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Abstract

Ever since the advent of deep learning, cross-
modal representation learning has been dom-
inated by the approaches involving convolu-
tional neural networks for visual representa-
tion and recurrent neural networks for lan-
guage representation. Transformer architec-
ture, however, has rapidly taken over the re-
current neural networks in natural language
processing tasks, and it has also been shown
that vision tasks can be handled with trans-
former architecture, with compatible perfor-
mance to convolutional neural networks. Such
results naturally lead to speculation upon the
possibility of tackling cross-modal representa-
tion for vision and language exclusively with
transformer. This paper examines transformer-
exclusive cross-modal representation to ex-
plore such possibility, demonstrating its poten-
tials as well as discussing its current limita-
tions and its prospects.

1 Introduction

While early cross-modal models handled visuolin-
guistic tasks with template-based methods (Barbu
et al., 2012; Elliott and Keller, 2013), or as a re-
trieval model (Farhadi et al., 2010; Ordonez et al.,
2011), the advent of deep learning introduced
end-to-end learning models for cross-modal tasks,
in which convolutional neural networks (CNNs)
(Krizhevsky et al., 2012) are employed for vision
representation, whereas recurrent neural networks
(RNNs), such as LSTM (Hochreiter and Schmidhu-
ber, 1997) or GRU (Cho et al., 2014), are employed
for language representation. While a plethora of
variations exist, most models proposed in the past
few years have invariably relied on the CNN-RNN
approach.

Such standardized scheme, however, started to
change with the introduction of transformer archi-
tecture based on multi-head attention mechanism

(Vaswani et al., 2017), which rapidly started to
achieve state-of-the-art performance in natural lan-
guage processing (NLP) (Peters et al., 2018; Dai
et al., 2019; Yang et al., 2019) and speech recog-
nition domains (Dong et al., 2018; Wang et al.,
2020b), frequently outperforming RNNs. Further-
more, large-scale models based on transformer
architecture, such as BERT (Devlin et al., 2019)
or GPT-3 (Brown et al., 2020), started to appear,
demonstrating that pre-training a sufficiently large
model with a very large amount of data results
in strong performance with versatility for various
downstream tasks.

The success of transformer-based models in NLP
and speech recognition naturally led to its adapta-
tion in cross-modal tasks. (Lu et al., 2019) pro-
posed ViLBERT, a pioneering BERT-inspired work
that proposed to tokenize the images for compati-
bility with transformer architecture, and also to ex-
tend the pre-training objectives of BERT to reflect
the nature of cross-modality. Many other cross-
modal models followed, but mostly with similar
approaches for image tokenization and pre-training
objectives. This line of transformer-based cross-
modal works described above, however, still heav-
ily relied on CNN-based models, such as Faster
R-CNN (Ren et al., 2015), to extract features from
images, and the application of transformer was
mostly limited to language representation.

Inspired by the observations made by recent
works (Dosovitskiy et al., 2020), which demon-
strate that vision tasks can be handled solely by
transformer architecture with compatible perfor-
mances to CNN-based models, this paper exam-
ines cross-modal representation for visuolinguis-
tic tasks relying exclusively on transformer ar-
chitecture, without using CNNs or RNNs. With-
out any structural modifications or advanced com-
mon embedding scheme, and without additional
cross-modal pre-training that can be expensive both
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computationally and data-wise, our model demon-
strates comparable performances to conventional
approaches based on CNNs and RNNs in exem-
plary cross-modal tasks.

2 Related Works

ViLBERT (Lu et al., 2019) was one of the first
models to extend transformer architecture to cross-
modal visuolinguistic tasks. They propose co-
attentional transformer, in which separate trans-
former modules for each modality run in parallel,
with the key and value inputs from one modality
entering the transformer block for the other modal-
ity, thereby learning cross-modal dependence. In
order to tokenize the image, they extract image
regions using Faster R-CNN (Ren et al., 2015)
along with 5-dimensional location vector. They
also extend two unique pre-training objectives of
BERT, namely masked language modeling and
next-sentence prediction, to cross-modal setting, as
masked multi-modal learning and image-sentence
alignment classification. In masked multi-modal
learning, visual tokens, along with language tokens,
are randomly masked, and the model is trained to
predict their probability distribution over object
classes. In image-sentence alignment classification,
a sequence of visual tokens and a sentence are jux-
taposed, and the model performs a binary classifica-
tion task, predicting whether the sentence describes
the contents of the image. Many other models,
such as VisualBERT (Li et al., 2019), LXMERT
(Tan and Bansal, 2019) and Unicoder-VL (Li et al.,
2020), also follow nearly identical pre-training ob-
jectives as VilBERT. On the other hand, UNITER
(Chen et al., 2020) demonstrates improved perfor-
mance by introducing additional pre-training ob-
jective of word region alignment, while MiniVLM
(Wang et al., 2020a) achieves comparable perfor-
mance with up to 70% fewer parameters by utiliz-
ing EfficinetNet (Tan and Le, 2019) with their own
Compact BERT model.

While all models described above rely on CNN-
based models to extract features from images, limit-
ing the scope of applicability of transformer, recent
works have demonstrated results that may imply a
potential change in such workflow. (Dosovitskiy
et al., 2020) proposed Vision Transformer (ViT),
which demonstrates that pure transformer architec-
ture without convolution can achieve comparable
performance in image classification tasks, while
requiring substantially less computational costs.

Furthermore, (Touvron et al., 2021) showed via
data-efficient image transformers (DeiT) that com-
petitive performance can be achieved with training
only on ImageNet (Deng et al., 2009) with no ex-
ternal data.

3 Model

We employ separate transformer models for vision
and language, although internal mechanisms are
essentially identical. Following (Dosovitskiy et al.,
2020), we split an image into N patches xp of
P × P pixels, each of which is linearly projected
into D-dimensional patch embedding, where P =
16, and D = 768. A learnable embedding xclass
is prepended to patch embeddings, and positional
embeddings are also added. The input sequence z0
subsequently undergoes alternating layers of layer
normalization (Ba et al., 2016) and multi-head self-
attention, followed by a 2-layer MLP with GELUs
(Hendrycks and Gimpel, 2020) as non-linearity:

z0 = [xclass;x
1
pE;x2pE; ...;xNp E] + Epos, (1)

E ∈ R(P 2C)×D, Epos ∈ R(N+1)+D

z′l = MSA(LN(zl−1)) + zl−1, l = 1...L (2)

zl = MLP(LN(z′l)) + z′l, l = 1...L (3)

yimg = LN(z0L) (4)
where

MSA(X) = Watt[Att1(X), ...,Attm(X)]>

(5)

Atti(X) = softmax
((WQiX)>WKiX)√

D/m
(WViX)>

(6)
for input layer X ∈ RD×N , and learnable parame-
ters WQi ,WKi ,WVi ∈ R

D
m
×D, Watt ∈ RD×D for

m attention heads.

For language representation, we employ an off-
the-shelf BERT model. An input sequence s0 =
[w0, ..., wS ] is given with special tokens [CLS] and
[SEP ] inserted at the beginning and the end of the
sequence respectively. In case of two sentences
within the input sequences, [SEP ] token is also
inserted in between the two. Each token is rep-
resented as the sum of word embedding, position
embedding, and segment embedding, and under-
goes bidirectional multi-head self-attention over
multiple layers. The representation for the input
sequence is obtained as h0, ..., hS from the upper-
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Figure 1: Overview of our model. Images are split into patches, sentences are split into tokens, and both are
encoded with transformers, after which they are combined in common embedding space for final classification.

most attention layer:
s0 = [[CLS], w1, ..., wS−1, [SEP ]] (7)

s′l = MSA(LN(sl−1)) + sl−1, l = 1...L (8)

sl = MLP(LN(s′l)) + s′l, l = 1...L (9)

ylang = LN(s0L) (10)
We now project the image and language repre-

sentations obtained into common embedding space
by concatenation:

y = Concat(yimg, ylang) (11)
Note that we deliberately choose the most elemen-
tary common embedding scheme, as our focus is
to examine the performance of the features them-
selves, rather than the embedding scheme. It is thus
highly likely that, when coupled with more sophis-
ticated embedding schemes, a significant perfor-
mance boost will occur. Fig. 1 describes the overall
architecture of our approach.

4 Experiments

4.1 Setting

For images, we use ViT-B model pre-trained on
ImageNet-21k. The model contains 12-layers with
12 attention heads and hidden size of 768, consist-
ing of 86M parameters. For language, we use off-
the-shelf BERTBASE mode, trained with BERT’s
pre-training objectives of masked language model-
ing and next sentence prediction on BookCorpus
(Zhu et al., 2015) and English Wikipedia. Like
ViT-B, the model contains 12-layers with 12 atten-
tion heads and hidden size of 768, and consists of
110M parameters. During both training and testing,

image and language features are extracted from
the uppermost layer of respective model, and we
concatenate them to make a 1536-dimensional vec-
tor. Concatenated features are trained with cross-
entropy loss and Adam (Kingma and Ba, 2014)
optimizer.

We evaluate our model on the following com-
monly tackled cross-modal visuolinguistic tasks;
visual question answering (VQA) (Antol et al.,
2015; Goyal et al., 2017), visual commonsense rea-
soning (VCR) (Zellers et al., 2019), and reasoning
about natural language grounded in photographs
(NLVR2) (Suhr et al., 2019). For VCR, we fol-
lowed (Lu et al., 2019) by making 4 possible pairs
of question and answer. For NLVR2, we follow
the pair approach of (Chen et al., 2020), by em-
bedding each image and the query, as it is reported
to outperform triplet approach of embedding two
images with the query. We trained with 4 V100
GPUs with batch size 96 for VQA and NLVR2,
and 48 for VCR, which were adjusted with respect
to the memory constraint of the computational en-
vironment. Learning rate was initially set to 1e-4
under linearly decaying schedule with warm up.
We trained the model for 25 epochs for each task.

4.2 Results
Table 1 compares our model’s performance
with other transformer-based cross-modal models.
While our model’s performance falls below that of
state-of-the-art models, it is noteworthy that other
models explicitly perform additional cross-modal
pre-training on top of already pre-trained vision and
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Figure 2: Qualitative results for each task.

Pre-train VQA VCR NLVR2

Method #samples test-dev QA QA-R Q-AR dev

ViLBERT 3.3M 70.55 73.3 74.6 54.8 –

UNITER 9.5M 73.82 77.3 80.8 62.8 78.4

MiniVLM 7M 69.39 – – – 73.7

VisualBERT 0.5M 70.80 71.6 73.2 52.4 67.4

DeVLBERT 3.3M 71.1 – – – –

CAPT 9.2M 72.78 – – – 75.1

ERNIE-ViL 4M 73.78 79.2 83.5 66.3 –

Ours 0 67.84 68.4 70.2 49.2 65.2

Table 1: Comparison of our model to other state-of-the-art
cross-modal models. 2nd column refers to the number of
image-caption pairs seen during cross-modal pre-training. De-
spite the disadvantage of not having seen a substantial amount
of pre-training data, our model closely follows the state-of-
the-art models. (CAPT (Luo et al., 2020), ERNIE-ViL (Yu
et al., 2020)

language modules. On the other hand, our model
simply concatenates two pre-trained models with-
out additional cross-modal pre-training, and is im-
mediately trained with the target task. For example,
ViLBERT and DeVLBERT (Zhang et al., 2020)
are pre-traiend with Conceptual Captions dataset
(Sharma et al., 2018), and our model is at the disad-
vantage of not having seen 3.3M pairs of image and
captions, yet comes fairly close to those pre-trained
models. Fig. 2 shows qualitative examples of the
model’s performance on each task. In addition,
while many papers on pre-trained cross-modal rep-
resentations do not report specific number of param-
eters, our approximations of other models’ sizes
based on the implementation details reported in
respective papers suggest that our model is reason-
ably smaller, especially since it completely elimi-
nates the need for external region detector.

4.3 Further Experiments

In order to examine how much each component
contributes to performance, we conduct further ex-
periments, replacing each component with conven-
tional modules. We first replace transformer en-

VQA VCR NLVR2

Method test-dev QA QA-R Q-AR dev

CNN+BERT 65.36 65.4 68.1 48.9 61.9

ViT+LSTM 62.27 62.9 66.4 45.8 60.1

w/o finetuning 56.54 58.2 60.3 42.5 52.4

Ours 67.84 68.4 70.2 49.2 65.2

Table 2: Comparison of our model to different combina-
tions. Under the same condition of no explicit cross-modal
fine-tuning and the same embedding scheme, our model out-
performs other combinations.

coder for images with CNN module, specifically
with ResNet-50 (He et al., 2016) trained on Ima-
geNet, using global average-pooled features. We
also examine replacing BERT module with LSTM
(Hochreiter and Schmidhuber, 1997) using early fu-
sion with image features. For fair comparison, we
used concatenation as common embedding scheme
for all combinations.

Table 2 shows the results. While ResNet/BERT
comes fairly close, it falls below our model, and
performance drop is clearer with ViT/LSTM, pos-
sibly reflecting superior adaptability of BERT com-
pared to LSTM. Our conjecture is that architec-
tural integrity, i.e., using the same architecture for
both vision and language, throughout the model,
plays an important role in learning cross-modal
representations. Note that, however, it would re-
quire a more thorough and analytical study to con-
clusively claim that ViT is superior to ResNet, or
that attention is superior to convolution, and our
primary purpose in this experiment is simply to
demonstrate that transformer-exclusive models can
accomplish comparable performance to the models
employing CNN. We also examined linearly train-
ing a classifier for target task while fixing the ex-
tracted features, without fine-tuning. As expected,
there is a significant performance drop, reaffirm-
ing the premise that the competence of transformer
and BERT is attainable via fine-tuning to its down-
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stream tasks.
Note that, although we performed experiments

on a small set of cross-modal tasks, given the su-
perior performance of ViT over ResNet on image
classification as reported by (Dosovitskiy et al.,
2020), and also on other computer vision tasks
as reported by models like pyramid vision trans-
former (Wang et al., 2021), we believe any task
that involves vision and language is a potential ben-
eficiary of transformer-exclusive approach, since it
enables the architectural integrity for both modali-
ties.

5 Conclusion

This paper proposed to handle cross-modal tasks
for vision and language, solely based on trans-
former architecture, examining it in various cross-
modal tasks. Our paper admittedly does not claim
state-of-the-art performances, but to the best of
our knowledge, our work is one of the first at-
tempts, along with models like ViLT (Kim et al.,
2021) and UniT (Hu and Singh, 2021), to examine
cross-modal representation for vision and language
solely based on transformer architecture, excluding
CNNs and RNNs. Without any structural modifica-
tions or sophisticated common embedding scheme,
and without additional cross-modal pre-training
with millions of samples, our model demonstrates
comparable performances to state-of-the-art cross-
modal models. Since we deliberately chose the
smallest baseline models for each component, and
a very simple concatenation scheme, we can intu-
itively expect an enhanced performance by select-
ing larger pre-trained models at the cost of more
parameters, or by selecting more sophisticated com-
mon embedding scheme. The same holds true for
the amount of pre-training data used, as we can rea-
sonably expect the performance to boost by using
the same amount of pre-training data employed by
previous models. With transformer’s relative com-
putational efficiency as reported by (Dosovitskiy
et al., 2020), the architectural integrity proposed
in our model is likely to lead to new research di-
rection, and we hope to encourage more advanced
models with novel ideas to follow in near future.
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