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Abstract

Present language understanding methods have
demonstrated extraordinary ability of recog-
nizing patterns in texts via machine learning.
However, existing methods indiscriminately
use the recognized patterns in the testing phase
that is inherently different from us humans
who have counterfactual thinking, e.g., to scru-
tinize for the hard testing samples. Inspired
by this, we propose a Counterfactual Reason-
ing Model, which mimics the counterfactual
thinking by learning from few counterfactual
samples. In particular, we devise a generation
module to generate representative counterfac-
tual samples for each factual sample, and a ret-
rospective module to retrospect the model pre-
diction by comparing the counterfactual and
factual samples. Extensive experiments on
sentiment analysis (SA) and natural language
inference (NLI) validate the effectiveness of
our method.

1 Introduction

Language understanding (Ke et al., 2020) is a
central theme of artificial intelligence (Chomsky,
2002), which empowers a wide spectral of applica-
tions such as sentiment evaluation (Feldman, 2013),
commonsense inference (Bowman et al., 2015).
The models are trained on labeled data to recognize
the textual patterns closely correlated to different
labels. Owing to the extraordinary representational
capacity of deep neural networks, the models can
well recognize the pattern and make prediction ac-
cordingly (Devlin et al., 2019). However, the cog-
nitive ability of these data-driven models is still far
from human beings due to lacking counterfactual
thinking (Pearl, 2019).

Counterfactual thinking is a high-level cognitive
ability beyond pattern recognition (Pearl, 2019). In
addition to observing the patterns within factual
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samples, counterfactual thinking calls for compar-
ing the fact with imaginations, so as to make bet-
ter decision. For instance, given a factual sample
“What do lawyers do when they die? Lie still.”,
the intuitive evaluation of its sentiment based on
the textual patterns will recognize “Lie still” as
an objective description of body posture which is
neutral. By scrutinizing that the “still” could be
intentionally postposed, we can imagine a counter-
factual sample “What do lawyers do when they die?
Still lie.” and uncover the negative sarcastic pun,
whose sentiment is more accurate.

Recent work (Kaushik et al., 2019; Zeng et al.,
2020) shows that incorporating counterfactual sam-
ples into model training improves the generaliza-
tion ability. However, these methods follow the
standard machine learning paradigm that uses the
same procedure (e.g., a forward propagation) to
make prediction in the testing phase. That is, mak-
ing decision for testing samples according to their
relative positions to the model decision boundary.
The indiscriminate procedure focuses on the textual
patterns occurred in the testing sample and treats all
testing samples equally, which easily fails on hard
samples (cf. Figure 1). On the contrary, humans
can discriminate hard samples and ponder the deci-
sion with a rational system (Daniel, 2017), which
imagines counterfactual and adjusts the decision.

The key to bridge this gap lies in imitating
the counterfactual thinking ability of humans, i.e.,
learning a decision making procedure to serve for
the testing phase. That is a procedure of: 1) con-
structing counterfactual samples for a target factual
sample; 2) calling the trained language understand-
ing model to make prediction for the counterfactual
samples; and 3) comparing the counterfactual and
factual samples to retrospect the model prediction.
However, the procedure is non-trivial to achieve for
two reasons: 1) the space of counterfactual sample
is huge since any variant from the target factual
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sample can be a counterfactual sample. It is thus
challenging to search for suitable counterfactual
samples that can facilitate the decision making. 2)
The mechanism of how we retrospect the decision
is still unclear, making it hard to be imitated.

Towards the target, we propose a Counterfactual
Reasoning Model (CRM), which is a two-phase
procedure consisting a generation module and a
retrospection module. In particular, given a factual
sample in the testing phase, the generation module
constructs representative counterfactual samples
by imagining what would the content be if the la-
bel of the sample is y. To imitate the unknown
retrospection mechanism of humans, we build the
retrospection module as a carefully designed deep
neural network that separately compares the latent
representation and the prediction of the factual and
counterfactual samples. The proposed CRM forms
a general paradigm that can be applied to most ex-
isting language understanding models without con-
straint on the format of the language understanding
task. We select two language understanding tasks:
SA and NLI, and test CRM on three representative
models for each task. Extensive experiments on
benchmark datasets validate the effectiveness of
CRM, which achieves performance gains ranging
from 5.1% to 15.6%.

The main contributions are as follow:

• We propose the Counterfactual Reasoning Model
to enlighten the language understanding model
with counterfactual thinking.

• We devise a generation module and a retrospec-
tion module that are task and model agnostic.

• We conduct extensive experiments, which vali-
date the rationality and effectiveness of the pro-
posed method.

2 Pilot Study

Decisions are usually accompanied by confidence,
a feeling of being wrong or right (Boldt et al.,
2019). From the perspective of model confidence,
we investigate the performance of language under-
standing models across different testing samples.
We estimate the model confidence on a sample
as the widely used Maximum Class Probability
(MCP) (Corbière et al., 2019), which is the prob-
ability over the predicted class. A lower value of
MCP means less confidence and “hard” sample.
According to the value of MCP, we rank the testing

(a) Sentiment analysis (b) Natural language inference

Figure 1: Prediction performance of the language un-
derstanding models over testing samples at different
confidence levels.

samples in ascending order and split them into ten
groups, i.e., confidence level from 1 to 10.

Figure 1 shows the performance of representa-
tive models over samples at different model con-
fidence levels on the SA and NLI tasks (see Sec-
tion 4.1 for model and dataset descriptions). From
the figures, we can observe a clear increasing trend
of classification accuracy as the confidence level
increases from 1 to 10 in all cases. In other words,
these models fail to predict accurately for the hard
samples. It is thus essential to enhance the stan-
dard inference with a more precise decision making
procedure.

3 Methodology

In this section, we first formulate the task of learn-
ing a decision making procedure for the testing
phase (Section 3.1), followed by introducing the
proposed CRM (Section 3.2) and the paradigm
of building language understanding solutions with
CRM (Section 3.3).

3.1 Problem Formulation
As discussed in the previous work (Wu et al., 2020;
Li et al., 2020, 2019), language understanding
tasks can be abstracted as a classification prob-
lem where the input is a text and the target is
to make decision across a set of candidates of
interests. We follow the problem setting with
consideration of counterfactual samples (Kaushik
et al., 2019; Liang et al., 2020), where the train-
ing data are twofold: 1) factual samples T =
{(x, y)} where y ∈ [1, C] denotes the class or
the target decision of the text; x ∈ RD is the
latent representation of the text, which encodes
the textual contents1. 2) counterfactual samples

1The input is indeed the plain text which is projected to a
latent representation by an encoder (e.g., a Transformer (De-
vlin et al., 2019)) in the cutting edge solutions. We omit the
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T ∗ = {(x∗
c , c)|(x, y) ∈ T , c ∈ [1, C]&c 6= y}

where (x∗
c , c) is a counterfactual sample in class

c corresponds to the factual sample (x, y)2. We
assume that a classification model (e.g., BERT (De-
vlin et al., 2019)) has been trained over the labeled
data. Formally,

θ̂ = min
θ

∑
(x,y)∈T /T ∗

l(y, f(x|θ)) + α‖θ‖, (1)

where θ̂ is the learned parameters of the model
f(·) ; l(·) is a classification loss such as cross-
entropy (Kullback, 1997), and α is a hyper-
parameter to adjust the regularization.

The target is to build a decision making pro-
cedure to perform counterfactual reasoning when
serving for the testing phase. Given a testing sam-
ple x, the core is a policy of generating counterfac-
tual samples and retrospecting the decision, which
is formulated as:

y = h
(
x, {x∗}|η, θ̂

)
, {x∗} = g

(
x
∣∣ω) ,

y ∈ RC denotes the final prediction for the testing
sample x, which is a distribution over the classes;
x∗ is one of the generated counterfactual samples
for x. The generation module g(·) parameterized
by ω is expected to construct a set of representa-
tive counterfactual samples for the target factual
sample, which provide signals for the retrospec-
tion module h(·) parameterized by η to retrospect
the prediction f

(
x|θ̂
)

given by the trained classi-
fication model. In particular, h(·) and g(·) will be
learned from the factual and counterfactual training
samples, respectively.

3.2 Counterfactual Reasoning Model
Figure 2 illustrates the process of CRM where the
arrows in grey color represent the standard infer-
ence of trained classification model, and arrows in
red color represent the retrospection with consider-
ation of counterfactual samples.

3.2.1 Retrospection Module
We devise the retrospection module with one key
consideration—distilling signals for making final
decision by comparing both the latent representa-
tion and the prediction of the counterfactual sam-
ples with the factual sample. To achieve the target,

encoder for briefness since focusing on the decision making.
2Given the labeled factual sample, counterfactual samples

can be constructed either manually (Kaushik et al., 2019) or
automatically (Chen et al., 2020) by conducting minimum
changes on x to swap its label from y to c

Figure 2: Illustration of the proposed CRM.

we devise three key building blocks for retrospec-
tion, which successively perform representation
comparison, prediction comparison, and fusion .
In particular, the module first compares the repre-
sentation of each counterfactual sample with the
factual sample; then compares their predictions
accordingly; and fuses the comparison across the
counterfactual samples.

Representation comparison. Given a pair of
counterfactual sample x∗ and factual sample x,
we believe the signals meaningful for making final
decision lie in the difference of the samples and
how the difference affects the classification. To
distill such signals, we devise the representation
comparison block as y∆ = f(x − x∗|θ̂), where
y∆ ∈ RC denotes the prediction of the representa-
tion difference x− x∗ given by the trained classi-
fication model. Note that we leverage the trained
model to enlighten how the content difference af-
fects the classification since the model is trained to
capture the connection between the textual patterns
and the classes. It should be noted that we use a
duplicate of the trained classification model for the
representation comparison. That is to say, the train-
ing of the retrospection module will not affect the
classification model.

Prediction comparison. To retrospect the pre-
diction f(x|θ̂), we devise a prediction comparison
block to compare the predictions of each counter-
factual and factual sample pair and distill patterns
from f(x|θ̂), f(x∗|θ̂), and y∆. Inspired by the
success of convolutional neural network (CNN) in
capture local-region patterns, the block is devised
as a CNN, which is formulated as:

y∗ = CNN
(
f(x|θ̂), f(x∗|θ̂),y∆

)
, (2)

where y∗ denotes the retrospected prediction when
comparing to x∗. In particular, a stack layer first
stacks the three predictions as a matrix, which
serves as an “image” to facilitate “observing” pat-
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terns. Formally, Y =
[
f(x|θ̂), f(x∗|θ̂),y∆

]
where Y ∈ RC×3. Y is then fed into an 1D con-
volution layer to capture the intra-class patterns
across the predictions, which is formulated as:

H = σ(Y ∗ F ), Hij = σ(Y:iFj), (3)

where F ∈ R3×K denotes the filters in the convo-
lution layer, and σ(·) is an activation function such
as GELU (Hendrycks and Gimpel, 2016). Y:i and
Fj represent the i-th row of Y and the j-th column
of F , respectively. The filter Fj can learn rules
for conducting retrospection. For instance, a filter
[1,−1, 0] means deducting the prediction of the
counterfactual sample from that of the factual sam-
ple. The outputH ∈ RC×K is then flattened as a
vector and fed into a fully-connected (FC) layer to
capture the inter-class patterns. Formally,

y∗ =W flatten(H) + b, (4)

whereW and b are model parameters.

Fusion. The target is to fuse the retrospected pre-
dictions {y∗} into a final decision y. Inspired by
the success of pooling function in reading out pat-
terns, we devise the block as y = pooling({y∗}).
As the fusion is performed after the pairwise com-
parison, we term it as late fusion.

Training. We update the parameters of the retro-
spection module by minimizing the classification
loss over the factual training samples, which is:

η̂ = min
η

∑
(x,y)∈T

l(y,y) + λ‖η‖. (5)

where λ denotes the hyper-parameter to adjust the
weight of the regularization term.

It should be noted that no existing research has
uncovered the specific mechanism of retrospection
in our brain, i.e., the order of comparison and fu-
sion is unclear. As such, we further devise two
fusion strategies: middle fusion and early fusion,
which performs fusion within the CNN, i.e., during
comparison, and before the CNN, respectively.
• Middle fusion performs aggregation between the
convolution layer and the FC layer. This fusion
first calculates the latent comparison signals H
for each pair of counterfactual and factual sam-
ples according to Equation 3. The aggregated sig-
nals pooling({H}) are then fed into the FC layer
(Equation 4) to obtain the final decision y.
• Early fusion aggregates the counterfactual sam-
ples before performing comparison, which is

formulated as x̃∗ = pooling({x∗}). In this
way, the retrospection module is formulated as:
y = CNN

(
f(x|θ̂), f(x̃∗|θ̂), f(x̃∗ − x|θ̂)

)
. For

all the three fusion methods, we can use either
regular pooling function without parameter or pa-
rameterized pooling function (Ying et al., 2018)
to enhance the expressiveness of the retrospection
module. In our experiments, using a simple mean
pooling achieves a performance that is comparable
to the parameterized one in most cases (cf. Table 3).

3.2.2 Generation Module
The target is to construct counterfactual samples
that are informative for retrospecting the decision
on the target factual sample x. As the task involves
making decision among C candidate classes, we
believe that the key to generate representative coun-
terfactual samples lies in imagining “what would
the content be if the sample belongs to class c”, i.e.,
generating C counterfactual samples {x∗

c}. With
the C classes as the targets, the searching space of
samples can also be largely narrowed down. To-
ward this end, we devise the generation module
with two main considerations: 1) decomposing the
factual sample x to distill contents irrelevant to the
label of the sample u = d(x|ω); 2) injecting class
c into u to form the counterfactual sample x∗

c .

Decomposition. To distill u, we need to recog-
nize the connection between the content of the fac-
tual sample and each class. We thus account for
class representations in the decomposition function.
To align the sample space of the generation module
with the retrospection module h(·) and the clas-
sification model f(·), we extract the parameters
from the prediction layer of the trained classifica-
tion model as the class representations. In partic-
ular, we extract the mapping matrix W ∈ RC×D

where the c-th row corresponds to class c. Note
that we assume that the prediction layer has the
same dimensionality as the latent representation,
which is a common setting in most cutting edge lan-
guage understanding models. The decomposition
function is devised as a CNN to capture both the
intra-dimension and inter-dimension connections
between the factual sample and the classes.
• Stack layer. The stack layer stacks the factual
sample, class representations, and the element-wise
product between sample and each class, which is
formulated as: X = [x,W T ,x �W T ]. x �
W T ∈ RD×C shed lights on how closely each
dimension of x connect to each class, where large
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absolute value indicates closer connections.
• Convolution layer. This layer uses 1D horizon-
tal filters to learn patterns of deducting class rel-
evant contents from the factual sample, which is
formulated as h = pooling(σ(X ∗ F g)). F g ∈
R(2C+1)×L denotes the filters where L is the total
number of filters. The output h ∈ RD is a hidden
representation.
• FC layers. We use two FC layers to capture
the inter-dimension connections. Formally, u =
W 2σ(W 1h + b1) + b2, where W 2 ∈ RD×M ,
W 1 ∈ RM×D, b2 ∈ RD, and b1 ∈ RM are learn-
able parameters. M is a hyper-parameter to ad-
just the complexity of the decomposition function.
Note that we can stack more layers to enhance the
expressiveness of the function, whereas using two
layers according to the universal approximation
theorem (Hornik, 1991).

We learn the parameters of the decomposition
function from the counterfactual training samples
by optimizing the following objective:

min
ω

∑
(x∗

c ,c)∈T ∗

r
(
u∗c , ũc

)
+ γl

(
c, f(x∗c − u∗c |θ̂)

)
+ r
(
u, ũc

)
+ γl

(
y, f(x− u|θ̂)

)
,

(6)

where u∗
c = d(x∗

c |ω) and u = d(x|ω) are the
decomposition results of the counterfactual sam-
ple x∗

c and the corresponding factual sample x;
ũc = 1

2(x + x∗
c) denotes the target value of the

decomposition. The two terms r(·) and l(·) are Eu-
clidean distance (Dattorro, 2010) and classification
loss. By minimizing the two terms, we encourage
the decomposition result: 1) to be close to the tar-
get value ũc; and 2) if being deducted from the
original sample (e.g., , x − u), the classification
cannot be influenced. γ is a hyper-parameter to
balance the two terms.

The rationality of setting ũc =
1
2(x+x

∗
c) as the

target class irrelevant content of x and x∗
c comes

from the parallelogram law (Nash, 2003). Note
that this pair of samples belong to two different
classes where a decision boundary (a hyperplane)
lies between the two classes y and c. Considering
that the sample x corresponds to a vector in the
hidden space, we can decompose the vector into
two components that are orthogonal and parallel
to the decision boundary, i.e., x∗

c = o∗c + p
∗
c and

x = o + p. Since the two samples belong to
different classes, their orthogonal components are
in opposite directions and their addition will only
retain the parallel components, which are irrelevant

to judging the class between y and c3.

Injection. Accordingly, given a testing sample x,
we can inject the orthogonal components towards
class c via x∗

c = 2 ∗ d(x|ω̂c) − x, which is the
imagined content of the sample if it belongs to class
c. In this way, for each testing sample, we conduct
the injection over all the classes and construct C
counterfactual samples {x∗

c}, which are then used
in the retrospection module4.

3.3 Learning Paradigm with CRM
The existing work (Kaushik et al., 2019; Zeng et al.,
2020) for language understanding typically fol-
lows the standard learning paradigm, i.e., training
a classification model over labeled data. Applying
the proposed CRM indeed forms a new learning
paradigm for constructing language understanding
solutions. Algorithm 1 illustrates the procedure of
the new paradigm.

Algorithm 1 Learning paradigm with CRM
Input: Training data T , T ∗.

/* Training */
1: Optimize Equation 1; . Classification model training
2: Optimize Equation 6; . Generation module training
3: Optimize Equation 5; . Retrospection module training
4: Return θ̂, ω̂c, and η̂.

/* Testing */
5: Calculate f(x|θ̂); . Classification model inference
6: for c = 1→ C do
7: x∗c = 2 ∗ g(x|ω̂c)− x; . Generation
8: end for
9: Calculate h(x, {x∗c}|η̂, θ̂); . Retrospection

4 Experiments

We conduct experiments on two representative lan-
guage understanding tasks, SA and NLI, to answer
the following research questions:
• RQ1: To what extent counterfacutal reasoning
improves language understanding?
• RQ2: How does the design of the retrospection
module affect the proposed CRM?
• RQ3: How effective are the counterfactual sam-
ples generated by the proposed generation module?

4.1 Experiment Settings
Datasets. We adopt the same datasets in (Kaushik
et al., 2019) for both tasks. The SA data are reviews

3Note that we normalize all samples to be unit vectors in
the decomposition function. Moreover, inspired by (Parascan-
dolo et al., 2018), we train a decomposition function for each
class, i.e., class-specific parameters ω̂c

4The generation module consists of C decomposition func-
tions d(x|ω̂c) and the non-parametric injection function.
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from IMDb, which are labeled as either positive or
negative. For each factual review, the dataset con-
tains a manually constructed counterfactual sample
where the crowd workers are asked to manipulate
the text to reverse the label with the constraint of
no gratuitous change. NLI is a three-way classi-
fication task with two sentences as inputs and the
target of detecting their relation within entailment,
contradiction, and neutral. For each factual sample,
four counterfactual samples are given, which are
constructed by editing either the first or the second
sentence with target relations different to the label
of the factual sample.

Classification models. Owing to the extraordi-
nary representational capacity of language model,
fine-tuning pre-trained language model has become
the emergent technique for solving language un-
derstanding tasks (Devlin et al., 2019). We select
the widely used RoBERTa-base5 and RoBERTa-
large6 for the consideration of the robustness of the
RoBERTa (Liu et al., 2019) and our limited compu-
tation resources. For SA, we also test the classical
Multi-Layer Perceptron (MLP) (Teney et al., 2020)
with tf-idf text features (Schütze et al., 2008) as
inputs. For NLI, we further test RoBERTa-large-
nli7, which has been fine-tuned on the large-scale
MultiNLI dataset (Williams et al., 2018).

Baselines. As the proposed CRM leverages
counterfactual samples, we compare CRM with
three representative methods using counterfac-
tual samples in language understanding tasks: 1)
+CF (Kaushik et al., 2019), which uses counterfac-
tual samples as data augmentation for model train-
ing; 2) +GS (Teney et al., 2020), which compares
the factual and counterfactual samples in model
training through regularizing their gradients; and
3) +CL (Liang et al., 2020), which compares the
factual and counterfactual samples through a con-
trastive loss. Moreover, we report the performance
of the testing model under Normal Training, i.e.,
training over factual samples only.

Implementation. We implement the proposed
CRM with PyTorch 1.7.0 based on Hugging Face
Transformer8, which is released at: https://github.
com/fulifeng/Counterfactual Reasoning Model. In
all cases, we follow the setting of +CF for train-
ing the classification model, which is a standard
fine-tuning in (Liu et al., 2019). We then use

5https://huggingface.co/roberta-base.
6https://huggingface.co/roberta-large.
7https://huggingface.co/roberta-large-mnli.
8https://github.com/huggingface/transformers.

adam (Kingma and Ba, 2014) with learning rate
of 0.001 to optimize the retrospection module and
the generation module. For the retrospection mod-
ule, we set the number of filters in the convolution
layer K as 10, the weight for regularization λ as
0. As to the generation module, we set the number
of convolution filters as 10, the size of the hidden
layer M as 256, and the weight for balancing Eu-
clidean distance and classification loss γ as 15. We
report the average classification accuracy over 5
different runs. For each repeat, we train the model
with 20 epochs and select the model with the best
performance on the validation set.

4.2 Performance Comparison (RQ1)

We first use the handcrafted counterfactual samples
to demonstrate the effectiveness of counterfactual
reasoning in the inference stage of language un-
derstanding model, which can be seen as using
a golden standard generation module to provide
counterfactual samples for the retrospection mod-
ule. Note that we do not use the label of counter-
factual samples in the testing set. Table 1 shows
the performance of the compared methods on the
two tasks. From the table, we observe that:

• +CRM largely outperforms all the baseline meth-
ods in all cases. As compared to +CF, the same
classification model without CRM in the testing
phase, +CRM achieves relative performance im-
provement up to 15.6%. The performance gain is
attributed to the retrospection module, which jus-
tifies the rationality and effectiveness of incorpo-
rating counterfactual thinking into the inference
stage of language understanding model. In other
words, by comparing the factual sample with its
counterfactual samples, the retrospection module
indeed makes more accurate decisions.

• On the SA task, a huge gap (85.3↔ 93.4) lies in
the performance of the shallow model MLP and
the deep RoBERTa-base/RoBERTa-large. When
applying +CRM, MLP achieves a performance
that is comparable to the deep models. The re-
sult indicates that counterfactual reasoning can
compensate for the disadvantages caused by the
insufficient model representational capacity. In
addition, the result reflects that CRM brings cog-
nitive ability beyond recognizing textual patterns.
If the retrospection module only facilitates cap-
turing the correlation between textual patterns
and classes, such simple model cannot bridge the

https://github.com/fulifeng/Counterfactual_Reasoning_Model
https://github.com/fulifeng/Counterfactual_Reasoning_Model
https://huggingface.co/roberta-base
https://huggingface.co/roberta-large
https://huggingface.co/roberta-large-mnli
https://github.com/huggingface/transformers
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Sentiment Classification
Backbone Normal Training +CF +GS +CL +CRM RI
MLP 86.9±0.5 85.3±0.3 84.6±0.4 - 98.6±0.2 15.6%
RoBERTa-base 93.2±0.6 92.3±0.7 92.2±0.9 91.8±1.1 97.5±0.3 5.7%
RoBERTa-large 93.6±0.6 93.4±0.4 93.1±0.5 94.1±0.4 98.2±0.3 5.1%

Natural Language Inference
Backbone Normal Training +CF +GS +CL +CRM RI
RoBERTa-base 83.5±0.8 83.4±0.9 83.8±1.7 84.1±1.1 91.5±1.6 9.7%
RoBERTa-large 87.9±1.7 85.8±1.2 86.2±1.2 86.5±1.6 93.8±1.9 9.3%
RoBERTa-large-nli 89.4±0.7 88.2±1.0 87.2±1.4 88.2±1.0 94.4±1.2 7.1%

Table 1: Performance of the proposed CRM (Early Fusion) and baselines on the SA and NLI tasks. RI means the
relative performance improvement achieved by +CRM over the classification model without CRM, i.e., +CF.

huge gap of representational capacity between
MLP and RoBERTa-large.

• The performance of baseline methods are compa-
rable to each other in most cases, i.e., incorporat-
ing counterfactual samples into model training
does not necessarily improve the testing perfor-
mance on factual samples. This result is con-
sistent with (Kaushik et al., 2019), which is rea-
sonable since these methods are devised for en-
hancing the generalization ability, especially for
the out-of-distribution testing samples, which
can sacrifice the performance on normal testing
samples. Besides, the result indicates that train-
ing with counterfactual samples is insufficient
for achieving counterfactual thinking, which re-
flects the rationality of enhancing the inference
paradigm with a decision making procedure.

(a) Sentiment analysis (b) Natural language inference

Figure 3: Prediction performance of +CF and +CRM
over testing samples at different confidence levels.

Performance on hard samples. Furthermore,
we investigate whether the proposed CRM facili-
tate dealing with hard samples. Recall that we split
the testing samples into 10 groups according to the
confidence of the classification model, i.e., +CF (cf.
Section 2). We perform group-wise comparison
between +CF and +CRM. Figure 3 shows the per-
formance of all the classification models with +CF
and +CRM. From the figures, 1) we observe that

the performance of +CRM is stable across differ-
ent confidence levels, whereas the performance of
the classification model shows a clear decreasing
trend as the confidence level decreases from 10 to 1.
The result indicates that the retrospection module
is insensitive to the confidence of the classification
model. 2) In all cases, +CRM achieves the largest
performance gain at the first group with confidence
level of 1, i.e., the hardest group to the classifica-
tion model. For instance, the improvement reaches
85.7% on the RoBERTa-base model for the NLI
task. The large improvements further justifies the
effectiveness of the retrospection module, i.e., com-
paring the prediction of factual samples to counter-
factual samples indeed facilitates dealing with hard
samples.

Sentiment Classification
Backbone Implicit +CRM
MLP 79.3±0.2 98.6±0.2
RoBERTa-base 94.7±0.6 97.5±0.3
RoBERTa-large 98.0±0.4 98.2±0.3

Natural Language Inference
Backbone Implicit +CRM
RoBERTa-base 81.9±3.5 91.5±1.6
RoBERTa-large 87.4±2.2 93.8±1.9
RoBERTa-large-nli 88.8±1.6 94.4±1.2

Table 2: Performance comparison of implicit model-
ing (end-to-end model) and explicit modeling (CRM)
of counterfactual thinking.

CRM V.S. implicit modeling. According to the
uniform approximation theorem (Hornik, 1991),
the CRM can also be approximated by a deep neu-
ral network. We thus investigate whether coun-
terfactual thinking can be learned in an implicit
manner. In particular, we evaluate a model that
takes both the factual sample and counterfactual
samples as inputs to make prediction for the fac-
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tual one. Table 2 shows the performance, where
we have the following observations: 1) The im-
plicit modeling performs much worse than the pro-
posed CRM in most cases, which justifies the ef-
fectiveness of the retrospection module and the ra-
tionality of modeling comparison explicitly. 2) On
the NLI task, RoBERTa-base+CRM outperforms
RoBERTa-large (implicit), which means that the
superior performance of CRM is not because of
the additional model parameters introduced by the
retrospection module, but the explicit comparison
between factual and counterfactual samples.

4.3 In-depth Analysis

Effects of retrospection module design (RQ2).
Note that the order of comparison and fusion in
the retrospection mechanism of us humans is still
unclear. We investigate how the fusion strategies
influence the effectiveness of the proposed CRM.
Table 3 shows the performance of CRM based on
the early fusion (EF), late fusion (LF), and middle
fusion (MF) on the NLI task. We omit the compar-
ison on the SA task since the dataset only has one
counterfactual sample for the target factual sample.
For both EF and LF, we use the mean pooling as the
pooling function. As to MF, we use a pooling func-
tion that is equipped with self-attention (Vaswani
et al., 2017). The reasons of this setting are twofold:
1) using mean pooling will make LF and MF equiv-
alent since the FC layer in the retrospection module
is a linear mapping. Note that LF performs pooling
after the FC layer, while the pooling function of
MF is just before the FC layer. 2) The compari-
son between the LF and MF can thus shed light on
whether parameterized pooling function can benefit
the retrospection.

From the table, we can observe that, in most
cases, CRM based on different fusion strategies
achieve performance comparable to each other. It
indicates that the retrospection is insensitive to the
order of fusion and the comparison between coun-
terfactual and factual samples. Considering that
MF with mean pooling is equivalent to LF, we can
see that the benefit of parameterized pooling func-
tion is limited. In particular, MF only performs
better than LF on one of the three testing models.

Effects of generation module (RQ3). We then
investigate whether the proposed generation mod-
ule constructs useful counterfactual samples for
retrospection. We train and test the retrospection
module (using EF) with the generated samples on

RoBERTa-large on the SA task. We omit the ex-
periments of other settings for saving computation
resources. In this way, the model achieves an ac-
curacy of 94.5 which is better than +CF (93.4) but
worse than +CRM with manually constructed coun-
terfactual samples (98.2) (cf. Table 1). The result
indicates that the generated samples indeed facili-
tate the retrospection while the generation quality
can be further improved. Moreover, on the testing
samples at confidence level of 1, using the gener-
ated samples achieves an accuracy of 81.3 which
is much better than +CF (70.8) (cf. Figure 3). The
generated samples indeed benefit the decision mak-
ing over hard testing samples.

5 Related Work

Counterfactual sample. Constructing counterfac-
tual samples has become an emergent data aug-
mentation technique in natural language process-
ing, which has been used in a wide spectral of lan-
guage understanding tasks, including SA (Kaushik
et al., 2019; Yang et al., 2020), NLI (Kaushik et al.,
2019), named entity recognition (Zeng et al., 2020)
question answering (Chen et al., 2020), dialogue
system (Zhu et al., 2020), vision-language naviga-
tion (Fu et al., 2020). Beyond data augmentation
under the standard supervised learning paradigm,
a line of research explores to incorporate coun-
terfactual samples into other learning paradigms
such as adversarial training (Zhu et al., 2020; Fu
et al., 2020; Teney et al., 2020) and contrastive
learning (Liang et al., 2020). This work lies in an
orthogonal direction that incorporates counterfac-
tual samples into the decision making procedure of
model inference.

Counterfactual inference. A line of research
attempts to enable deep neural networks with coun-
terfactual thinking by incorporating counterfactual
inference (Yue et al., 2021; Wang et al., 2021;
Niu et al., 2021; Tang et al., 2020; Feng et al.,
2021). These methods perform counterfactual in-
ference over the model predictions according to
a pre-defined causal graph. Due to the require-
ment of causal graph, such methods are hard to be
generalized to different tasks. Our method does
not suffer from such limitation since working on
the counterfactual samples which can be generated
without a comprehensive causal graph.

Hard sample. A wide spectral of machine learn-
ing techniques are related to dealing with the hard
samples in language understanding. For instance,
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Backbone +CF EF RI LF RI MF RI

RoBERTa-base 83.4±0.9 91.5±1.6 9.7% 92.8±1.8 11.3% 89.6±2.0 7.4%
RoBERTa-large 85.8±1.2 93.8±1.9 9.3% 95.3±0.7 11.1% 93.4±1.7 8.9%
RoBERTa-large-nli 88.2±1.0 94.4±1.2 7.1% 93.8±0.4 6.4% 94.7±1.3 7.4%

Table 3: Performance of the proposed CRM based on early fusion (EF), late fusion (LF), or middle fusion (MF)
on the NLI task. RI represents the relative performance improvement over the +CF method.

adversarial training (Khashabi et al., 2020) en-
hances the model robustness against perturbations
and attacks, which are hard samples for normally
trained models. Debiased training (Tu et al., 2020;
Utama et al., 2020) eliminates the spurious correla-
tion or bias in training data to enhance the gener-
alization ability and deal with out-of-distribution
samples. In addition to the training phase, a few
inference techniques might improve the model per-
formance on hard samples, including posterior reg-
ularization (Srivastava et al., 2018) and causal in-
ference (Yu et al., 2020; Niu et al., 2021). However,
both techniques require domain knowledge such as
prior or causal graph tailored for specific applica-
tions. On the contrary, this work provides a general
paradigm that can be used for most language un-
derstanding tasks.

6 Conclusion

In this work, we pointed out the issue of standard in-
ference of existing language understanding models.
We proposed a Counterfactual Reasoning Model
which empowers the trained model with a high-
level cognitive ability, counterfactual thinking. By
applying the proposed CRM, we formed a new
paradigm for building language understanding solu-
tions. We conducted extensive experiments, which
validate the effectiveness of our proposal, espe-
cially in dealing with hard samples.

This work opens up a new research direction
about the decision making procedure in testing
phase. In the future, we will explore sequential
decision procedure to resolve the constraint on the
number of constructed counterfactual samples. In
addition, we will investigate generation module for
language understanding with unsupervised genera-
tive techniques (Sauer and Geiger, 2021).
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