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Abstract

Since the late 1990s, automatic text simplifica-
tion (ATS) was promoted as a natural language
processing (NLP) task with great potential to
make texts more accessible to people with var-
ious reading or cognitive disabilities, and en-
able their better social inclusion. Large mul-
tidisciplinary projects showed promising steps
in that direction. Since 2010, the field started
attracting more attention but at the cost of ma-
jor shifts in system architecture, target audi-
ence, and evaluation strategies. Somewhere
along the way, the focus has shifted from ATS
for social good towards building complex end-
to-end neural architectures that are not aimed
at any particular target population. This study
presents the trajectory of ATS for social good,
the main issues in current ATS trends, and the
ways forward that could bring the field back to
its initial goals.

1 Rationale

The right to accessible information is a fundamen-
tal right that should be granted to all people (UN,
2020). It is the key factor for personal empower-
ment and social inclusion. Nevertheless, textual
information found on the web, in the news, health
leaflets, and other sources is often linguistically too
complex for many people and thus impedes their
active participation in the society.

1.1 Adult Literacy
In the OECD Adult Literacy Report (OECD, 2013),
“literacy is defined as the ability to understand, eval-
uate, use and engage with written texts to partici-
pate in society, to achieve one’s goals, and to de-
velop one’s knowledge and potential”. The literacy
scale comprises of six levels:1

1We shorten the description of the skills at each literacy
level and maintain only the information that is most relevant
for further discussions. The full description of the literacy
levels can be found on the page 64 in (OECD, 2013).

Below Level 1: Able to read brief texts on fa-
miliar topics and to locate a single piece of specific
information (the process requires only basic vocab-
ulary knowledge).

Level 1: Able to read very short texts (some-
times non-continuous or mixed) and locate a single
piece of information identical or synonymous to
the information given in the question/directive (re-
quires only basic vocabulary knowledge). Texts
may contain little, if any, competing information.

Level 2: Able to integrate two or more pieces
of information, use paraphrasing or low-level in-
ferences, compare and contrast or reason about the
information requested.

Level 3: Able to understand dense and lengthy
texts, various rhetorical structures, perform vari-
ous levels of inference, and disregard irrelevant or
inappropriate content.

Level 4: Able to integrate, interpret or synthe-
sise information from complex or lengthy texts,
perform complex inferences and apply background
knowledge, identify and understand one or more
non-central idea(s), evaluate subtle evidence-claim
or persuasive discourse relationships, discern be-
tween the correct and competing information which
sometimes appear in almost equal ratio.

Level 5: Able to search for and integrate in-
formation across multiple dense texts, synthesise
various ideas and points of view, evaluate evidence-
based arguments, apply and evaluate logical and
conceptual models of ideas, evaluate reliability of
the sources, selecting relevant information, notice
subtle, rhetorical cues and make high-level infer-
ences or use specialised background knowledge.

The percentage of adults (age 16–65) whose lit-
eracy is below Level 2 is 16.7%, on average, across
24 countries taken into account (OECD, 2013).2 In

2Participating countries: Australia, Austria, Belgium (Flan-
ders), Canada, the Czech Republic, Denmark, Estonia, Fin-
land, France, Germany, Ireland, Italy, Japan, Korea, the
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Literacy US Spain Italy
Average

Simplification need
(24 countries)

Below Level 2 21.7% 28.3% 28.3% 16.7% lexical simplification
Below Level 3 ≈50% 67.4% 70.3% 50.0% syntactic simplification
Below Level 4 ≈86% ≈95% ≈97% 89.4% conceptual simplification

Table 1: Percentage of population in need for text simplification (the numbers are inferred from (OECD, 2013)).

Italy, Spain, and United States, this percentage is
even higher (Table 1). On average, 0.7% of pop-
ulation has the literacy level 5. According to the
definitions of the literacy levels in the OECD re-
port, outlined above, one can conclude that: (1)
all people with literacy below Level 4 have diffi-
culties understanding conceptually complex texts;
(2) all people with literacy below Level 3 addition-
ally have difficulties understanding syntactically
complex texts; and (3) all people with literacy be-
low level 2 have difficulties understanding texts
which are linguistically difficult in any sense (lexi-
cally, syntactically, or conceptually). This means
that, according to the results of the OECD report,
approximately 16.7% of population needs lexical
simplification of everyday texts, 50% of population
needs syntactic simplification, and 89.4% of popu-
lation needs conceptual simplification (Table 1).

1.2 Manual Text Simplification

Text simplification aims to transform original texts
into their simpler variants, which are more under-
standable to the target reader(s), while preserving
the original meaning. Some nuances in meaning
would inevitably be lost during that process, but
the core information should stay the same.

The first guidelines for how to write more ac-
cessible texts for international communication, by
using reduced vocabulary and restricted number
of grammatical rules, were Basic English (Ogden,
1937) and Plain English initiative (Crystal, 1987).
Since the late 1990s, many more initiatives have
raised awareness about how to write more acces-
sible texts, e.g. how to write for people with intel-
lectual disabilities (Freyhoff et al., 1998; Mencap,
2002; Karreman et al., 2007), how to make pub-
lic information more accessible to wider audiences
(PlainLanguage, 2011), and how to make web con-
tent more accessible (W3C, 2008; Cooper et al.,

Netherlands, Norway, Poland, the Slovak Republic, Spain,
Sweden, the United Kingdom (England and Northern Ireland),
the United States, Cyprus, and the Russian Federation.

2010). Specialized websites that offer easy-to-read
news are now common in many countries, e.g. Noti-
cias fácil in Spain3, DR in Denmark4, News Web
Easy in Japan5.

2 Automatic Text Simplification (ATS)

Manual text simplification, apart from being slow
and expensive (requiring trained human editors),
cannot keep up-to-date with the new information
published online, offer variety of written content, or
adaptation at a personal level. That created the need
for automatic, or at least semi-automatic (involving
a manual post-editing step) TS systems.

The first automatic text simplification (ATS) sys-
tems were rule-based, with focus on syntactic sim-
plification in English, and were envisioned mainly
as a pre-processing step for various natural lan-
guage processing (NLP) applications, e.g. pars-
ing, machine translation, summarization, and in-
formation retrieval; the clarity of texts for human
readers was only one of the possible use cases
(Chandrasekar et al., 1996; Chandrasekar and Srini-
vas, 1997). Subsequent ATS systems were pro-
posed for various languages and were encompass-
ing any number of the following simplification op-
erations: lexical simplification, syntactic simplifi-
cation, or explanation generation (Shardlow, 2014;
Siddharthan, 2014).6

2.1 ATS Projects for Social Good

Automatic text simplification gained more interest
from research community through several national
and international projects that secured public found-
ing for building ATS systems for various vulnera-
ble populations and in various languages (Table 2).

3www.noticiasfacil.es
4https://www.dr.dk/ligetil/
5https://www3.nhk.or.jp/news/easy/
6For a comprehensive overview of ATS, please see the

book written by Saggion (2017), and the more recent surveys
on ATS, lexical simplification, and sentence simplification
(Paetzold and Specia, 2017b; Alva-Manchego et al., 2020b;
Al-Thanyyan and Azmi, 2021).

www.noticiasfacil.es
https://www.dr.dk/ligetil/
https://www3.nhk.or.jp/news/easy/
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Project Period Language Impairment Text types

PSET 1996–2000 EN Aphasia News
PorSimples 2007–2010 PT (BR) Low literacy News and educative articles
Simplext 2010–2013 ES Down syndrome News
FIRST 2012–2015 EN, ES, BG Autism News, literature, health leaflets
Able To Include 2014–2017 EN, ES, NL Intellectual E-mails, short messages

Table 2: Projects proposing automatic text simplification for social good.

All aimed to provide a better social inclusion, thus
promoting ATS as an NLP task for social good.

ATS for Readers with Aphasia. PSET (Practi-
cal Simplification of English Text) was an UK na-
tional project (1996–2000) that aimed to build an
ATS system that would make newspaper articles
more accessible to people who suffer from aphasia
(Carroll et al., 1998). This was the first project that
promoted the use of ATS for social good. The solu-
tion was envisioned as a modular system consisting
of two components: an analyser and a simplifier.
The analyser would use lexical tagger, morphologi-
cal analyser, and parser to recognize potentially dif-
ficult words and sentences for aphasic readers. The
simplifier would use rule-based syntactic simplifi-
cation systems to convert passive to active voice,
extract embedded clauses, and split conjoined sen-
tences, and a lexical simplification system which
would use WordNet (Vossen, 2004) for retrieving
substitution candidates and the Oxford Psycholin-
guistic Database (Quinlan, 1992) to choose the sim-
plest one of them. It was envisioned to evaluate
the final system with a group of aphasic readers
(Carroll et al., 1998). HAPPI (Helping Aphasic
People Process Information) was the continuation
of the PSET project, this time with the aim of devel-
oping web-based ATS system which would make
web content more accessible to aphasic readers by
simplifying text vocabulary and syntax (Devlin and
Unthank, 2006). To the best of our knowledge,
there are no publications about the evaluations of
the final systems with the end users.

ATS for Readers with Low Literacy. The Por-
Simples (Simplification of Portuguese Text for Dig-
ital Inclusion and Accessibility) project (Aluı́sio
and Gasperin, 2010) was a Brazilian national
project (2007–2010). Its aim was to produce tools
and resources for people with low literacy levels
(through the assistive technology systems called
FACILITA and Educational FACILITA) and au-

thors that want to produce texts for this audience
(through an authoring system called SIMPLIFICA).
The FACILITA system was envisioned with the
focus on summarization and syntactic simplifica-
tion, i.e. sentence splitting, change of discourse
markers, conversion from passive to active voice,
inversion of clause order, subject-verb-object or-
der, topicalization and de-topicalization (Watanabe
et al., 2009). Educational FACILITA was a web
application prototype which offered lexical elabora-
tions and named entity labelling. A pilot study with
low-literacy users reported improved text compre-
hension, though participants reported to be some-
times confused with the offered list of synonyms
that had multiple meanings (Watanabe et al., 2010).

ATS for People with Cognitive Disabilities.
Simplext (Saggion et al., 2011, 2015) was a Span-
ish national project (2010-2013) that proposed sev-
eral modules for automatic simplification of Span-
ish (news) texts for people with cognitive disabil-
ities (particularly people with Down’s syndrome).
The modules combined rule-based and corpus-
based techniques for reducing syntactic complex-
ity of sentences, deleting unnecessary information,
performing numerical simplification, normalizing
reporting verbs, and reducing lexical complexity
(Saggion et al., 2015). The final ATS system was
tested by 44 people with Down’s syndrome by mea-
suring reading time and text comprehension. More
correct answers were obtained for simplified texts,
on average, and participants positively rated the ex-
istence of such a tool that is available through dif-
ferent technological channels, e.g. computer, smart-
phone, tablet (Saggion et al., 2015).

The Able to Include project (2014–2017) was an
international project that aimed to improve the qual-
ity of life of people with intellectual or developmen-
tal disabilities, dementia, or any kind of cognitive
impairments.7 Three applications were built during

7http://able-to-include.com

http://able-to-include.com


2640

the project: ABLEsocial (media app), ABLEchat
(mobility app), and KOLUMBA (ABLEmail app)
by using Simplext (ATS technology), PictoText,
and Text2Speech web services.8 This project did
not offer significant advances in core ATS research.
Its focus was, instead, on bringing existing ATS so-
lutions to life through freely accessible prototypes.

ATS for Readers with Autism. The FIRST
project (2012–2015) was an EC-funded project un-
der the FP7 ICT call concerning smart and per-
sonalised inclusion (Orăsan et al., 2018). It pro-
vided OpenBook, a software that can automati-
cally identify a range of language phenomena (e.g.
complex syntactic structures, complex words and
phrases, ambiguous words, and metaphors) that
are problematic for people with high-functioning
(IQ>70) autism spectrum disorders (ASD), and
replace some of them. It also offered adding illus-
trative pictures and concise document summaries.
The tool supported three languages: English, Span-
ish, and Bulgarian. Acknowledging that ATS was
creating a large number of errors for some texts,
and that end users have low tolerance for ungram-
matical and erroneous text, OpenBook was also
offering powerful post-editing options so that car-
ers can post-edit the texts before showing them to
the end users (Orăsan et al., 2018). The architec-
ture was highly modular, with separate modules
for each transformation, to allow for highest level
of personalization possible. The final evaluation
with 243 participants with high-functioning autism
from UK, Spain, and Bulgaria was performed on
texts which were automatically simplified and post-
edited (by the clinical teams) using OpenBook.
The participants were more successful at answering
multiple-choice questions about the simplified than
the original texts, and human-aided text conversion
time significantly decreased by using OpenBook
(Orăsan et al., 2018).

2.2 ATS in Medical Domain

A special type of literacy is health literacy, defined
by the European Health Literacy Consortium:

“Health literacy is linked to literacy and
entails people’s knowledge, motivation
and competences to access, understand,
appraise and apply health information in

8Details about text to pictograph translation and the ac-
cessible e-mail client can be found in (Sevens et al., 2017;
Saggion et al., 2017).

order to make judgements and take deci-
sions in everyday life concerning health
care, disease prevention and health pro-
motion to maintain or improve quality of
life during the life course.”

According to the European Health Literacy Sur-
vey, nearly half of all adults in the eight European
countries covered by the survey were found to
have low health literacy skills, which may result
in less healthy choices, riskier behaviour, poorer
health, less self-management and more hospitaliza-
tion (WHO, 2013). Due to their potential to im-
prove the health of people with low health literacy
skills, attempts at building ATS systems focused on
simplifying medical content have recently attracted
noticeable attention.

In contrast to the ATS systems mentioned so far,
the ATS systems in medical domain are particularly
focused on translating highly specialized medical
expressions into their layman variants, and thus
require domain-specific resources and customized
algorithms. Kloehn et al. (2018) proposed an algo-
rithm for automatically generating explanations for
difficult (medical) terms in English and Spanish.
van den Bercken et al. (2019) explored the possibil-
ity of training the earlier proposed general purpose
neural text simplification model (Nisioi et al., 2017)
on medical parallel corpus. Shardlow and Nawaz
(2019) used the general purpose neural text simpli-
fication model (Nisioi et al., 2017) augmented with
the phrase table of complex-simple medical termi-
nology to automatically simplify clinical letters in
English. Cardon and Grabar (2020) used similar
approach for biomedical texts in French. Empha-
sizing the need for high-quality simplification in
medical domain, Van et al. (2020) explored the
possibility of applying pretrained neural language
models to the autocomplete process for sentence-
level medical text simplification.

2.3 ATS Research Trends
Research on ATS in English9 could roughly be
divided in three phases: rule-based systems that
focus on specific, well-defined transformations (un-
til 2010); data-driven supervised machine learn-
ing systems trained on parallel TS data (2010-
2014/2016); and neural text simplification sys-
tems (from 2015/2017 onward). The neural trends

9The vast majority of ATS research was published for
English and thus the discussion here is focused on those. Most
of the ATS research for other languages uses similar ideas and
adapts them to the particular language.
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started earlier for purely lexical simplification sys-
tems by leveraging word embeddings (Glavaš and
Štajner, 2015; Paetzold and Specia, 2016). Sen-
tence simplification systems embraced neural ar-
chitectures in 2017 by using neural machine trans-
lation (Nisioi et al., 2017) and reinforcement learn-
ing (Zhang and Lapata, 2017). Those three years
(2010, 2015, and 2017) can clearly be observed in
Figures 1 and 2, which show the number of schol-
arly articles that mention the specific TS terms
anywhere in the text, and the number of scholarly
articles with those TS terms in their title.10

Figure 1: The number of articles in Google Scholar that
mention specific text simplification terms.

Figure 2: The number of articles in Google Scholar
with specific text simplification terms in their title.

Interestingly, the number of articles mentioning
syntactic simplification was steadily increasing un-
til 2015, and then again in the period 2017–2019
(Figure 1), while the number of articles with syn-
tactic simplification in their title was increasing
until 2014, then noticeably decreased by 2016, to
never increase much again (Figure 2). The num-
ber of lexical simplification (LS) papers, in turn,
has been increasing since 2010, with two peaks, in
2012 and 2016. The peak in 2012 was due to the
papers describing systems which participated in the
SemEval-2012 English Lexical Simplification task

10We excluded the patents and citations from this search,
and looked for the exact matches of the TS terms. All returned
titles were additionally manually checked.

(Specia et al., 2012), and lexical simplification en-
deavours in the scope of the Simplext project (Bott
et al., 2012; Drndarević and Saggion, 2012a,b). Al-
most all lexical simplification research published in
2016 was focused on LS for non-native speakers.

So far, conceptual simplification has been tack-
led only through coreference resolution (Orăsan
et al., 2018). Although most works mention “text
simplification”, they actually refer to sentence sim-
plification. The state-of-the-art ATS systems pub-
lished in top tier NLP/CL/AI conferences, e.g. (Ni-
sioi et al., 2017; Zhang and Lapata, 2017; Surya
et al., 2019; Kumar et al., 2020; Mallinson et al.,
2020), all describe end-to-end systems for sentence
simplification, and are not directed towards any
particular simplification transformation or target
population.

Very few papers proposed ATS methods that op-
erate beyond sentence level (Glavaš and Štajner,
2013; Narayan and Gardent, 2014; Štajner and
Glavaš, 2017). The research interests thus do
not seem to follow the reported text simplification
needs (see Table 1 in Section 1.1).

3 Challenges in ATS for Social Good

In spite of the evident increased interest for ATS in
the last few years, and the obvious benefits it could
bring to the society, no commercial systems have
been offered so far, proving thus that automatic text
simplification is a very challenging task.

The main reason might lie in the multidisci-
plinary nature of the task, i.e. the need for com-
bining linguistics, psycholinguistics, computer sci-
ence, and, to be used in real-world applications,
advanced software engineering. Only large mul-
tidisciplinary teams can ensure solutions that are
technically-advanced and, at the same time, truly
help the end users. The absence of such multidis-
ciplinary research leads to usage of non-optimal
resources and evaluation procedures which do not
involve end users, thus steering the field away from
any real-world applications.

3.1 Resources

The number of manually simplified texts increases
daily due the number of websites that provide
easy-to-read materials (Section 1.2). Unfortunately,
those materials and their original (non-simplified)
versions, are usually not made available for nei-
ther research nor commercial purposes. The excep-
tions are the English and Spanish Newsela corpora,
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Dataset Language Quality Target Domain Articles×levels

Britanica (Barzilay and Elhadad, 2003) EN • Children Encyclopedia 114×2
LiteracyNet (Feng et al., 2009) EN • Low literacy News 115×2
Zero Hora (Caseli et al., 2009) PT(BR) ◦ Children & Low literacy News 104×3
Dsim (Klerke and Søgaard, 2012) DA • Reading impaired & L2 News telegrams 3701×2
Wikipedia (Kauchak, 2013) EN ◦ Children & L2 Encyclopedia ≈60,000×2
Newsela (Xu et al., 2015) EN • Children & L2 News 1,130×5
Newsela (Štajner et al., 2015) ES • Children & L2 News ≈250*5
Simplext (Saggion et al., 2015) ES • Intellectual disability News 200×2
Terence (Brunato et al., 2015) IT • Poor comprehenders Children stories 32×2
Teacher (Brunato et al., 2015) IT ◦ L2 Literature & Handbooks 24×2
NewsWebEasy (Goto et al., 2015) JP ◦ L2 News 490×2
OneStopEng. (Vajjala and Lučić, 2018) EN • L2 News 189×3
Alector (Gala et al., 2020) FR • Children & L2 Literature & Science 79×2

Table 3: Parallel (comparable in the case of Wikipedia) document-level text simplification datasets (• signifies
professional simplification, and ◦ non-professional simplification following provided guidelines).

Dataset Language Quality Alignment Type Domain Sentence pairs

Enc. Brit. (Barzilay and Elhadad, 2003) EN • Automatic all Encyclopedia 601
PorSimples (Specia, 2010) PT(BR) ◦ Controlled all News & Science 4,483
PWKP (Zhu et al., 2010) EN ◦ Automatic all Wikipedia ≈108,000
EW-SEW v1.0 (Coster and Kauchak, 2011b) EN ◦ Automatic all Wikipedia ≈137,000
EW-SEW v2.0 (Kauchak, 2013) EN ◦ Automatic all Wikipedia ≈167,000
EW-SEW (Hwang et al., 2015) EN ◦ Automatic all Wikipedia ≈280,000
Newsela (Štajner et al., 2015) EN • Automatic all News ≈480,000
NewsWebEasy (Goto et al., 2015) JP • Manual+Auto all News 13,386
Simplext (Saggion et al., 2015) ES • Manual all News 925
PaCCSS-IT (Brunato et al., 2016) IT ◦ Automatic structural Web texts ≈63,000
Newsela (Štajner et al., 2018) ES • Automatic all News Not specified
PorSimplesSent (Leal et al., 2018) PT(BR) ◦ Controlled all News & Science 4,888

Table 4: Comparable sentence-level text simplification datasets (‘controlled’ signifies that the alignment was auto-
matic but using the original editing tool, thus corresponding close to a manual alignment).

which are available upon request for research pur-
poses (the portion until 2016).11

The largest freely available TS corpora up-to-
date are those based on matching the original En-
glish Wikipedia articles with the articles of the
same title in Simple English Wikipedia, the EW-
SEW corpora. They are available in several ver-
sions, as document-aligned (Kauchak, 2013)12 and
sentence-aligned (Zhu et al., 2010; Coster and
Kauchak, 2011b; Kauchak, 2013; Hwang et al.,
2015). Apart from not representing a truly parallel
corpus but rather just comparable, as the articles in
Simple English Wikipedia might have been written
completely independently from the articles with the
same title in the original English Wikipedia, many
objections have been raised regarding the quality of
simplifications (Amancio and Specia, 2014; Štajner
et al., 2015; Xu et al., 2015; Štajner et al., 2020).

11https://newsela.com/data/
12https://cs.pomona.edu/˜dkauchak/

simplification/

The English and Spanish Newsela corpora (Xu
et al., 2015; Štajner et al., 2018), in contrast, pro-
vide parallel texts on several complexity levels,
manually simplified under strict quality control (Xu
et al., 2015).

The other available parallel (document-aligned)
TS corpora are significantly smaller and do not
provide enough material for training ATS models
(Table 3). As their texts were simplified for differ-
ent target populations, they cannot be combined
to make larger training datasets for any specific
target population, as it is known that there are no
universal native simplified–language speaker (Sid-
dharthan, 2014). Nevertheless, those smaller TS
corpora could be used for evaluation of ATS sys-
tems aimed at particular target populations.

The sentence-aligned TS corpora, apart from
those obtained from Newsela and EW-SEW, are
still very scarce and limited in their size (Table 4).

The main problem with most sentence-aligned
TS corpora is that they were automatically aligned

https://newsela.com/data/
https://cs.pomona.edu/~dkauchak/simplification/
https://cs.pomona.edu/~dkauchak/simplification/
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using various sentence similarity measures with
high similarity thresholds. This resulted in high
number of pairs of identical, or nearly identical,
sentences which, if used for training ATS systems,
lead to conservative systems that rarely suggest
any changes to the original sentence (Štajner and
Saggion, 2015). The newer alignment methods
(Hwang et al., 2015; Štajner et al., 2017; Paetzold
et al., 2017), offer two types of sentence pairs: full
matches and partial matches. In NMT-based TS
(Štajner and Nisioi, 2018), the EW-SEW dataset
(Hwang et al., 2015) resulted in a model with simi-
larly high percentage of changed sentences as the
model trained on Newsela sentence-aligned corpus
(Štajner et al., 2017). Those results indicate that
the EW-SEW dataset has a potential to be used
for training state-of-the-art ATS models, if the sen-
tences are carefully matched and filtered.

For building training datasets for ATS in medical
domain, van den Bercken et al. (2019) and Van et al.
(2020) used the EW-SEW dataset by retaining only
those sentence pairs in which the original sentences
contain certain number of medical terms.

One of the biggest challenges in ATS is how to
collect a parallel dataset of truly strong paraphrases
which are necessary for training ATS systems for
people that require higher levels of simplification
(e.g. people with cognitive or reading disabilities,
and people with low literacy levels).13 Such sen-
tence pairs are still rarely correctly extracted with
automatic alignment methods (Štajner et al., 2018).

The sentence-aligned TS corpora in Brazilian
Portuguese, the PorSimples (Specia, 2010) and
PorSimplesSent14 (Leal et al., 2018), compiled
under the PorSimples project, are the only ones
that did not lose the strong paraphrase pairs due
to automatic sentence-alignment, as manual sim-
plifications were performed using a special editing
tool which recorded the exact sentence alignments
(Caseli et al., 2009). Both datasets are still very
small to allow for automatically learning strong
paraphrases solely from them. Nevertheless, they
demonstrate that by providing editing tools for man-
ual simplification, it is possible to automatically
extract strong paraphrases from manually simpli-

13Strong paraphrases are those paraphrases where vocab-
ulary and sentence structure were changed beyond isolated
lexical simplifications, straightforward sentence splitting and
passive to active voice conversion. For examples, see Tables
1, 2, and 5 in (Štajner et al., 2018).

14https://github.com/sidleal/
porsimplessent

fied corpora. This approach could thus be used in
collaboration with various associations and content
editors that perform professional manual simplifi-
cations for various target populations, to compile
large, high-quality training datasets for building
ATS systems aimed for those particular end users.

3.2 Evaluation

Ideally, ATS systems should be evaluated for the
output quality, as well as for its usability, i.e.
whether or not they make texts easier to read and
understand for the particular reader.

3.2.1 Quality
The quality of ATS output should be evaluated
for its grammaticality (and naturalness), mean-
ing preservation (ensuring that, albeit some nec-
essary loss of nuances, the core meaning remains
unchanged), and preservation of text coherence
and cohesion. The last is particularly important
for systems that perform syntactic simplifications
and sentence splitting which often break the co-
hesion links and make texts more complex at a
discourse level (Siddharthan, 2003, 2006). Mean-
ing preservation is also often compromised, both by
syntactic simplification and by lexical simplifica-
tion. Some unsupervised LS systems (Glavaš and
Štajner, 2015; Paetzold and Specia, 2016) particu-
larly suffer from this issue due to the use of word
embeddings for synonyms retrieval, which often
returns antonyms that appear in similar contexts
(Glavaš and Štajner, 2015). Grammatical errors are
less common, and can be easily corrected manu-
ally in a post-editing step. Manual correction of
change in meaning, in turn, can sometimes require
more time than simplifying from scratch. Coher-
ence problems in automatically simplified texts are
the most expensive, as they might require heavy
restructuring of the whole text.

To measure the quality of the automatically sim-
plified texts, Štajner and Glavaš (2017) proposed
to measure the post-editing time needed to restore
the text’s grammaticality, original meaning and co-
herence. The output quality of the sentence sim-
plification systems is, in contrast, evaluated only
for grammaticality and meaning preservation, usu-
ally using a five-point Likert scale by native or
non-native speakers with high literacy levels.

3.2.2 Usability
Usability of ATS systems should ideally be eval-
uated by measuring reading time and text com-

https://github.com/sidleal/porsimplessent
https://github.com/sidleal/porsimplessent
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prehension by end users, usually via eye-tracking
methods and comprehension tests. This type of
evaluation requires significant time and special
training for preparing, collecting and interpreting
the data. Preparation of comprehension tests re-
quires experts, and eye-tracking methods require
special equipment and trained humans to analyse
and interpret the results. The access to vulnerable
populations (e.g. people with autism or cognitive
disabilities) usually requires special permissions
and training. Another obstacle with vulnerable
populations is that laboratory conditions and use of
comprehension questionnaires provide unnatural
reading scenario that sometimes leads to unreliable
results (Yaneva et al., 2015, 2016a).

For all those reasons, ATS systems are rarely
evaluated for their usability in this way. Notable
exceptions are: the eye-tracking analyses of simpli-
fication strategies for dyslexic readers (Rello et al.,
2013b,c,a), and readers with autism spectrum dis-
orders (Yaneva et al., 2016b), the comprehension-
based evaluations of the Simplext system by people
with Down’s syndrome (Saggion et al., 2015), the
OpenBook software by people with ASD (Orăsan
et al., 2018), and several ATS systems by non-
native low-pay workers (Angrosh et al., 2014).

3.2.3 Simplicity
The usability evaluation with end users requires
long time and special expertise. To obtain the re-
sults faster, in ATS research papers, it became a
common strategy to, instead, evaluate a small por-
tion of automatically simplified sentences for their
simplicity using a Likert scale by evaluators who
are not the intended end users.

In some studies the evaluators are native
speakers, e.g. (Yatskar et al., 2010; Baeza-Yates
et al., 2015; Saggion et al., 2015), in some non-
native speakers, e.g. (Coster and Kauchak, 2011a;
Wubben et al., 2012; Glavaš and Štajner, 2013,
2015; Paetzold and Specia, 2016), in some a mix-
ture of the two (Angrosh et al., 2014; Kumar et al.,
2020), and in some not specified, e.g. (Specia,
2010; Xu et al., 2016; Mallinson et al., 2020; Alva-
Manchego et al., 2020a). In some of those studies,
the evaluators are students, i.e. readers with high
literacy levels, and in others, Amazon Mechanical
Turk workers whose literacy level is usually un-
known. Štajner and Nisioi (2018) found that eval-
uators with high literacy levels rarely notice any
difference in complexity of the original and auto-
matically simplified sentences. Other studies have

shown that native and non-native speakers differ-
ently perceive sentence complexity (Štajner, 2018)
and have different lexical simplification needs (Yi-
mam et al., 2017a,b, 2018). Therefore, a direct
comparison of the ATS systems proposed in stud-
ies where simplicity was evaluated by different type
of evaluators is not possible.

Apart from the type of evaluators, the evaluation
procedures used across the ATS community differ
also by evaluation type (absolute or relative) and
scale (e.g. 0/1, 1–3, 1–5), thus hindering the pos-
sibility to directly compare the results reported in
different studies (Štajner, 2018). In the absolute
evaluation, evaluators are presented with one sen-
tence at the time and asked to rate its simplicity on
a certain scale. If provided with different variants
of the same sentence one after another, depending
on the guidelines, evaluators may sometimes em-
phasize even the small differences between them by
giving them different scores. Similar may happen
in relative evaluation of simplicity gain, if evalua-
tors are explicitly asked to count the number of suc-
cessful lexical and syntactic paraphrases between
the two sentences (original and simplified), as in
the work of Xu et al. (2016). These approaches are
thus helpful if the goal is to spot even the slightest
differences between several models. If the goal
is, in contrast, to estimate the usability and help-
fulness of the systems in a real-world scenario, in
a text comprehension task, then the approach in
which evaluators are presented with pairs of sen-
tences (original and simplified, without specifying
which one is which) and asked whether or not they
find one of them easier to understand, proposed by
Nisioi et al. (2017), might be better suited.

To enable a direct comparison of results reported
in different ATS studies, a standardized evaluation
procedure across the field is needed. To establish
the right evaluation procedure, it would be neces-
sary to first investigate if some particular group of
evaluators can be a good proxy for assessing the
complexity of texts/sentences for intended target
population. In the case that none of those groups
satisfies the condition, the evaluators would have
to be provided with detailed evaluation guidelines
and trained for spotting potential obstacles for the
intended end users. Furthermore, it would be neces-
sary to systematically investigate which evaluation
type and scale give the most reliable assessment
of potential usability of the ATS systems in a real-
world scenario.
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3.2.4 Automatic Evaluation

With the goal of offering a more standardized way
of measuring ATS systems’ performances, several
test sets have been compiled for lexical simplifi-
cation in English (De Belder and Moens, 2012;
Specia et al., 2012; Horn et al., 2014; Paetzold
and Specia, 2015). De Belder and Moens (2012)
propose a test set of 430 sentences, each with one
marked word and the list of words that can replace
it, ordered by their difficulty. Similarly, Specia
et al. (2012) compiled a test set of 1710 sentences,
each with one marked word and four substitution
candidates ordered by their difficulty. Horn et al.
(2014) compiled a set of 500 sentences from En-
glish Wikipedia, each with one marked word and 50
substitution candidates collected via crowdsourc-
ing using Amazon Mechanical Turk.

All these datasets rely on suggestions and rank-
ings of either non-native speakers (usually with
high education levels), or neurotypical native speak-
ers. Therefore, without systematic investigation of
how well they reflect simplification needs of other
target populations, it is not clear to which extent,
if at all, they could be used to evaluate the perfor-
mances of ATS systems aimed at them.

For automatic evaluation of sentence splitting
modules for English, two datasets are currently
available: WebSplit (Narayan et al., 2017) and Wik-
iSplit (Botha et al., 2018). Both datasets were auto-
matically extracted and aligned; the WebSplit from
the WebNLG corpus (Gardent et al., 2017), and
WikiSplit from Wikipedia edit histories. Recently,
a crowdsourced dataset with multiple human sim-
plification suggestions (both syntactic and lexical)
for 2,359 original English Wikipedia sentences has
been released (Alva-Manchego et al., 2020a). So
far, none of them has been tested for how well
it could evaluate the usability of real-world ATS
systems for any particular target population.

Many ATS systems have been automatically
evaluated using the Flesch-Kincaid Grade Level
(FKGL) (Kincaid et al., 1975), MT-inspired evalua-
tion metrics, e.g. BLEU (Papineni et al., 2002),
METEOR (Denkowski and Lavie, 2011), TER
(Snover et al., 2009), or more recently proposed
TS-specific metrics: SARI (Xu et al., 2016) and
SAMSA (Sulem et al., 2018b). None of these met-
rics, however, can replace the necessary manual
evaluation of grammaticality and meaning preser-
vation (at a sentence level), or cohesion and co-
herence (at a discourse level). Traditional read-

ability metrics such as FKGL were proposed for
human-generated texts and are completely oblivi-
ous of meaning, i.e. short, meaningless sentences
would score very well on those. The use of BLEU
for TS evaluation has been reported to have many
drawbacks if used for ATS (Štajner et al., 2015;
Xu et al., 2016; Sulem et al., 2018a). Some other
MT-based evaluation metrics have shown good cor-
relations with human judgements of grammatical-
ity and meaning preservation (Štajner et al., 2014;
Popović and Štajner, 2016), but they all favor sim-
plifications that are close to the original sentence
(i.e. offer very few changes). SARI, in turn, favors
simplifications that are as different from original
as possible, thus often rewarding simple sentences
which might have significantly altered the meaning.

4 Conclusion and Outlook

In this study, the potential for using ATS for social
good and main challenges in the field to achieve
that goal were emphasized: the lack of large high-
quality TS datasets for training ATS systems for
particular target populations, and the lack of stan-
dardized evaluation procedures for estimating the
usability potential of the proposed ATS systems
in real-world scenarios. Due to those, it is not
clear if the recently proposed neural ATS systems,
published in top tier NLP/CL/AI conferences, e.g.
(Nisioi et al., 2017; Zhang and Lapata, 2017; Surya
et al., 2019; Kumar et al., 2020; Mallinson et al.,
2020), represent a real step forward toward using
ATS for social good.

To address the above-mentioned challenges, it
seems necessary to: (1) establish multidisciplinary
collaborations with associations and content ed-
itors which have experience in simplifying texts
for specific groups of end users; and (2) prioritize
work on highly modular ATS systems, which allow
for easy customization of components according
to the simplification needs of particular groups of
users. Multidisciplinary collaborations would en-
able compiling of larger high-quality datasets for
various target populations, better understanding of
which ATS modules require higher prioritization,
and the possibility for testing the ATS systems with
the real end users.
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Ethics/Impact Statement

As this is a special theme paper and it does not
propose any novel systems, the main focus of this
section is the discussion about the general ethical
considerations for automatic text simplification and
its impact on the society.

Intended Use

Automatic text simplification (ATS) has strong po-
tential to improve social inclusion for many people
who are otherwise marginalized in one way or an-
other. While many large-scale projects proved this,
the last several years have been dominated by ATS
research which does not seem to lead towards prac-
tical applications of ATS in the society. The goal
of this paper is to raise the awareness among re-
searchers about the original motivations for ATS
and its potential for being used for social good, as
well as to point out the main challenges in the field,
and suggest ways forward.

Failure Modes

As mentioned in Section 3.2, ATS systems often
produce ungrammatical sentences, changes to the
original meaning, and break the text coherence. For
this reason, to avoid potential unintended harm, it
is advisable to add post-editing capabilities in ATS
systems, as it was done in the OpenBook software
(Orăsan et al., 2018). The unintended changes in
meaning produced by ATS systems would be espe-
cially dangerous in legal and medical domains.

Biases

As all machine learning (ML) systems, ML-based
ATS systems can suffer from algorithmic biases. If
trained on data that represents manual simplifica-
tions performed by trained human editors, the sys-
tem might inherit the biases and preferences of the
editor. If trained on automatically sentence-aligned
data, the system might learn transformations which
might rather reflect the alignment methods than
the actual simplification methods used in the pre-
aligned corpora.

Misuse Potential

As any technological advancement, ATS could also
be misused, e.g. by learning to make text more com-
plex with the intention of providing linguistically
complex texts to hide non-desirable facts, as it is
known that high percentage of people have prob-
lems to understand complex texts (Section 1.1), or

by unintentionally altering the original meaning
thus offering incorrect information.

Potential Harm to Vulnerable Populations
People with low literacy levels, or any kind of read-
ing or cognitive impairments, which cannot un-
derstand original texts and thus fully rely on the
simplified versions, can potentially be harmed by
being provided with incorrect information due to
the use of premature ATS systems where the output
is not manually checked for meaning preservation.
Therefore, it is important that any ATS system in-
tended for those populations offers post-editing
capabilities and that its output passes a rigorous
manual check for meaning preservation.

Furthermore, if provided by automatically sim-
plified learning material, which was not carefully
manually checked for its grammaticality and natu-
ral soundness of sentences, children and language
learners might learn incorrect word forms or sen-
tences structures.

Computing Time
The latest trends in ATS research steered the sys-
tems towards very computationally expensive (and
environmentally unfriendly) neural architectures.
As the current neural state-of-the-art ATS systems
are still far behind the traditional modular rule-
based ATS systems (especially for syntactic simpli-
fication), many research groups and organizations
need numerous attempts with neural architectures
even just to be able to publish a paper in a top-tier
conference. The current best performing neural
lexical simplification systems (Glavaš and Štajner,
2015; Paetzold and Specia, 2016, 2017a; Qiang
et al., 2020a,b) perform better than the state-of-
the-art non-neural lexical simplification systems
(Glavaš and Štajner, 2015; Paetzold and Specia,
2017b; Qiang et al., 2020b). Nevertheless, due to
using heavy resources, such as BERT (Devlin et al.,
2018) and PPDB (Ganitkevitch et al., 2013), or
their multiple operations with word embeddings,
they require significant computational power and
are too slow to be used in real-world applications.
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Procesamiento del Lenguaje Natural, 47:341–342.
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Making It Simplext: Implementation and Evaluation
of a Text Simplification System for Spanish. ACM
Transactions on Accessible Computing (TACCESS),
6(4):14.

Leen Sevens, Vincent Vandeghinste, Ineke Schuurman,
and Frank Van Eynde. 2017. Simplified text-to-
pictograph translation for people with intellectual
disabilities. In Natural Language Processing and In-
formation Systems, pages 185–196, Cham. Springer
International Publishing.

Matthew Shardlow. 2014. A survey of automated text
simplification. International Journal of Advanced
Computer Science and Applications(IJACSA), Spe-
cial Issue on Natural Language Processing 2014,
4(1).

Matthew Shardlow and Raheel Nawaz. 2019. Neural
text simplification of clinical letters with a domain
specific phrase table. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 380–389, Florence, Italy. Associ-
ation for Computational Linguistics.

Advaith Siddharthan. 2003. Syntactic simplification
and text cohesion. Ph.D. thesis, University of Cam-
bridge, UK.

Advaith Siddharthan. 2006. Syntactic simplification
and text cohesion. Research on Language & Com-
putation, 4(1):77–109.

Advaith Siddharthan. 2014. A survey of research on
text simplification. International Journal of Applied
Linguistics, 165(2):259–298.

Matthew Snover, Nitin Madnani, Bonnie Dorr, and
Richard Schwartz. 2009. Fluency, adequacy, or
HTER? Exploring different human judgments with
a tunable MT metric. In Proceedings of the Fourth
Workshop on Statistical Machine Translation, pages
259–268, Athens, Greece.

Lucia Specia. 2010. Translating from complex to sim-
plified sentences. In Proceedings of the 9th interna-
tional conference on Computational Processing of
the Portuguese Language (PROPOR), volume 6001
of Lecture Notes in Computer Science, pages 30–39.
Springer Berlin Heidelberg.

Lucia Specia, Sujay Kumar Jauhar, and Rada Mihalcea.
2012. SemEval-2012 task 1: English Lexical Sim-
plification. In Proceedings of the First Joint Confer-
ence on Lexical and Computational Semantics, Se-
mEval, pages 347–355, Stroudsburg, PA, USA. As-
sociation for Computational Linguistics.

Elior Sulem, Omri Abend, and Ari Rappoport. 2018a.
BLEU is not suitable for the evaluation of text sim-
plification. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 738–744, Brussels, Belgium. Association
for Computational Linguistics.

Elior Sulem, Omri Abend, and Ari Rappoport. 2018b.
Semantic structural evaluation for text simplifica-
tion. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pages 685–696, New
Orleans, Louisiana. Association for Computational
Linguistics.

Sai Surya, Abhijit Mishra, Anirban Laha, Parag Jain,
and Karthik Sankaranarayanan. 2019. Unsupervised
neural text simplification. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 2058–2068, Florence,
Italy. Association for Computational Linguistics.

UN. 2020. Article 9 – accessibility. In United Nations:
Convention on the Rights of Persons with Disabili-
ties (CPRD). Accessed: 2020-02-01.

Sowmya Vajjala and Ivana Lučić. 2018. On-
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Sanja Štajner and Sergiu Nisioi. 2018. A detailed eval-
uation of neural sequence-to-sequence models for
in-domain and cross-domain text simplification. In
Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), Paris, France. European Language Resources
Association (ELRA).
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