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Abstract
Aspect Term Extraction (ATE), Opinion Term
Extraction (OTE) and Aspect Sentiment Clas-
sification (ASC) are the essential building
blocks of Aspect-based Sentiment Analy-
sis (ABSA). They are typically treated as sep-
arate tasks and are individually studied by
previous work. Recent studies intend to in-
corporate multiple sub-tasks into a unified
framework, but suffer from the following ma-
jor disadvantages: (1) ABSA models are ex-
tremely fragile when some sub-tasks are ab-
sent; (2) the interactive relations among sub-
tasks are not adequate. To this end, we pro-
pose a multi-task learning approach named
MIN (Multiplex Interaction Network) to make
flexible use of sub-tasks for a unified ABSA.
We divide the sub-tasks of ABSA into ex-
tractive sub-tasks and classification sub-tasks,
and optimize these sub-tasks in a unified man-
ner with multiplex interaction mechanisms.
Specifically, we devise a pairwise attention
to exploit bidirectional interactions between
any arbitrary pair of extractive sub-tasks and
a consistency-weighting to perform unidirec-
tional interaction from an extractive sub-task
to a classification sub-task. Since the proposed
interaction mechanisms are task-agnostic, our
model can also work well when some specific
sub-tasks are absent. Extensive experiments
on two widely used benchmarks with different
numbers of sub-tasks demonstrate the superi-
ority of the proposed model.

1 Introduction

Aspect-based sentiment analysis (ABSA), a fine-
grained task of text sentiment analysis (Liu, 2012),
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aims at summarizing opinions in user comments
towards different targets (also known as aspects).
ABSA generally consists of three specific sub-tasks,
namely, aspect term extraction (ATE), opinion term
extraction (OTE) and aspect sentiment classifica-
tion (ASC). For example, consider the sentence
“The price is reasonable although the service is in-
ferior.”, ATE aims to extract a set of aspect terms
from the sentence, i.e. {price, service}, OTE ex-
tracts the opinion words, i.e. {reasonable, inferior}
, and ASC predicts sentiment polarity for each as-
pect that is positive over the first aspect price and
negative for the second aspect service, respectively.

Prevailing solutions of ABSA treated ATE (Liu
et al., 2015; Li and Lam, 2017; Angelidis and Lap-
ata, 2018; Liao et al., 2019; Luo et al., 2019b; Ma
et al., 2019), OTE (Wang et al., 2017; Wang and
Pan, 2019) and ASC (Wang et al., 2016b; Chen
et al., 2017; He et al., 2018; Li et al., 2018b; Du
et al., 2019; Xu et al., 2021) as separate tasks and
were individually studied for decades. These sepa-
rate tasks need to be integrated into a pipeline for
practical use (Hu et al., 2019; Phan and Ogunbona,
2020). The key problem with pipeline approaches
is that errors can accumulate and that the pipeline
model fails to fully exploit the interactive relations
among different sub-tasks (He et al., 2019). Some
recent efforts have been proposed to remedy these
issues by using joint learning to enhance the in-
teractions among sub-tasks (Wang et al., 2018; Li
et al., 2019; He et al., 2019; Luo et al., 2019a; Chen
and Qian, 2020; Peng et al., 2020) and achieved bet-
ter performance than pipeline solutions. To name
some, (Li et al., 2019) incorporated ATE and ASC
and formulated the problem as a single sequence
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Sentence Food is pretty good but the orange juice is horrific .

ATE B O O O O O B I O O O
OTE O O O B O O O O O B O
ASC POS - - - - - NEG NEG - - -

Table 1: A training instance sentence with gold ATE, OTE and ASC labels.

labeling task with a collapsed tagging scheme1.
(Luo et al., 2019a) treated ATE and ASC as two se-
quence labeling problems to mitigate the confused
representation brought by the collapsed tags. More
recently, (He et al., 2019; Chen and Qian, 2020;
Peng et al., 2020) proposed to utilize OTE as an
auxiliary task and further facilitated performance.

Despite their success, existing solutions severely
suffer from the following disadvantages: firstly, the
approaches fusing ATE and ASC cannot benefit
from OTE even though there exists opinion term
annotations; secondly, the joint learning model
might not work when any of the sub-tasks is absent;
thirdly, the interactive relations among sub-tasks
are not appropriately explored. For instance, (Luo
et al., 2019a; Li et al., 2019) would fail to exploit
OTE even if these exists labeled data for training.
(Chen and Qian, 2020; Peng et al., 2020) might
become fragile when the sub-task of OTE or ATE
is absent, due to their special designed complex
interactions among the sub-tasks of ATE, OTE and
ASC. In a nutshell, the key reason for these dis-
advantages is that existing studies only consider
specific interactive relations among a fixed number
of sub-tasks, but are inadequate to use the available
sub-tasks flexibly.

In this paper, we propose a simple yet effective
neural method named MIN (Multiplex Interaction
Network) that can make flexible use of sub-tasks
for unified ABSA task. The flexibility comes in
two folds: First, the number of sub-tasks is not re-
stricted and any related sub-task can be integrated
into the unified framework. Second, the interac-
tive relations among distinct sub-tasks are flexibly
modeled in an explicit manner.

To tackle the major challenge of how to manage
ABSA with arbitrary number of sub-tasks and al-
low sub-tasks to share interactive information in a
unified learning manner, we divide the sub-tasks of
ABSA into two categories, namely extractive sub-
tasks (e.g. ATE and OTE) and classification sub-
tasks (e.g. ASC), and formulate each sub-task as

1{B, I, E}-{POS, NEU, NEG} indicates the beginning,
inside and end of an aspect-term with positive, neutral or
negative sentiment, respectively. O denotes NULL sentiment.

a sequence labeling problem. MIN is built upon a
multi-task learning framework of the shared-private
scheme (Collobert and Weston, 2008). Sub-tasks
first jointly extract the low-level shared features
using multi-layer CNN encoder/pre-trained mod-
els. Then the private features of each extractive
sub-task are independently learned by a multi-layer
CNN network with a pairwise attention mecha-
nism. Such pair-attention can capture bidirectional
interactions between any two extractive sub-tasks
accordingly. Moreover, we devise a consistency-
weighting mechanism to exploit unidirectional in-
teractions from extractive sub-tasks to classifica-
tion sub-tasks and assist in private feature extrac-
tions in classification sub-tasks. The proposed in-
teraction mechanisms (including pair-attention and
consistency-weighting) give the model the flexi-
bility to handle different ABSA situations with
different number of sub-tasks of different types.
In addition, MIN adopts an information feedback
mechanism that first aggregates information from
all available tasks and then propagates useful infor-
mation back to individual tasks, allowing different
sub-tasks to positively influence each other. Ex-
periments on two widely used ABSA benchmarks
using different numbers of sub-tasks demonstrate
the proposed MIN outperforms both pipeline and
joint learning SOTA baselines on various settings.

2 Related Work

Separate learning mainly focuses on one of the
sub-tasks in ABSA, e.g. aspect term extrac-
tion (ATE), opinion term extraction (OTE) or as-
pect sentiment classification (ASC). For the ATE
task, previous methods can be divided into unsuper-
vised and supervised models, respectively. In unsu-
pervised methods, (Liu et al., 2015) utilized rules
about grammar dependency relations between opin-
ion words and aspects for aspect terms extraction.
(Luo et al., 2019b) presented a neural framework
that leverages sememes to enhance lexical seman-
tics for long-tailed aspect extraction. (Liao et al.,
2019) utilized the capability of coupling global
and local representation to discover aspect terms.
For supervised methods (Wang et al., 2016b; Li
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and Lam, 2017; Angelidis and Lapata, 2018; Ma
et al., 2019), they were usually formulated as a
sequence tagging problem, and various neutral net-
works with attention mechanisms were proposed
to solve the task. For ASC, (Liu and Zhang, 2017;
Cheng et al., 2017; He et al., 2018; Tang et al.,
2019; Liang et al., 2019; Lei et al., 2019) attempted
to exploit contextual and positional proximity of
aspect terms for prediction by attentional neural net-
works. And (Tian et al., 2020) proposed to learn a
unified sentiment representation for different senti-
ment analysis tasks. Recently, capsule network (Du
et al., 2019; Chen and Qian, 2019), and graph con-
volution networks (Zhang et al., 2019) were also
utilized in ASC and achieved SOTA performance.
These separate learning approaches may have dis-
advantages in practical applications as they need to
be pipelined and the interactions between different
sub-tasks are totally neglected.

Joint learning strives to combine sub-tasks of
ABSA into a unified learning process. For example,
some studies proposed to handle ATE and ASC in a
pipeline or an integrated model. The pipeline mod-
els (Hu et al., 2019; Phan and Ogunbona, 2020)
are extract-then-classify processes and were pro-
posed to solve the two tasks successively. However,
they can still derive error accumulations. For inte-
grated models, (Wang et al., 2018; Li et al., 2019)
solved ATE and ASC by collapsed tagging that
is a unified tagging scheme to link the two tasks.
(Luo et al., 2019a) considered the relationship be-
tween the two tasks and attempted to investigate
useful information from one task to another. Some
works (Wang et al., 2017; Dai and Song, 2019;
Chen et al., 2020; Zhao et al., 2020) integrated
ATE and OTE in the same framework to illustrate
these two tasks can benefit from each other. Then
emerging methods (He et al., 2019; Chen and Qian,
2020; Peng et al., 2020) proposed to inject OTE
as an auxiliary task to further improve the perfor-
mance of ABSA. However, the number of sub-tasks
and interactions among them in existing integrated
methods are fixed, which can be restricted when
sub-tasks vary in practice.

3 The Multiplex Interaction Network

3.1 Task Definition

All the sub-tasks related to ABSA are catego-
rized into extractive and classification sub-tasks,
respectively, in our framework. The extractive
sub-tasks extract meaningful subsequences of sen-

tences, such as aspect terms and opinion terms,
etc. The classification sub-tasks classify parts of
sentences into different classes, e.g. sentiment
polarities, genres and etc. We formulate all sub-
tasks as sequence labeling problems in our joint
learning framework. Given a sequence of tokens
X = {x1, x2, ..., xn},

• An extractive sub-task T is to predict a se-
quence tag YT = {yT1 , yT2 , ..., yTn } for the
sentence X = {x1, x2, ..., xn}, where yTi ∈
{B, I, O}. Specifically, {B, I, O} denotes be-
ginning of, inside of and out of the extracted
targets. For example, the first and the sec-
ond rows of Table 1 demonstrate the sequence
tags of aspect term extraction (ATE) and opin-
ion term extraction (OTE) respectively. In
the example, “food” and “orange juice” are
annotated as aspect terms, and “good” and
“horrific” are labeled as opinion terms.

• A classification sub-task C is to predict a se-
quence tag YC = {yC1 , yC2 , ..., yCn} for the sen-
tence X = {x1, x2, ..., xn}, where yCi is one
of the class labels. yCi will be marked as “-”
if the token xi does not belong to any cate-
gory. For example, the last row of Table 1
demonstrates the labels of the aspect senti-
ment classification (ASC) task for the exam-
ple sentence. In this example, the “food” is
labeled as “POS”, and “orange” as well as
“juice” is labeled as “NEG”, according to the
ground truth sentiment labels of the two as-
pect terms. Other tokens are labeled as “-” as
they do not have golden labels in this task.

3.2 Model Overview
For the convenience of explanation, we take two
extractive sub-tasks, namely ATE and OTE, and a
classification sub-task ASC to describe our MIN ap-
proach hereafter. The overall architecture of MIN
is shown in Figure 1. MIN consists of a shared en-
code layer, several features extraction modules for
different sub-tasks, and an information feedback
mechanism.

Private features extraction modules accept the
same representation from a shared encode layer
then extract their private task-oriented features by
specific multi-layer CNN algorithms. In order to
enhance flexibility, MIN conducts task interactions
for two facets. Firstly, we exploit the bidirectional
interaction between two different extractive sub-
tasks by a proposed pair-attention. Using pair-
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Figure 1: Model Overview of MIN. ATE, OTE and ASC are shown with corresponding interactions. A possible
extractive sub-task and a possible classification sub-task are marked in grey colors and some details of them are
omitted for easy viewing.

attention, extractive sub-tasks can exchange help-
ful clues with each other during features extrac-
tion. Secondly, we use a consistency-weighting
mechanism to perform the unidirectional interac-
tion from an extractive sub-task to a classification
sub-task. In this way, features with highlight in-
formation of extractive sub-tasks will be passed
to other classification sub-tasks and assist in their
features extractions. Then every sub-task predicts
the corresponding sequence labels, i.e., Ŷ

A
, Ŷ

O

and Ŷ
S

, by its decode layer. The model also adopts
an information feedback mechanism that concate-
nates representations of all sub-tasks to fine-tune
the shared representations. In the following, we
first describe the MIN model in more detail and
then illustrate the learning process.

3.3 Shared Representation Generation

For a sequence of tokens {x1, x2, ..., xn}, we map
the word sequence with either pre-trained double
word embeddings (Xu et al., 2018) or pre-trained
Bert model to generate a sequence of word vectors
E= {E1, ...,Ei, ...,En} ∈ Rde×n, where n denotes
the sentence length and de denotes the dimension of
word vectors. Then we simply feed E into a multi-
layer CNN encoder to generate shared features H =
{H1, ...,Hi, ...,Hn} ∈ Rdh×n, where dh denotes
the dimension of hidden vectors.

3.4 Features Extraction for Extractive
Sub-tasks

3.4.1 Multi-layer CNN

For the extractive sub-tasks, we use a multi-layer
CNN structure proposed by (Xu et al., 2018)
to learn private features of each task separately.
Specifically, there are many 1D-convolution filters
in each CNN layer, and each filter has a fixed ker-
nel size of k = 2c + 1. As a result, each filter
performs convolution operation on a window of k
word representations, and compute the representa-
tion for the i-th word along with 2c nearby words
in its context. We can extract private features HA

of ATE and HO of OTE by the above multi-layer
CNN algorithm,

HA = MC(H),HA ∈ Rdp×n,

HO = MC(H),HO ∈ Rdp×n,
(1)

where MC indicates the multi-layer CNN algo-
rithm, dp denotes the dimension of the private fea-
tures for extractive sub-tasks.

3.4.2 Pair-attention

In order to exploit potential interactions, we de-
velop a pair-attention to exchange helpful clues
between ATE and OTE based on their semantic
correlations. For ATE, the pair-attention matrix
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AA←O ∈ Rn×n is computed as follows:

score
(i 6=j)
ij = (HA

i )
>HO

j ,

AA←O
ij =

exp(scoreij)∑n
k=1 exp(scoreik)

.
(2)

By applying a weighted sum operation of pair-
attention to the private features HO of OTE, we
get an interactive feature matrix HA←O for ATE:

HA←O
i =

n∑
j=1

(AA←O
ij · HO

j ). (3)

Similarly, according to Eq. 2, we exchange HA

and HO to compute pair-attention matrix AO←A ∈
Rn×n then use AO←A and HA to get interactive
feature matrix HO←A for OTE by Eq. 3. In this
way, the model exploits bidirectional interactions
between the two sub-tasks. After pair-attention, we
concatenate the private and the interactive features
of the same sub-task, and then feed them to a fully-
connected layer to predict the sequence tags as
follows:

Ŷ
A
= softmax(WA(HA ⊕ HA←O)),

Ŷ
O
= softmax(WO(HO ⊕ HO←A)).

(4)

Note that for other extractive sub-tasks, we can
also compute the pair-attention with related extrac-
tive sub-tasks in a similar manner.

3.5 Features Extraction for Classification
Sub-tasks

Recall that a classification sub-task may benefit
from extractive sub-tasks. To name some, know-
ing the location of aspect terms will enhance the
matching degree of aspect terms with correspond-
ing sentiment polarities. For example, the second
row and the last row of Table 1 have consistent
labels2 since we expect to perform sentiment pre-
diction for aspect terms than other words. Simi-
larly, the sentiment polarities of aspect terms are
mainly influenced by surrounding opinion words.
For example, we can find “NEG” labels near to the
opinion word “horrific” in the example sentence
shown in Table 1.

3.5.1 Consistency-weighting
Inspired by the above observations, we devise a
consistency-weighting mechanism to learn private
features of ASC task.

2“Food” is the beginning of an aspect term and it has a
positive sentiment; while “pretty” is out of an aspect term and
thus has no sentiment in ATE and ASC sub-tasks.

First, we compute a set of weights to pass in-
formation with salient aspect and opinion terms to
ASC. Specifically, the weights of a token i w.r.t.
aspect and opinion terms are computed as follows:

wA
i =

k∑
j=1

(α− β · |aj − i|),

wO
i =

k∑
j=1

(α
′
− β

′
· |oj − i|)

(5)

where k denotes the first k tokens most likely to
be aspect or opinion terms, and aj and oj are the
indexes of j-th aspect and opinion term in the sen-
tence. α, α

′
, β and β

′
are pre-specified constants.

We can simply multiply the weights wA and wO

with interactive features of ATE and OTE to get a
distilled representation of every token:

HS←A
i = wA

i · HA
i ,H

S←A ∈ Rdp×n,

HS←O
i = wO

i · HO
i ,H

S←A ∈ Rdp×n.
(6)

Then the shared features are concatenated with
such distilled representation, and the private fea-
tures of ASC are extracted by the same multi-layer
CNN algorithm as in the ATE and OTE sub-tasks.

HS = MC(HS←A ⊕ HS←O ⊕ H),

HS ∈ Rdp×n.
(7)

By consistency-weighting, the information of as-
pect and opinion terms are highlighted during the
features extraction for the classification sub-task.

3.5.2 Self-Attention
We adopt a self-attention mechanism to learn long-
distant dependent information in a sentence for
the classification sub-task. Specifically, the self-
attention matrix AS↔S is computed as follows:

score
(i6=j)
ij = ((HS

i )
>WS↔SHS

j ) ·
1

|i− j| ,

AS↔S
ij =

exp(scoreij)∑n
k=1 exp(scoreik)

,AS↔S ∈ Rn×n,

(8)

where HS
i WS↔S(HS

j )
T and 1

|i−j| denote the seman-
tic relevance and distance between Hi and Hj , re-
spectively. After getting the outputs of the self-
attention layer, we also exploit a fully-connected
layer with softmax activation as a decoder:

HS↔S
i =

n∑
j=1

(AS↔S
ij · HS

j ),

Ŷ
S
= softmax(WSHS↔S),

(9)

where Ŷ
S

is the predicted label sequence for ASC.
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Dataset Sentence Opinion
Aspect

Pos Neu Neg

Res14
Train 3,044 3,484 2,164 807 637
Test 800 1,008 728 196 196

Lap14
Train 3,048 2,504 994 870 464
Test 800 674 341 128 169

Table 2: The statistics of datasets.

3.6 Information Feedback Mechanism

MIN exploits an information feedback mechanism
to interactively fine-tune the shared feature repre-
sentations. We denote t as the times of the informa-
tion feedback. In each round, we utilize the hidden
representation before decoder in every sub-task to
update the shared features. Specifically, we con-
catenate the hidden representations with the shared
feature matrix, and then use a fully-connected layer
with softmax activation to squeeze the vectors to a
fixed dimension.

Ht = softmax(W(HA←O
t−1 ⊕ HO←A

t−1 ⊕ HS↔S
t−1 ⊕ H)), (10)

where t denotes the t-th feedback update.

3.7 Training Procedure

The overall loss L consists of cross-entropy losses
for all sub-tasks according to final predicted se-
quence labels.

LA = − 1

N

N∑
i=1

1

ni

ni∑
j=1

(yAij · log(ŷAij)),

LO = − 1

N

N∑
i=1

1

ni

ni∑
j=1

(yOij · log(ŷOij)),

LS = − 1

N

N∑
i=1

1

ni

ni∑
j=1

(ySij · log(ŷSij)),

(11)

where N denotes the number of training instances,
ni denotes the number of tokens in the i-th instance.
The overall loss is the weighted sum of the sub-
tasks’ losses:

L = a · LA + b · LO + c · LS , (12)

where a, b, c are task coefficients, and we set all
of them as 1. Following (He et al., 2019), during
model training, we only compute ASC loss on to-
kens which are related to aspect terms, i.e., if a
token is not aspect term, we will ignore predicted
the sentiment on it. We minimize the L and de-
termine a suitable t by grid search for information
feedback mechanism during the experiment.

Model
Res14 Lap14

AE-F1 AS-F1 O-F1 AE-F1 AS-F1 O-F1

DECNN-TNet* 82.79 70.45 65.80 79.38 68.69 57.39
DECNN-TCaps* 82.79 71.77 66.84 79.38 69.61 57.71
PIPELINE-MIN 84.00 71.75 68.36 78.43 71.45 59.19

MNN* 85.84 67.93 – 79.91 58.30 –
E2E-ABSA* 83.92 68.38 66.60 77.34 68.24 55.88

DOER* 84.63 64.50 68.55 80.21 60.18 56.71
MIN 84.80 73.91 69.57 79.94 71.57 60.39

Table 3: Comparison results for double-task methods.
We divided all methods into pipeline and unified mod-
els. The best scores are in bold face and the second best
ones are underlined. “*” denotes the results are taken
from their own papers or (Chen and Qian, 2020).

4 Experiments

4.1 Datasets

We adopt two widely used datasets from Se-
mEval2014 Task 4 (Pontiki et al., 2014) in our
experiment which contain reviews about restaurant
and laptop, and the statistics are shown in Table 2.
Note that original datasets have ground truth labels
for aspect terms and corresponding sentiment polar-
ities, while labels for opinion terms are annotated
by (Wang et al., 2016a).

4.2 Compared Methods

We compare our method with recent ABSA meth-
ods. To demonstrate the flexibility of our method,
we divide the baselines into two categories, namely
double-task (ATE and ASC) and triple-task (ATE,
OTE and ASC) methods, considering that existing
methods are usually designed for fixed sub-tasks.

Double-task methods contain (1) pipeline meth-
ods: we take top-performing method DECNN (Xu
et al., 2018) for ATE, TNet (Li et al., 2018a) and
TCaps (Chen and Qian, 2019) for ASC to construct
two pipeline models following (Chen and Qian,
2020). We conduct a pipeline setting of our pro-
posed MIN denoted as PIPELINE-MIN, which
trains ATE and ASC separately, for fair compari-
son. (2) unified methods: MNN (Wang et al., 2018)
and E2E-ABSA (Li et al., 2019) jointly solve ATE
and ASC by using collapsed tagging schemes, and
DOER (Luo et al., 2019a) treats these two tasks as
two sequence labeling problems and utilized a dual
cross-shared RNN.

Triple-task methods aim to solve ATE, OTE and
ASC simultaneously, including (1) pipeline meth-
ods: following (Chen and Qian, 2020), we com-
bine CMLA (Xu et al., 2018) for ATE, TNet and
TCaps for ASC to construct two pipeline baselines.
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OTE is integrated into ATE. (2) unified methods:
IMN (He et al., 2019) is an interactive multi-task
model jointly trained on ATE and ASC where OTE
is also integrated into ATE. While RACL (Chen
and Qian, 2020) is trained on ATE, OTE and ASC
in parallel that considers four relations among the
three sub-tasks.

4.2.1 Settings
Following (He et al., 2019), we adopt double em-
bedding in word embedding layer of MIN, where
each word embedding is a concatenation of gen-
eral embedding (Pennington et al., 2014) with
300 dimensions and domain embedding (Xu et al.,
2018) with 100 dimensions. We set the hidden size
de = 400, dh = 300, dp = 300, and the kernel
size, number of shared CNN layers to 5 and 2, indi-
vidually. And the numbers of information feedback
in Res14 and Lap14 are set to 2 and 3 respectively.
The layers of multi-layer CNN for ATE, OTE and
ASC are set to {2, 2, 1} and the kernel size is 5
in two dataset. Adam optimizer (Kingma and Ba,
2015) with a learning rate of 1e-4 and a batch size
of 8 are utilized for all datasets.

We also combine MIN with BERTLarge to
get MIN-BERT and {de, dh, dp} is set to
{1024, 300, 300} with a learning rate of 1e − 5
by grid search. The layers of multi-layer CNN for
ATE, OTE, ASC and the number of information
feedback are set to {1, 1, 1, 2} in the two datasets.
The other parameters are the same as the MIN
model with the double embedding. We meanwhile
alternate IMN and RACL with BERTLarge for fur-
ther detailed comparison. We use the same metrics
as (He et al., 2019), i.e., AE-F1, OE-F1, AS-F1
and O-F1, representing macro F1 scores for ATE,
OTE, ASC and overall performance for complete
ABSA. We select the model with the best O-F1 on
the development set for test.

4.3 Experimental Results
4.3.1 Overall Performance
Table 3 and 4 demonstrate the performance of our
method and the compared double-task (i.e., ATE
and ASC) and triple-task methods (i.e., ATE, OTE
and ASC), respectively. We have several consistent
observations from the two tables. Firstly, most uni-
fied models perform better than pipeline models,
which proves the advantages of exploiting interac-
tions between sub-tasks. Secondly, our MIN can be
flexibly applied to either double-task or triple-task
scenario and can achieve better performance than

Model
Res14 Lap14

AE-F1 OE-F1 AS-F1 O-F1 AE-F1 OE-F1 AS-F1 O-F1

CMLA-TNet* 81.91 83.84 69.69 64.49 77.49 76.06 68.30 55.94
CMLA-TCaps* 81.91 83.84 71.32 65.68 77.49 76.06 69.49 56.30

IMN* 84.01 85.64 71.90 68.32 78.46 78.14 69.92 57.66
RACL* 85.37 85.32 74.46 70.67 81.99 79.76 71.09 60.63
MIN 85.27 86.85 76.39 70.92 82.24 80.56 72.60 61.35

IMN-BERT 84.06 85.10 75.67 70.72 77.55 81.00 75.56 61.73
RACL-BERT 86.38 87.18 81.61 75.42 81.79 79.72 73.91 63.40
MIN-BERT 87.91 85.66 80.48 76.02 83.22 81.80 74.95 64.83

Table 4: Comparison results for triple-task methods.
We divided all methods into pipeline, unified models
and models based on BERT-large. “*”, bolded and un-
derlined scores have the same meanings as Table 3.

Res14 Lap14

ATE+OTE AE-F1 OE-F1 AE-F1 OE-F1

IMN 84.83 86.32 78.31 77.58
RACL 85.47 86.48 81.83 78.19
MIN 85.78 86.71 81.74 78.29

OTE+ASC OE-F1 AS-F1 OE-F1 AS-F1

IMN NA NA NA NA
RACL 81.27 63.16 79.32 65.45
MIN 86.14 71.15 79.58 68.13

ATE+ASC AE-F1 AS-F1 AE-F1 AS-F1

IMN 84.78 70.46 79.22 69.65
RACL 85.66 70.78 79.76 68.87
MIN 84.80 73.91 79.94 71.57

Table 5: Comparison results for different combinations
of ATE, OTE and ASC. The best scores are in bold.
‘NA’ denotes not available.

all the compared methods on O-F1. We conjecture
the possible reason is that the proposed generic
interaction mechanism among different sub-task
types is independent on any specific sub-task. Thus,
our MIN can work well regardless of the number
or the type of sub-tasks. Thirdly, we enhance the
performance of some compared models with word
embeddings provided by BERTLarge (Devlin et al.,
2018) and report the corresponding results in Ta-
ble 4. We can observe that our MIN-BERT also
shows superiority especially on O-F1.

4.3.2 Flexibility
To further investigate the flexibility of MIN, we
compare our MIN with variants of strong competi-
tors in triple-task methods by varying the combina-
tion of sub-tasks. We remove one of the three sub-
tasks and get three different combinations, namely
“ATE+OTE”, “ATE+ASC” and “OTE+ASC”. Note
that the double-task methods in table 3 cannot be
easily adapted for this comparison due to their spe-
cial design for specific sub-task combinations.

Table 5 exhibits the corresponding results on
two datasets. We can see from the table that MIN
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Model Res14 Lap14

Full Model 70.92 61.35
w/o Pair-attention 69.82 59.37
w/o Consistency-weighting 69.46 60.84
w/o Info Feedback 69.07 59.17
w/o Self-Attention 67.63 57.03

Table 6: Results of ablation study on the model for
“ATE+OTE+ASC”. ‘w/o’ denotes without.

outperforms both IMN and RACL on most of the
cases, and the two baselines cannot work well when
the sub-task combination varies since both of them
designed specialized interaction mechanisms for
a fixed number of sub-tasks. For example, IMN
adopts OTE as an auxiliary task for ATE and thus
cannot provide results on “OTE+ASC”. RACL,
which designs four kinds of collaborative relations
among ATE, OTE and ASC, degrades when arbi-
trary one sub-task is unavailable. However, our
MIN separates the sub-tasks by different categories
and leverages two category-level interaction mech-
anisms. It derives a trade-off that the interactions
on remaining sub-tasks are still functional although
one sub-task is removed. That is where the flexibil-
ity of our model comes from.

4.3.3 Ablation Test
In order to verify the effectiveness of different in-
teractive mechanisms in our model, we conduct
ablation tests on “ATE+OTE+ASC” unified ABSA.
We remove different interaction mechanisms be-
tween sub-tasks in turn to observe the effectiveness
of them. As the O-F1 results shown in Table 6, all
interaction mechanisms are effective in MIN as ex-
pected. For example, on Res14, the scores of model
without consistency-weighting and the model with-
out self-attention drop largely. It is believed that
sentiment polarities are mainly influenced by cor-
responding aspect and opinion words.

4.3.4 Case Study
Next, we illustrate two cases generated by IMN,
RACL and our MIN for further investigation in
Table 7. In Case (1), IMN extracts “choice” as
an extra aspect without considering the relations
between ATE and OTE. In addition, RACL in-
correctly identifies “choice” and “craving” as as-
pect and opinion terms. We conjecture the possi-
ble reasons might be the “choice” is paired with
“exquisite” as an aspect and the “craving” is rec-
ognized as a term expressing opinions by the
specifically-designed interaction relations in RACL.
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Figure 2: Effects of parameter t.

However, our proposed pair-attention of MIN is
more general, and correctly extracts all the aspect
terms and opinion terms. Case (2) explores the ef-
fectiveness of our proposed consistency-weighting.
Specifically, although IMN extracts the correct
opinion word “too sweet”, the final sentiment of
“mole sauce” is still predicted wrong with a weak
help of opinion terms. Meanwhile, although RACL
exploits the relation between OTE and ASC, it rec-
ognizes the “sweet” incompletely, which might
because RACL cannot update representation with-
out the information feedback mechanism. As a
result, “sweet” interferes sentiment prediction and
leads to a wrong polarity for “mole sauce”. In con-
trast, MIN correctly predicts sentiment polarities
by using consistency-weighting based on complete
aspect and opinion terms.

4.3.5 Times of Information Feedback
Finally, we investigate the sensitivity of the param-
eter t in the information feedback mechanism. Fig-
ure 2 (a) and (b) show the results of O-F1 on Res14
and Lap14 as t increases. We observe that MIN
achieves better performance when t = 2 or t = 3.
And there is no considerable improvement with a
further increase of t, because redundant iterations
might derive overfitting.

5 Conclusion

In this paper, we propose a novel neural model
MIN to make flexible use of sub-tasks for the uni-
fied ABSA task. We introduce two sub-task ag-
nostic interaction mechanisms, i.e., pair-attention
and consistency-weighting, to exploit interactions
among different sub-tasks and an information feed-
back mechanism to fine-tune the shared feature
representation. Experiments with a different num-
ber of sub-tasks show the flexibility of MIN. The
proposed framework can be potentially applied to
similar tasks such as named entity recognition, se-
mantic relation extraction, and etc.
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Case IMN RACL MIN
ATE,ASC OTE ATE,ASC OTE ATE,ASC OTE

(1) If you ’re craving some [serious]
[indian food]pos and desire a [cozy]
[ambiance]pos, this is quite and
[exquisite] choice.

[craving7]
[indian food]pos [serious] [indian food]pos [serious] [indian food]pos [serious]
[ambiance]pos [cozy] [ambiance]pos [cozy] [ambiance]pos [cozy]
[choice7]pos [exquisite] [choice7]pos [exquisite] [exquisite]

(2) The [fajita]neg we tried was
[tasteless] and [burned] and the
[mole sauce]neg was way [too sweet] .

[fajita]neg
[tasteless]

[fajita]neg
[tasteless]

[fajita]neg
[tasteless]

[burned] [burned] [burned]
[mole sauce]pos7 [too sweet] [mole sauce]neu7 [sweet7] [mole sauce]neg [too sweet]

Table 7: Case study. The abbreviations pos, neu and neg in the table represent positive, neutral and negative. 7
indicates incorrect prediction. Notice that the ground-truth aspect and opinion terms are marked in red and blue in
the brackets, while the sentiment polarity labels for the aspect terms are demonstrated as corresponding subscripts.
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