Table 5: Comparison of the base, coreference, and con-
text models. Bold results are significant.

Models Result

Base/Coref 43.4% / 56.6%
Context/Coref 50.5% / 49.5%
Context/Base 58.4% / 41.6%

Table 6: Unilm comparison.

second comparison compares the human rephras-
ing, coreference-based, and context-based rephras-
ing. The results are presented in Table 5. The Hu-
man rephrasing outperforms all models, while the
context achieves the closest performance, followed
by the coreference and the base models. All results
are statistically significant, except the context and
human comparison. We used double evaluation of
the human and coreference model rephrasing to
calculate the judge’s agreement, which resulted in
a Kappa value of 0.604. Both the coreference and
context model achieve close to human performance
when the context-based model is almost equal to
the human rephrasing.

6.2.2 Language Model Comperison
We choose BART as the base language model (LM)
for our work because its denoising pre-train objec-
tive function seems suitable to deal with the noisy
transcripts data. To evaluate this, we compare our
results to another model - unilm (Bao et al., 2020).
This model was trained as both masked LM and
autoregressive LM and showed improvement on a
variety of downstream tasks. To compare BART
and unilm, we first compare our three candidate
models using each of the LM, and then compare
the best models with each LM. The results of the
unilm variations are presented in Table 6. The hier-
archy between the model variations remains, while
the differences between models are smaller and be-
come statistically insignificant. Nevertheless, we
chose the context model as the best model for the
cross LM comparison. The results are presented in

Models Result

human/BART 50.8% / 49.2%
human/Unilm 53.1% / 46.9%
BART/Unilm 53.0% / 47.0%

Table 7: Cross LM comparison. Both models used the
context annotations.

Models Result

Human/Coref 56.1% / 43.9%
Human/Base 68.2% / 31.8%
Base/Coref 40.1% / 59.9%
Context/Coref 46.1% / 53.9%
Human/Context 54.3% / 45.6%

Table 8: Result on the public dataset. Using the base,
coreference, and context models. Bold results are sig-
nificant.

Table 7. BART outperforms Unilm both on direct
comparison and in its performance vs. the human
rephrasing.

6.2.3 Public Dataset Results
The ID dataset contains sensitive and personal
data and cannot be released to the public. In
this subsection, we ran the same comparison of
base/coreference/context and human annotators us-
ing the AIR-public dataset. These results can also
highlight the dependency of the algorithm perfor-
mance on the dataset size. The results are presented
in Table 8. The human rephrasing is still the best
model compared to all the others, but surprisingly
it does not have a bigger gap in performance com-
pared to the full dataset. We explain this by the
mix of the different datasets. Each of the datasets
contains a different distribution of AIs. Remov-
ing the ID dataset allows the model to overfit to the
remaining existing datasets. The context model suf-
fered the most from the reduced size of the dataset
and is outperformed by the coreference model. We
attribute this to the fact that the model trains twice
on the data set (first for context detection, then for
rephrasing). This shows that the coreference hints
are best utilized when the dataset size is small.

7 Conclusion

In this work, we present the problem of action items
rephrasing in meeting transcripts. We introduce a
new dataset for the task and establish a baseline
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attributed to the BART transformer model. We then
present two novel ways to considerably improve
the baseline. Particularly, by collecting context
annotations, and despite a relatively low agreement
between the annotators, we are able to considerably
improve the rephrasing model’s performance. We
evaluate our work by automated metrics, as well as
independent human evaluators.
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A Test and Validation Sets Construction

Before evaluating the full test set, we ran a small
subset of tests (60 instances overall) of the test
set to get initial results. We compared the human
rephrasing to the base model.The results are sur-
prising, where most base models scored higher than
the human rephrasing. While these results are at-
tractive, manual examination showed that the base
model often made mistakes that a human annota-
tor could handle easily. Additionally, we checked
the agreement between the judges on the same in-
stances using Cohen’s kappa (Cohen, 1960). The
agreement was unexpectedly low 0.39. We ex-
plain these two phenomena by offering the hypoth-
esis - some samples are very hard / impossible to
rephrase properly. We suggest three reasons:

Context not in the sample In these samples the
required context is not found in the part of the tran-
script that is included in the sample (each sample
includes seven sentences before the AI, and three
after).

Context requires real-world knowledge In
some samples, some real-world knowledge is re-
quired to understand the AI. For example, our in-
ternal dataset is composed of technical team meet-
ings that require prior knowledge in programming,
software engineering, and NLP. Our annotators oc-
casionally lack the technical knowledge required
to understand the full AI meaning.

Rephrasing is hard Some samples were very
hard to rephrase, even for humans, and often re-
quire a number of passes over the text to rephrase
properly. Even though all of our annotators are
proficient in English, they still had a very hard time
rephrasing part of the questions. This results in bad
rephrasing.

Surprisingly, when both the model and human
fail, the human judge tends to prefer the model
output. We attribute this to the fact that the model
output was always grammatically and semantically
correct, while the human had a tendency to write
malformed sentences when the rephrasing was un-
clear.

Rephraseable instances In cases where human
annotators produce relatively similar rephrasing,
we can presume the model will do the same, and
thus we can think of those samples as ’easy to
rephrase’, or rephraseable. In order to find these,
we take the average rouge score between all pairs

Figure 4: Cohen’s Kappa as a function of a threshold
serving as lower bound on the samples’ average rouge.

of human rephrasing, as follows:

score(s) =
1

|Rs|2
∑

〈r,r′〉∈Rs

rouge2(r, r
′) , (1)

where s is a input sample, Rs is the set of all hu-
man rephrases of s, and rouge2(·, ·) is the Rouge-2
measure. As rephraseables, we consider half of the
samples – those with higher average rouge per (1).
Figure 4 shows that, as one may expect, by consid-
ering the more rephraseable samples (i.e., putting a
lower bound on the samples’ average rouge score),
the agreement between the judges on the related
task of marking relevant context increases.

We use these insights to construct the test set and
validation set by randomly sampling instances with
an average rouge score ≥ 0.3. In Section 6, we
show that using this test set, the judges’ agreement
is significantly higher (0.61) on Cohen’s Kappa.

B Rephrasing Evaluation UI
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Figure 5: The UI used by human judges to evaluate rephrasing. The displayed models are (top to bottom) human
rephrasing, base model, and coreference model.


