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Abstract

Current researches on frame semantic parsing
include three subtasks, namely frame identifi-
cation, argument identification and role clas-
sification. Most of previous systems process
these subtasks independently and ignore their
interactions. We introduce a novel architec-
ture based on multi-decoder strategy to han-
dle these subtasks together. The multi-decoder
strategy strengthens the interactions. More-
over, we design a hierarchical pointer network
for argument identification which reduces the
computational complexity. To our best knowl-
edge, it’s the first practice to introduce the
pointer network into frame semantic parsing.
The experiments show improvement over state
of the art models on FrameNet dataset.

1 Introduction

Frame semantic parsing is a fundamental study in
Natural Language Processing. It aims to parse sen-
tences into frame-style semantic structures defined
in FrameNet (Baker et al., 1998).

An example of frame-style semantic structures
is shown in Figure 1. The word write.v is a target
that evokes the frame called Text creation. The
phrases underlined with green lines are called ar-
guments. Author, Text and Form are roles (also
called frame elements) the arguments play in this
frame. Hence the frame semantic parsing contains
three subtasks, namely frame identification, argu-
ment identification and role classification. For a
sentence with a given target, the frame identifi-
cation is to disambiguate the frame for the target
based on its contextual information, the argument
identification is to identify the boundaries of all the
arguments, and the role classification is to assign a
semantic role to each argument we have found.

Early work (Hermann et al., 2014; FitzGerald
et al., 2015; Hartmann et al., 2017) on frame seman-
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Figure 1: A sentence annotated the arguments and roles
of frame Text creation. The arrow marks indicate the
order of arguments identification and roles classifica-
tion.

tic parsing adopts pipeline strategy. Their models
apply independent models to handle different sub-
tasks which ignore the interactions among subtasks.
Moreover, the pipeline strategy usually causes error
propagation problem. The accuracy of frame iden-
tification can become the bottleneck of the overall
performance. Later work (Yang and Mitchell, 2017;
Peng et al., 2018) processes all the subtasks jointly
by optimizing them together during training. Their
joint models show improvement over pipeline mod-
els, which demonstrates the benefit of joint training
strategy. However, their systems don’t have spe-
cific design to model the interactions among the
subtasks.

To strengthen the interactions of subtasks, we
propose a joint framework based on three task-
specific decoders. The interactions in our frame-
work are mainly reflected in two aspects. On one
hand, the representations of both the target and
its frame that derived from frame identification de-
coder are applied to predict the arguments and roles.
On the other hand, the argument identification de-
coder and the role classification decoder work in
an alternate way, and thus they interact with each
other during the entire process of decoding.

The interactions bring two benefits. First, the
frame information predicted by frame identification
decoder makes the predictions of arguments and
roles more frame-specific. Second, the alternate
decoding strategy makes the current argument’s
and role’s prediction influenced by all previous
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SENTENCE Coming to Goodwill was the first step toward my becoming totally independent.

TARGET
come.v(Arriving), to.prep(Goal), first.a(Ordinal numbers),
step.n(Intentionally act), become.v(Becoming), totally.adv(Degree)

Table 1: An example sentence with annotated targets and golden frames from FrameNet dataset. Bold words
indicate that the target can evoke multiple frames.

decisions, which captures relations among different
arguments and roles. For the sentence shown in
Figure 1, the argument I and its role Author can
contribute to the predictions of the argument my
name and the role Text. Therefore, the argument
identification and the role classification can benefit
from each other by considering arguments and roles
already obtained.

For argument identification, previous models
(Yang and Mitchell, 2017; Peng et al., 2018) enu-
merate all possible spans to identify the arguments,
which brings high computational complexity. To
reduce the computational complexity, we design a
hierarchical pointer network in the argument iden-
tification decoder that predicts boundaries of argu-
ments directly.

In addition, we design a target-aware attention
mechanism. The target-aware attention mechanism
aggregates all targets in the same sentence to model
interactions among different targets, since frames
evoked by different targets in the same sentence
are usually closely related. Such interaction mod-
eling could be helpful in frame identification. For
example, the target to.prep in Table 1 can evoke
the frame Goal or Locative relation, and other co-
occurrence targets (such as come.v) make to.prep
more likely to evoke frame Goal instead of the
other frame.

Overall, our main contributions can be summa-
rized as follows:

• We design a novel multi-decoder framework
to jointly process all the subtasks of frame
semantic parsing. The multi-decoder strat-
egy strengthens the interactions among frame
identification, argument identification and role
classification.

• We design a hierarchical pointer network that
predicts the boundaries of arguments directly.
The hierarchical pointer network predicts ar-
guments within linear computational com-
plexity. To our best knowledge, it’s the first
practice to introduce the pointer network into
frame semantic parsing task.

• We design a target-aware attention mechanism
to aggregate the semantic information of other
targets in the same sentence.

We evaluate our model on FrameNet dataset, and
the experiments show that our model outperforms
state of the art models, which demonstrates the
effectiveness of our model.

2 Related Work

Frame semantic parsing task is first proposed by
Gildea and Jurafsky (2002) and has drawn attention
since the SemEval 2007 shared task (Baker et al.,
2007) was released. Early researches on frame
semantic parsing focus on the feature-engineered
methods(Johansson and Nugues, 2007; Das et al.,
2010). Most of the early researches regard the
frame semantic parsing as a pipeline of classifica-
tion tasks and employ machine learning algorithms
(such as Support Vector Machines etc.).

With the popularity of neural network and rep-
resentation learning, neural network models are
introduced to model frame semantic parsing prob-
lem. Hermann et al. (2014) uses distributed rep-
resentations in frame identification and embedded
both frames and the contextual representations of
words into a shared low-dimension vector space.
FitzGerald et al. (2015) uses a neural network to
learn embeddings of both arguments and semantic
roles, which adopts fine-grained similarity between
roles to overcome the sparsity of some labeled data.
Besides, a system based on pre-trained word dis-
tributed representations (Hartmann et al., 2017) is
developed to improve the domain adaptation of
their model. These models still work in pipeline
way.

However, pipeline models usually ignore the
interactions among subtasks and suffer from the
problem of error propagation. Joint models are pro-
posed to solve these problems. Yang and Mitchell
(2017) proposes an ensemble strategy that that inte-
grates two different models into an ensemble model.
Peng et al. (2018) proposes a multi-task framework
which jointly handles two different semantic pars-
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Figure 2: Our framework predicts frames, arguments and roles jointly based on three task-specific decoders. Frame
identification module predicts frame Text creation evoked by target write.v. Then argument identification module
with HPN(Hierarchical Pointer Network) and role classification module predict argument spans I, my name and on
the deposit split and their roles Author, Text and Form alternately. The interactions in our framework are shown
as gray dotted lines.

ing tasks from disjoint data. Both of their models
process all the subtasks jointly by optimizing them
together during training. Their experiments show
improvement over previous pipeline models, which
proves the benefit of joint training strategy. How-
ever their models don’t have specific design for the
interactions.

The common neural network architectures for
frame semantic parsing can be divided into se-
quence labeling models and relational models.
Yang and Mitchell (2017) proposes a sequence la-
beling model based on BIO tagging scheme. The
model contains multiple LSTM layers and a Con-
ditional Random Field (CRF) layer. Swayamdipta
et al. (2017) adopts a segmentation RNN and a re-
lational model to capture span-level dependencies
between predicate and arguments. The relational
model enumerates all possible spans to compute
the matching scores. Both of these two type mod-
els above require O(n2) computational complexity.
To reduce the high computational complexity, we
design a hierarchical pointer network that achieves
the identifying arguments within linear computa-
tional complexity.

3 Method

As is shown in Figure 2, our framework consists
of four modules. (1) the encoder module (2) the
frame identification decoder module. (3) the argu-
ment identification decoder module. (4) the role
classification decoder module.

Specifically, given a target t and a sentence
S = w0, . . . , wn−1, the encoder module calculates
the contextual representations h0, . . . , hn−1, then
all decoder modules handle three subtasks jointly.
The frame identification decoder builds a target rep-
resentation for t and identifies the frame f ∈ F
evoked by t. Suppose that there are k argument
spans a0, . . . , ak−1 of f in S. For each argument
aτ = wisτ , . . . , wieτ , the argument identification de-
coder identifies the boundaries isτ and ieτ , and the
role classification decoder assigns a semantic role
rτ ∈ Rf to aτ . The F and Rf mentioned above
are the sets of all frames and all semantic roles of
f defined in FrameNet.

Three decoders interact with each other as fol-
lows:

• Frame identification decoder builds a target
representation for t to identify the frame f .
Both the target representation and the embed-
ding of f will be taken as inputs to the other
decoders for argument identification and role
classification.

• Role classification decoder assigns a role rτ
to current argument span aτ , and then the em-
bedding of rτ will be taken as an input to
identify the boundary of next argument aτ+1.
In other words, these two decoders work in an
alternate way, so identifying aτ+1 and rτ+1

will consider all the historical information of
a0, . . . , aτ and their roles r0, . . . , rτ .
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3.1 Encoder Module
Encoder module aims at converting the sentence
S = w0, . . . , wn−1 into a sequence of vectors
h0, . . . , hn−1, where hi is the contextual represen-
tation of word wi.

For each token, we concatenate its word embed-
ding ewi , lemma embedding eli , POS embedding
epi and a binary tag embedding ebi :

ei = [ewi ; eli ; epi ; ebi ] (1)

The binary tag embedding ebi is to distinguish t
from other words in S. Let it be the position index
of t in S, then we can calculate ebi :

ebi =

{
e1, i = it
e0, i 6= it

(2)

At last, ei is fed to the encoder to get contextual
representation hi:

hi = Encoder (ei) (3)

The word embedding and lemma embedding are
initialized with Glove (Pennington et al., 2014)
while POS embedding is randomly initialized. We
use Bi-LSTM as the encoder in our experiment,
which can be also replaced with any other encoder
model such as Bert (Devlin et al., 2018). The di-
mension of ei is de and the dimension of hi is dh.

3.2 Frame identification module
In frame identification module, we build a target
representation rt for t and identify the frame f
based on rt.

As there are likely to be multiple targets
t0, . . . , tm−1 in S evoking multiple frames
f0, . . . , fm−1 and we believe that other targets in
S can contribute to identifying current frame f for
target t, we design a target aware attention mecha-
nism to aggregate contextual representations of all
targets TS = {t0, . . . , tm−1} in S (also contains
the target t):

αi =
exp(h>i W1hit)∑
j∈Ts exp(h

>
j W1hit)

(4)

ct =
∑
i∈Ts

αihi (5)

For the target, we concatenate ct, its contextual
representation hit and its embedding eit to get the
target representation rt:

rt = Relu (W2 · [eit ;hit ; ct]) (6)

With the target representation, we can generate the
probability distribution of frames to identify f by
argmax operation:

P (f |S, t) = softmax (W3 · rt) (7)

W1, W2, W3 are three weight matrixes in
Rdh×dh , Rdh×(2dh+de) and R|F |×dh repectively,
where |F | is the size of F .

3.3 Argument Identification Module
Argument identification decoder module identifies
the boundaries of argument spans a0, . . . , ak−1 se-
quentially. For τ -th argument aτ = wisτ , . . . , wieτ ,
the historical information of a0, . . . , aτ−1 and
their roles r0, . . . , rτ−1 is supposed to be utilized.
Hence We use LSTMA to record the historical in-
formation, and similarly, another LSTM named
LSTMR is applied in role classification decoder.
Argument identification decoder interacts with
other decoders by taking their output as input, here
is how LSTMA works at τ -th argument:

xτ =


[rt; ef ] , τ = 0[
hroleτ−1; erτ−1

]
, τ > 0

(8)

hargτ = LSTMA

(
hargτ−1, xτ

)
(9)

hargτ and hroleτ are hidden states at timestep τ of
LSTMA and LSTMR. ef represents the embed-
ding of f , and erτ−1 represents the embedding of
rτ−1.

As we want to identify the start and end positions
of aτ , namely isτ and ieτ , we build two kinds of
feature representations to extract boundary feature
from hargτ and ef :

hSTAτ = MLPs([h
arg
τ ; ef ]) (10)

hENDτ = MLPe([h
arg
τ ; ef ]) (11)

The dimensions of both hSTAτ and hENDτ are the
same as contextual representations h0, . . . , hτ−1,
and the MLP in our experiment consists of two lin-
ear layers and a relu activation function in between.

3.3.1 Hierarchical pointer network
With two representations hSTAτ and hENDτ , we ap-
ply a hierarchical pointer network to identify isτ
and ieτ . The hierarchical pointer network contains
two pointer networks as is shown in Figure 3. The
hierarchical pointer network identifies the isτ firstly
and then identify the ieτ based on isτ . If we identify
them simultaneously, the isτ and ieτ may sometimes
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Figure 3: The prediction process of the argument on the deposit slip.

be inconsistent. Besides, to avoid duplicate predic-
tion, all spans in a0, . . . , aτ−1 are masked when
identifying isτ and ieτ . The prediction process is:

ScoreSTA = H>W4h
STA
τ (12)

P (isτ |S, t, f) = softmax(ScoreSTA) (13)

isτ = argmax(P (isτ |S, t, f)) (14)

ScoreEND = H>(W5h
END
τ +W6hisτ ) (15)

P (ieτ |S, t, f) = softmax(ScoreEND) (16)

ieτ = argmax(P (ieτ |S, t, f)) (17)

H is dh × n matrix (h0, . . . , hn−1) that repre-
sents the encoder output of sentence S. W4, W5

and W6 are dh × dh weight matrixes.
The hierarchical pointer network achieves argu-

ments identification within linear computational
complexity. For an n-tokens and k-arguments sen-
tence, our model can identify the start and end posi-
tions of each argument with O(2n) computational
complexity, and O(2n · k) for all arguments.

3.4 Role Classification Module
The role classification module assigns semantic
roles r0, . . . , rk−1 to arguments a0, . . . , ak−1. As-
signing rτ to aτ also needs to consider the se-
mantic information of a0, . . . , aτ−1 and their roles
r0, . . . , rτ−1. Hence we use the same LSTM archi-
tecture named LSTMR to record them. Both the
contextual information of aτ and the frame embed-
ding ef are used to predict rτ :

yτ =W7 · [hieτ + hisτ ;hieτ − hisτ ; ef ] (18)

hroleτ = LSTMR(h
role
τ−1, yτ ) (19)

P (rτ |S, t, f, aτ ) = MLP([hroleτ ; yτ ]) (20)

hie + his represents the boundary feature of aτ
and hie − his represents the inner feature of the
span (Wang and Chang, 2016; Cross and Huang,

2016; Ouchi et al., 2018). With the probability
distribution P (rτ |S, t, f, aτ ), we can predict the
role rτ .

Moreover, we add a special role ’None’ at the
final decoding step and let rk be ’None’. During the
inference stage, the role classification decoder and
argument identification decoder will automatically
stop when predicting ’None’.

4 Loss Function

We utilize cross-entropy loss to maximize the prob-
ability of the oracle frame type, span boundaries
(start-end pair) and role types:

Lframe = log(P (f̂ |S, t)) (21)

Lrole =

k−1∑
τ=0

log(P (r̂τ |S, t, f, aτ ))+

log(P (rNone|S, t, f, ak))

(22)

Lspan =

k−1∑
τ=0

log(P (̂isτ |S, t, f))+

k−1∑
τ=0

log(P (̂ieτ |S, t, f))

(23)

We optimize the losses of the three subtasks
jointly:

L = αLframe + βLspan + γLrole (24)

α, β and γ are hyper-parameters that adjust the
direction of training optimization.

5 Experiment

Dataset. We train and evaluate our model on
FrameNet 1.5 dataset proposed by (Das and Smith,
2011) following previous work (Yang and Mitchell,
2017; Swayamdipta et al., 2017; Peng et al., 2018).
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We also follow the same train/development/test
split. Meanwhile, previous work adds the partially-
annotated exemplar sentences (each exemplar sen-
tence contains only one target). As is reported in
previous work (Das et al., 2014; Yang and Mitchell,
2017; Swayamdipta et al., 2017), the exemplar sen-
tences data can help to improve their models’ per-
formance. We add it as pre-train data for our model.
Pre-process. Previous work removes the argument
spans longer than 20, which is a constraint that
helps to reduce the computational complexity from
O(n2) to O(n). Though our model doesn’t need
such constraint because of better computational
complexity, we hold the same setting as previous
work for comparison. We also report the result that
training our model without length constraint.
Setup. We train our models by two steps following
previous work (Das et al., 2014). At first step,
we pre-train our model with partially-annotated
exemplar sentences data. Then we train the model
on the offcial train set. We evaluate our model on
development test and save the best performance
model for test.

We use Glove (Pennington et al., 2014) to ini-
tialize the word embeddings, and average the exist-
ing embeddings for out-of-vocabulary words. We
randomly initialize embeddings for part-of-speech
tags, and token type tags. All the embeddings are
learnable during training.

Other detail hyper-parameters are shown on Ta-
ble 2.
Model. We compare our model with following
previous models:

SEMAFOR: A widely known system(Chen
et al., 2010) that uses a variety of syntactic fea-
tures.

Framat: An open-source semantic role labeling
tool proposed by Björkelund et al. (2010).

Framat+context: An extension version of Fra-
mat that adds extra context features by Roth and
Lapata (2015).

Hermann et al.(2014): A frame identification
model uses feature representation based on word
embedding and WSABIE algorithm (Weston et al.,
2011).

FitzGerald et al.(2015): A pipeline model that
improves frame identification performance based
on Hermann et al. (2014).

Open-SESAME: A pipeline model that predicts
frame by FitzGerald et al. (2015) and designs a
softmax-margin segmental RNN to improve argu-

Hyper-parameters Values
Batch size 32
MLP layers 2
Encoder lstm layers 2
Word/lemma embedding 200
Token type embedding 100
POS embedding 64
Pre-train/train epochs 50 / 100
Pre-train/train optimizer Adam
Activation Function Relu
Encoder/Decoder hidden size 256
MLP/LSTM dropout rate 0.4 / 0.2
Pre-train/train learning rate 1e-4/6e-5
Learning rate decay 0.6 (every 30 epochs)
α, β , γ 0.1 / 0.3 / 0.3

Table 2: Details of hyperparameters (non-bert version).

Model All Ambiguous
SEMAFOR 83.6 69.2
Open-SESAME 87.0 -
Hartmann et al. 87.6 73.8
Yang and Mitchell 88.2 75.7
Hermann et al. 88.4 73.1
Peng et al.(BASIC) 89.2 76.3
Our Model 89.4 76.7
Our Model+Bert 90.5 79.1

Table 3: Frame identification accuracy result.

ment identification.
Yang and Mitchell (SEQ)(2017): A sequence

tagging model for frame semantic parsing.
Yang and Mitchell (REL) (2017): A relation

model that enumerates all possible spans and clas-
sify them.

Peng et al. (Basic) (2018): A single-task version
of joint SRL model (without extra data). It is the
current state of the art model on the task of frame
semantic parsing.

5.1 Experiment Metrics And Result
We evaluate our model on the metrics of frame
identification accuracy and full structure extraction.
Note that previous systems may also report ensem-
ble models based on different ensemble methods
to improve models’ performance, and the model
(Peng et al., 2018) based on multi-task framework
brings extra train data. For comparability, we
only report the performance of single models that
trained on framenet data only. We note that none
of above-mentioned previous models are based on
Bert which is widely applied in many NLP tasks.
To explore the impact of Bert on frame semantic
parsing, we implement a Bert-based version of our
model and also report results of Bert-based model.
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Model P R F1
SEMAFOR 69.2 65.1 67.1
Framat 71.1 63.7 67.2
Framat+context 71.1 64.8 67.8
Open-SESAME 71.0 67.8 69.4
FitzGerald et al. 74.8 65.5 69.9
Yang and Mitchell (SEQ) 69.6 70.9 70.2
Yang and Mitchell(REL) 77.1 68.7 72.7
Peng et al.(BASIC) 79.2 71.7 75.3
Our Model 75.1 76.9 76.0
Our Model+Bert 78.2 82.4 80.2

Table 4: Full structure extraction result on the FN test
set.

Model P R F1
Our Model 75.1 76.9 76.0
wo interaction (Role&Arg) 75.6 76.3 75.9
wo interaction (Frame) 76.1 75.1 75.6
wo interaction (Both) 75.9 74.6 75.3

Table 5: Full structure extraction result of our mod-
els considering the effect of the interactions among de-
coders.

Frame Identification. The metrics of frame identi-
fication accuracy includes Ambiguous and All as is
shown in Table 3. The ambiguous metrics evaluates
targets evoking more than one possible frame in
FrameNet and All evaluates all the targets. Accord-
ing to Peng et al. (2018), some previous studies’
ambiguous lexical unit sets are not the same as the
one from the official frame directory, which makes
their results uncomparable. Therefore, it’s fairer
to use ALL to evaluate the performance of frame
identification. Our model outperforms all previous
models (0.2 point over SOTA). Our Ambiguous set
is the same as Peng et al. (2018)’s and our model
outperforms theirs by 0.4 point.
Full Semantic Structure Extraction. Full Se-
mantic Structure Extraction is the metrics that mea-
sures the overall performance of Frame Seman-
tic parsing. It requires exact match of arguments’
boundaries and jointly evaluates the performance
of frame identification, argument identification and
role classification. (Baker et al., 2007) shows de-
tails of the metrics. Table 4 is the result. The
first group contains pipeline models and the second
group includes joint models. Our model shows im-
provement over all previous models (0.7 point over
SOTA). We notice that our model greatly outper-
form state of the art models on Recall. We analyze

Model P R F1
Our Model 75.1 76.9 76.0
wo pre-train data 72.6 73.1 72.9
wo pre-train data/TAM 72.2 72.9 72.5

Table 6: Full structure extraction result of our models
considering the influences of pre-train data and targets-
aware attention mechanism (TAM).

Model P R F1
Our Model 75.1 76.9 76.0
wo length constraint 75.1 77.6 76.3

Table 7: Full structure extraction result of our models
considering the influence of the length constraint of ar-
guments.

that it’s because the decoders of our model fully
interact and make the current decision by consid-
ering all previous steps’ decisions. Such strategy
is likely to predict more complete arguments and
roles.

5.2 Ablation study

We train our model in different settings and evalu-
ate them on the metrics of full structure extraction
to measure their overall performance. We con-
sider the influences of decoders’ interactions, pre-
train data (partially-annotated exemplar sentences),
targets-aware attention mechanism (TAM) and the
length constraint of arguments.

As mentioned before, all the decoders of our
model interact with each other and the interactions
are reflected in two aspects. To prove the effective-
ness of them, we remove the interactive parts of the
decoders respectively. Table 5 shows the results of
models with following setting:

Without interaction (Arg&Role) means the in-
teraction between argument identification decoder
and role classification decoder is deleted.

Without interaction (Frame) means the identi-
fied frame information in frame identification de-
coder is not accessible to the other decoders.

Without interaction (Both) represents that
both of the interactions above are removed.

As is shown in Table 5, the performances of the
models all drop in varying degrees without any
kind of interactive parts. The effect of interac-
tion (Frame) is more pronounced than interaction
(Arg&Role) (73.6 to 73.9). The model’s perfor-
mance without both kinds of interactive parts will
drop from 76.0 to 75.3. And we noticed that the
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Error Type Description Proportion(%)
Our Model Peng

Frame error Frame misprediction 10.5 11.3
Role error Matching span with incorrect role. 22.0 12.6
Span error Matching role with incorrect span boundary. 14.1 11.4
Extra predicted arg. Predicted argument that doesn’t overlap any gold argument 20.0 18.6
Missing arg. Gold argument that doesn’t overlap any predicted argument 33.4 43.5

Table 8: Error analysis result on FrameNet development set.

recalling rate of our model is decreasing with the
remove of interactions. It verifies the previous anal-
ysis that the interactions among decoders make our
model predict in a global view and thus our model
is likely to predict more complete arguments and
roles.

Table 6 shows the performance differences in
the influences of pre-train data and targets-aware
attention mechanism. The performance of the
model without the pre-train step drops by 3.1 points
on F1, which demonstrates that adding pre-train
data is beneficial to model’s performance. The re-
sult is consistent with the conclusion of Yang and
Mitchell (2017) that models will get a 3-4 points
increase on F1 if adding partially-annotated exem-
plar sentences. Also, we consider the influence of
the targets-aware mechanism. The targets-attention
mechanism doesn’t work at pre-train step because
the partially-annotated exemplar sentences only
contains one target per sentence. To eliminate the
interference of the gap between the train data and
the pre-train data, we hold the same setting of skip-
ping the pre-train step. As shown in Table 6, the
model without TAM drops from 72.9 to 72.5 on
F1. It proves that the targets-aware attention mech-
anism contributes to overall performance of frame
semantic parsing.

As mentioned before, our model has an advan-
tage in terms of computational complexity. We
remove the length constraint of spans which is
adopted in previous work. Table 7 shows the re-
sult. We notice that our model has a slight increase
without length constraint of arguments. The re-
sult shows that our model get benefit with com-
plete data. Moreover, it proves that the hierarchical
pointer network is good at capturing long distance
dependency relation. We encourage future work to
train and evaluate on complete data if their compu-
tational complexity allows.

5.3 Error Analysis

We follow the error analysis method of Peng et al.
(2018) and compare our model with theirs. Table 8

shows the proportions of five error types. Though
missing arguments is the major error for both of
our model and Peng et al. (2018), our model shows
a great decrease by 10.1%, which proves that our
model prefers to predict more complete arguments
and is more likely to overlap gold arguments. How-
ever, it correspondingly brings increases on extra
predicted arguments, Role error and Span error. We
analyze that it’s because our model captures the re-
lation between different roles and is able to make
current decision by considering all previous steps’
action information, it prefers to predict the role
which is related to previous predicted roles. Such
strategy is more likely to overlap gold arguments.
However, it may also predict more arguments and
roles than the ground truth.

6 Conclusion

We design a multi-decoder framework to process
all the subtasks of frame semantic parsing jointly.
The multi-decoder framework strengthens the in-
teractions among these three tasks. Our model
works in an alternate way, which predicts the ar-
gument and the role by considering all previous
decisions. We apply a hierarchical pointer network
which achieves the argument identification with lin-
ear computational complexity. Experiments show
improvement over state of the art models.
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