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Abstract

Understanding what we genuinely mean in-
stead of what we literally say in conversations
is challenging for both humans and machines;
yet, this direction is mostly left untouched in
modern open-ended dialogue systems. To fill
in this gap, we present a grammar-based dia-
logue dataset, GRICE, designed to bring impli-
cature into pragmatic reasoning in the context
of conversations. Our design of GRICE also in-
corporates other essential aspects of modern
dialogue modeling (e.g., coreference). The en-
tire dataset is systematically generated using a
hierarchical grammar model, such that each di-
alogue context has intricate implicatures and is
temporally consistent. We further present two
tasks, the implicature recovery task followed
by the pragmatic reasoning task in conversa-
tion, to evaluate the model’s reasoning capa-
bility. In experiments, we adopt baselines that
claimed to have pragmatics reasoning capabil-
ity; the results show a significant performance
gap between baseline methods and human per-
formance. After integrating a simple module
that explicitly reasons about implicature, the
model shows an overall performance boost in
conversational reasoning. These observations
demonstrate the significance of implicature re-
covery for open-ended dialogue reasoning and
call for future research in conversational impli-
cature and conversational reasoning.

1 Introduction

“When a diplomat says yes, he means ‘per-
haps’; when he says perhaps, he means ‘no’;
when he says no, he is not a diplomat.”
—Voltaire, quoted in Spanish in Escandell
(1996) (Korta and Perry, 2020)

Voltaire’s above quote is an epitome of a cru-
cial aspect of conversation; the meaning of the
very same word or token varies according to its
context and goes beyond what we literally say,

Alice: Did see the apples?

Bob: There is a basket in the dining room.
(The apples are in the dining room.)
Alice: How many?

Bob: There are at least two.

(I am not sure how many apples are there.)
Alice: Did put them there?

Bob: was in the kitchen.

(I didn’t put the apples in the dining room.)
Alice: Are all the oranges there?

Bob: Some are there.

(Not all the oranges are in the kitchen.)
Alice: What about the pears?

Bob: They are in the living room.

(The pears are not in the kitchen.)

Figure 1: An example of the conversation in the
proposed GRICE dataset. Each round of dialogue in-
cludes a question, an answer that may contain implica-
ture, and a recovered statement that converts the impli-
cature to explicature. Different colors highlight corefer-
ence flows.

which is the central character of the field of prag-
matics. Such a high-level comprehension of utter-
ance is more than traditional semantics and logic;
it is often believed to involve the construction
of the speaker’s intents, beliefs, and social insti-
tutes (Grice, 1975; Korta and Perry, 2020). For
instance (see Fig. 1), when asked “did you see
the apples?”, one would not merely say “yes” or
“no”; instead, one should provide an answer that
is cooperative, truthful, informative, relevant, and
perspicuous (Davis, 2016) based on the inferred
speaker’s intent and belief. Consequently, in the
above example, a person would instead answer the
actual location without mentioning any positive or
negative words. Such a teleological account echoes
Grice’s core insight that “language use is a form of
rational action; hence, technical tools for reason-
ing about rational action should elucidate linguistic
phenomena” (Goodman and Frank, 2016).
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In stark contrast, such a goal-directed perspec-
tive of conversational reasoning has been largely ig-
nored in the modern literature of Natural Language
Processing (NLP) (but see Dale and Reiter (1995);
Nematzadeh et al. (2018) as exceptions). The recent
development of open-ended dialogue systems has
a clear trend that adopts state-of-the-art deep learn-
ing or deep reinforcement learning methods, fueled
by hardware accelerations and massive sets of la-
beled data. However, the inspiring progress was
recently challenged by researchers (Shum et al.,
2018; Young et al., 2018); there remain valid con-
cerns that systems are simply imitating human re-
sponses by regressing a large amount of training
data without truly understanding it. Although we
see an emerging field of conversational reasoning
(e.g., Moon et al. (2019); Cui et al. (2020)), existing
work fails to account for the pragmatics perspective
within conversations: Human speakers usually do
not speak their thoughts or intentions directly; it
has to be inferred from the conversational context.

To fill the gap between the current open-dialogue
systems and the future humanlike dialogue systems,
we design a new open-dialogue dataset generation
protocol, which we refer as Grammar-based dataset
for Recovering Implicature and Conversational
rEasoning (GRICE), in homage to H. P. Grice for
his influential theory in explaining and predicting
conversational implicatures (Grice, 1975). Specifi-
cally, our design follows four principles.

First, we design the GRICE dataset with a focus
of conversational implicature (Grice, 1975), “one
of the single most important ideas of pragmatics”
(Levinson, 1985). Naturally, the ability to success-
fully perform implicature recovery in conversa-
tion (Borg, 2009) would be a suitable indicator of
a system’s performance; we adopt it as part of our
evaluation protocols. To recover conversational im-
plicature into explicit ones with only information
and context in the dialogue, an ideal model should
reason about the dialogue context and the relations
among dialogue entities.

Second, we emphasize the comprehension of
the conversational context and adopt the conver-
sational reasoning as part of the evaluation pro-
tocols. Again, we take the conversation in Fig. 1
as the example: When the speaker says “I was in
the kitchen,” what she really means is that she was
not in the dining room and therefore could not put
the apples there. The same response would have
the opposite meaning when the question becomes
“Were you in the kitchen?”. Such a swift switch

according to its dialogue context is a quintessen-
tial demonstration that human communication is a
context-dependent endeavor (Fetzer, 2017) and a
dynamic construct, which relates communicators
and the language that they use in a dialectical man-
ner (Bateson, 2000).

Third, we build the GRICE dataset by incorporat-
ing five different types of implicature; see details
in Section 4. To resolve these types of implicature,
the algorithm ought to make a proper prediction or
inference of intents and beliefs by representing and
reasoning about triadic relations (Saxe, 2006): the
speaker’s belief, the addressee’s belief, and what
they have or communicate in common.

Fourth, in comparison to prior work, Facebook
bAbi (Weston et al., 2016) and its follow-up work
ToM (Nematzadeh et al., 2018) that evaluate differ-
ent aspects of reasoning with a set of toy tasks, the
proposed GRICE dataset does not sacrifice crucial
characteristics of modern open-dialogue systems.
On the contrary, by integrating pragmatics and im-
plicature in conversation, we hope to shed light on
some challenging issues in open-ended dialogue:

* Coreference resolution (Chen et al., 2017; Kottur
et al., 2018) refers to finding all expressions that
refer to the same entity in the conversation. The
significance of resolving coreference becomes
even more profound in conversations with impli-
cature; Fig. 1 gives an example and highlights
the coreference flows in different colors.

* Commonsense reasoning (Sap et al., 2019; Tal-
mor et al., 2019; Speer et al., 2017) received an
increasing attention in NLP. Notably, researchers
have proposed the Winograd (Levesque et al.,
2012) and WinoGrande (Sakaguchi et al., 2020)
to examine commonsense reasoning. For conver-
sations with implicature, commonsense reason-
ing reflects a crucial concept of relevance. For
instance, to resolve the implicature in the con-
versation “A: I am out of petrol. B: There is a
garage around the corner.”, one needs to have the
commonsense that “a garage could store petrol.”

* Logic-based methods were once thought to be
the “ideal language™ approach to the semantics
of human language (Russell, 1903), but were
later challenged by Wittgenstein (1953, 1969)
and Grice (1975). However, this disagreement
should not prohibit the central role of logical
forms in reasoning tasks. In fact, it would be
interesting to investigate if the modern end-to-
end trainable methods could benefit from logical
forms in conversational reasoning.
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The remainder of this paper is organized as fol-
lows. We review related work on dialogue dataset,
implicature, and conversational reasoning in Sec-
tion 2. In Section 3, two tasks are defined for evalu-
ations. We present detailed design, generation, and
analysis of the GRICE dataset in Section 4. By in-
troducing two evaluation protocols, we provide the
performance of baseline models with discussions
of results and future directions in Section 5.

2 Related Work

Dialogue Datasets Dialogue datasets have
been focusing on predicting the next most-likely re-
sponse by imitating the teacher’s responses (human
corpus) (Lowe et al., 2015; Zhang et al., 2018; Wu
et al., 2018). However, as pointed out by Cui et al.
(2020), prior datasets and associated methods lack
proper explicit reasoning modules; it later becomes
evident that such reasoning modules serve as the
scaffold in building a humanlike conversational
agent. Of note, a model’s reasoning capability is
minimal if it simply converts reasoning challenges
into a categorization problem when predicting the
utterances; it still tends to choose the most frequent
answer given the training set without genuinely
understanding the context and underlying meaning.

To the best of our knowledge, the proposed
GRICE dataset is the first open-dialogue dataset
that explicitly integrates implicature; see a detailed
comparison in Table 1. We hope our careful design
would encourage and even necessitate future mod-
els to make explicit reasoning on conversational
contexts, commonsense, and agent’s intents and
beliefs. The most similar dataset in terms of the
format is DREAM by Sun et al. (2019), a conver-
sational dataset with a question-answering (QA)
task. However, the design of the DREAM dataset
does not require much reasoning; answers can be
directly extracted. The most similar dataset in terms
of the task is CoQA by Reddy et al. (2019), which
considers pragmatics and QAs over literature para-
graphs; our GRICE dataset differs by reasoning
over the dialogue context between two agents.

Implicature Implicature has been extensively
studied in the field of linguistics and philosophy
since the inception of pragmatics; Grice (1975)’s
four maxims—quality, quantity, relevance, and
manner—founded the principles of the interpreta-
tion of conversation implicature. Two neo-Gricean
typologies of conversational implicature include
Horn and Ward (2004)’s Q- and R-implicature and
Levinson (1985)’s Q-, I-, and M-implicature. The

relevance theory developed by Sperber and Wilson
(1986) offers an alternative account to Gricean and
neo-Gricean theory. In general, although these doc-
trines provide crucial insights into the field, they
focus more on philosophical debates over toy ex-
amples without deriving computational solutions
or quantitatively validating the ideas on modern
large-scale natural language datasets.

Although a few computational models have
been proposed recently (e.g., Frank and Goodman
(2012); Goodman and Stuhlmiiller (2013)), these
models assume the space of utterance and possi-
ble semantic meanings are finite or given, so that
models only need to pick up one over others based
on the shared context. Other models focus on more
specific tasks; for instance, recovering the direct
meaning from the indirect answer using scalar ad-
jectives (de Marneffe et al., 2010; De Melo and
Bansal, 2013), conducting analysis on the ironic
implicature behind simile (Veale and Hao, 2010).

By generating paired sentences in a semi-
automatic fashion with human annotations, Jeretic
et al. (2020) recently devise a dataset with a focus
on scalar implicature (Hirschberg, 1985). In com-
parison, the proposed GRICE dataset has a much
more natural setup and broader scope by combining
the multi-round open-dialogue with conversational
implicature. Additionally, leveraging a grammar
representation for fine-grained control, the GRICE
dataset is generated in a fully automated fashion
without human annotations. We hope such a design
could boost research in implicature, pragmatics,
and conversational reasoning at a large scale.

Conversational Reasoning In the past four
years, we have witnessed an increasing interest in
conversational reasoning in various contexts. Open-
DialKG (Moon et al., 2019) incorporates external
knowledge graphs to the dialogue context to pro-
vide extra entities as responses. Visual Dialog (Wu
et al., 2018; Zheng et al., 2019; Das et al., 2017)
takes images as external multi-modalities to reason
with dialogue context to generate visually grounded
responses jointly. MuTual (Cui et al., 2020) mod-
ifies English reading comprehension to select the
next best response by machine reasoning.

However, prior efforts have ignored the fact that
humans commonly do not directly speak out an-
swers. The proposed GRICE dataset is a comple-
ment of prior conversational reasoning tasks; it
focuses on implicature with conversational reason-
ing, which does not reject multi-modalities as they
could be a source of commonsense knowledge.
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Table 1: Comparing GRICE with existing conversational datasets.

Dataset

Task

Ubuntu (Lowe et al., 2015)

PERSONA-CHAT (Zhang et al., 2018)

Douban (Wu et al., 2017)
MuTual (Cui et al., 2020)
DREAM (Sun et al., 2019)
CoQA (Reddy et al., 2019)

Next Utterances Prediction
Next Utterances Prediction
Next Utterances Prediction
Next Utterances Prediction
Question Answering
Conversational QA

GRICE (ours)

Implicature recovery &
Question Answering

Context  Source Domain

Dialogue  Ubuntu Chat logs
Dialogue  Persona

Dialogue = Open Domain

Dialogue  Listening Comprehension
Dialogue  English Language Exams
Paragraph Literature

Dialogue  Open Domain with impli-

cature

3 Task Definition

To evaluate how well a model “understands” the
dialogue presented in the proposed GRICE dataset,
we devise two tasks: the implicature recovery task
and the conversational reasoning task, wherein the
latter task depends on the successful completion of
the former task. Below, we introduce the setup and
evaluation protocol of each task.

Alice: Where are the ?
Bob: may be in the kitchen or the patio.
Alice: What about the apples?
Bob: Jack put them in the kitchen and went
to the bedroom.

(a) A sample dialogue with two rounds.

(A) Jack went to the bedroom and then put the
apples in the kitchen.

(B) Jack put the apples in the kitchen and
then went to the bedroom.

(C) Jack went to the bedroom and then put the
oranges in the kitchen.

(D) The apples are in the bedroom.

(b) Implicature recovery evaluated with multiple
choices.

@Q1: Where are the apples?

A;:  Kitchen
(Q2:  'Who moved the apples?
Ao Jack

@3: Does Bob know where the oranges are?
Asz: No

(c) Conversational reasoning evaluated by QAs.

Figure 2: Examples of two tasks defined in GRICE
dataset. (a) Given a multi-round open-dialogue, an al-
gorithm is asked to perform (b) implicature recovery
and (c) conversational reasoning in the form of QAs.

Task 1: Implicature Recovery Formally, an
n-round dialogue occurring between two agents
is represented by a sequence of QA-pairs
{(Ql, Al), (Qg, Ag), ooy (Qn; An>}, where Qz is
the question raised by the first agent, A; is the
response provided by the second agent, which may

contain an implicature. To complete this task, a
model is asked to identify if A; is a statement con-
taining implicature, and if this is true, to resolve
the implicature to its explicit form, i.e., to perform
implicature recovery.

The implicature recovery is evaluated in the form
of multiple choices: For each utterance, the ground-
truth condition (with implicature) and its explicit
form are given when generating the dialogue; the
explicit form, which not only recovers the implica-
ture but also resolves coreferences in the utterance,
serves as the correct answer in the multiple choices.
We then sample three possible answers from the
candidate pools, given a set of manually defined
speech templates (see details in Section 4). Figs. 2a
and 2b show an example: The last utterance by Bob
implicates (by the word “then”) the temporal order
between “put them in the kitchen” and “went to
the living room.” Thus, the correct implicature re-
covery should resolve “them” as “the apples” and
recover the correct temporal order.

Two strategies developed by existing work could
be adopted to address this task. One strategy is
to train a model that directly chooses an answer
from the candidate answers. Another more chal-
lenging strategy is to train a generator that chooses
the answer by computing the log-likelihood scores
and ranking the candidate answers as done by Das
et al. (2017). To quantitatively evaluate the perfor-
mance, we use the standard response selection met-
rics (Lowe et al., 2015; Wu et al., 2017; Cui et al.,
2020): Top 1 Recall (R@1) and Mean Reciprocal
Rank (MRR) (Voorhees et al., 1999).

Task 2: Conversational Reasoning To evalu-
ate the open-ended conversational reasoning, we
follow the same protocols as in Weston et al. (2016)
and Nematzadeh et al. (2018) with comprehensive
QAs. For each dialogue, we generate questions
by randomly sampling the conversational contexts
(see Section 4), and each question could be an-
swered by a single word; see Fig. 2¢ for examples.
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Alice: Where are the apples?
Bob: There is a basket in the kitchen.

N
A /N
2B

Alice: What about the oranges?
Bob: Jack put them in the living room.

And  Or Time
© © O - >
Conversational =t
Context e
pion Q7T Locaion ) Losation e
Subtopic
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erance Type K
h. 1 Qe miean® @ @ @ @ © - ® © -0
Speech Template
o Loc. : Q® =« CFON) 0000 O (Y ¥ N ) 0000
Named Entity Choice:

Bob didn't put the apples in the kitchen.

Alice: Did you put the api)lcs in the kitchen?

Bob: I was in the living room.

Bob was in the kitchen.
The apples are in the kitchen.

X
O
O
The apples are in the living room. o

Figure 3: The graphical illustration of the grammar production rules for the GRICE dataset.

4 Creating the GRICE Dataset

Representation We adopt a structural gram-
mar model, Temporal And-Or Graph (T-AOG) (Qi
et al., 2020; Edmonds et al., 2019a; Tu et al., 2013),
to represent the dialogue context due to its ex-
pressiveness of hierarchical dialogue structure and
temporal-dependent dialogue flow. We represent
one turn of the dialogue as an AOG (Bonczek et al.,
1979, 1981; Pearl, 1984; Zhu and Mumford, 2007)
that has a hierarchy of five levels: conversational
context, subtopic, utterance type, speech template,
and named entity. AOGs are connected w.r.t. tem-
poral constraints in order to assemble the T-AOG.

Formally, an AOG (i.e., each turn of the dia-
logue) has two sets of non-terminal vertex: (i) a set
of And-nodes, wherein each node represents the
decomposition of a larger concept (e.g., subtopics)
into smaller components (e.g., utterance types),
and (ii) a set of Or-nodes, wherein each node
branches to an alternative decomposition (e.g., a
conversational context could have different types
of subtopics), enabling the model to reconfigure the
overall dialogue. An instance of AOG can be con-
structed by selecting a child node for each Or-node,
resulting in a parse graph.

Fig. 3 illustrates an example of AOG. Specif-
ically, the root node of one dialogue turn is an
Or-node, representing the current conversational
context. Represented by an And-node, each child
node of the root note denotes a subtopic of the cur-
rent dialogue turn. The subtopic is composed of
a set of utterance types, further decomposed into
speech templates filled by named entities. Instanti-

ating an AOG by selecting Or-nodes would produce
a complete utterance of a dialogue turn and pose
constraints on the next dialogue turn.

Conversational Context We follow Weston
et al. (2016) to represent dialogue context by a
simulated world with various dialogue entities: ob-
jects, locations, and agents. We randomly initialize
a world for each dialogue snippet by (i) position-
ing objects in locations with a random scalar (one,
two, ...), (i1) randomly setting a location for each
agent as the “previous agent location,” and (iii) for
each {objecty in {location), randomly selecting
an {agent)y in {location) to denote that “(agent)
put the {objecty in the {location).”

Subtopic In this dataset, we focus on four dif-
ferent subtopics: agent_location, agent_action, ob-
ject_location and object_scale; see examples in Ta-
ble 3. Specifically, agent_location queries the lo-
cation of some (agent). The example in Table 3
implicates that “Jack was in the kitchen.” Simi-
larly, object_location queries the location of some
{object). Agent_action queries the previous action
taken by some (agent) on some {object). Typi-
cally, the action can be identified as an (agent) put
(object)y in the (location). Object_scale queries
the quantity of some {(object). In particular, an al-
gorithm should also be able to reason about the
strength among the quantifying phrases, such as at
least, some, and all. A typical example shown in
Table 3 implicates that “Bob does not know if all
the apples are in the kitchen.”

Utterance Type Utterance type concerns how
to generate a QA-pair correctly. For questions, the
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Table 2: Definitions and examples of five types of implicature in the proposed GRICE dataset. Following the
conventional notation, S denotes the positive answer of the question, and ST denotes its stronger proposition.

Category Definition Example
Relevance Implicating the answer to an ex- Alice: Where did you see the apples?
pressed or implied question by stat- Bob: There is a basket in the kitchen.
ing something related to the answer (The apples are in the kitchen.)
by implication or explanation.
Strengthening Implicating a stronger proposition Alice: Are some of the apples in the kitchen?
ST when not understatement. Bob: All of them are there.
(Not Jjust some, but all of the apples
are in the kitchen.)
Limiting Implicating the denial of S*. Alice: Are all the apples in the kitchen?
Bob: Some are.
(Not all apples are in the kitchen.)
Ignorance Implicating that one does not know Alice: Where did you see Jack?
whether ST is true (or that ST may Bob: He was in the kitchen or the bedroom.
or may not be true). (I am not sure where Jack was.)
Close-But Implicating a negative answer to Alice: Did you put the apples in the kitchen?

a question by affirming something
close to a positive answer in contex-

tually salient respects.

Table 3: Categories and examples of different subtopics
in GRICE dataset.

Subtopic
agent_location

Example

Alice: Where was Jack?

Bob: I saw him in the kitchen.
Alice: Did you put the apples in the
kitchen?

Bob: I was in the bedroom.

Alice: Where can I find the apples?
Bob: They are in the kitchen, if not
the living room.

Alice: Are all the apples in the
kitchen?

Bob: At least four are there.

agent_action

object_location

object_scale

query types of each subtopic are manually defined.
For example, the question regarding Agent_location
can be a yes/no question (“were you in the
kitchen?”) or a where question (“where were
you?”). For answers, we focus on five different
types of implicature (Huang, 2017; Horn and Ward,
2004; Davis, 2016): relevance, strengthening, lim-
iting, ignorance, and close-but; see Table 2 for
detailed definitions and examples.

Diversity We follow Weston et al. (2016) to
use a simple automated grammar to makes the con-
versation more natural and diverse: We assign a
set of synonyms for each verb; e.g., we randomly
replace (i) put with left, dropped, or placed, and (ii)
went with travelled, journeyed, or walked.

Since coreference is a crucial feature in the con-

Bob: I was in the living room.
(I did not put the apples in the

kitchen since I was in somewhere else.)

versational context in GRICE dataset, we track
agents, objects, and locations mentioned in pre-
vious conversations and replace them with deixis
in the following conversational context.

Additionally, we build a set of follow-up ques-
tions for each type of dialogue action to challenge
the model’s ability to reason about the omission in
utterances. Take Fig. 2 as an example; the question
“What about the apples?”” should be interpreted or
recovered as “Where are the apples?” during the
reasoning procedure.

Candidate Answer Generation To generate
candidate answers for each round of dialogue for
the implicature recovery task, we define four dif-
ferent strategies tailored to produce challenging
candidates. Among all four candidate answers, be-
sides the ground-truth condition in its explicit form,
the other three candidate answers are randomly
sampled from the candidate pool, composed by
applying the following strategies; see Fig. 4 for
examples of each strategy:

1. Statements that are similar to the ground-truth
condition but with wrong coreferenced entities.

2. Randomly sampled true condition but with irrel-
evant facts.

3. Randomly sampled wrong facts from the current
conversational context.

4. Manually created statements that are close to
the true condition but are in fact wrong.
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Conversation:

Alice: Where are the oranges?

Bob: Jack said he saw some in the kitchen.
Alice: Did he put them there?

Bob: He put them there and went to the bed-
room.

(Jack put the oranges in the kitchen

and then went to the bedroom.)

Examples of generated candidate answers:

1. Bob put the oranges in the kitchen and then
went to the bedroom.

2. Jack was in the bedroom.

3. The oranges are in the bedroom.

4. Jack went to the bedroom and then put the
oranges in the kitchen.

Figure 4: The candidate answers for the implicature
recovery task are generated following four different
strategies. 1. Statements that are similar to the ground-
truth condition but with wrong coreferenced entities.
2. Random sampled true condition but with irrelevant
facts. 3. Random sampled wrong facts from the con-
versational context. 4. Manually created statements that
are close to the true condition but are in fact wrong.

Questions We follow Weston et al. (2016) to
generate questions about the dialogue context. Af-
ter sampling the dialogue turns and finalizing the
dialogue context, we query current dialogue states
in terms of agent locations/actions and object loca-
tions/scales. Inspired by Nematzadeh et al. (2018),
we further add belief queries (e.g., “does Bob know
where the oranges are?”) to test the model’s capa-
bility of belief reasoning; see Fig. 2 for examples.

5 Experiments

We randomly sample 6,000 dialogues as the train
set and additional 4,000 dialogues as the dev set to
evaluate baseline models; each dialogue contains
10 dialogue turns and 3 questions. Detailed distri-
butions of implicature types are listed in Table 4.
For the test set, we sample 1,000 dialogues in each
implicature category, resulting in a total of 5,000 di-
alogues. Each test dialogue contains 3—5 dialogue
turns and one question on implicature. All data is
clean and noiseless.

Setup We model both tasks as a query over
the conversational context. Specifically, for the
implicature recovery task, we define h; =
(Q¢, Ay) as the queried sequence and the H; =
{(Q1,A1), ..., (Q¢—1,A¢—1)} as the past dialogue
context. Then the task is to predict the explicit form
E; = f(hy, Hy). For the conversational reasoning

Table 4: Distribution of implicature types (%).

Train Dev

Explicit Answer  27.3 29.6
Implicature 727 704
Relevance 99 93
Strengthening  22.5 22.9
Limiting 63 64
Ignorance 235 212
Close-But 10.5 10.8

task, we treat the entire history as the input context
and the question as the query sequence. The task is
then modeled as a Sequence-to-Vector framework
that maps the query with its context to the vocabu-
lary space. We implemented all models in PyTorch
and trained using ADAM (Kingma and Ba, 2014)
with a learning rate of 0.001 for 40 epochs.

5.1 Baseline Models

We evaluate 5 representative baseline models for
both tasks on the GRICE dataset. The baseline mod-
els are chosen on the basis of performing well on
synthetic language datasets (e.g., Facebook bAbi)
or similar tasks and easy adoption to perform con-
versational reasoning tasks. We additionally test the
performance of transformer-based language mod-
els, claimed to have strong reasoning capabilities.

LSTM We start with a simple dual LSTM
model: one LSTM to encode the history context
as a long context sequence, and another LSTM to
encode the queried sequence. A simple MLP fuses
two encoded vectors to predict answers.

Recurrent Entity Network (EntNet) EntNet
(Henaff et al., 2017) is an RNN-based memory-
augmented architecture, capable of capturing the
sequential nature and learning relevant entities with
their properties by gated recurrent units and weight
matrices. Our implementation is based on its offi-
cial open-sourced code!.

Relation Network (RelNet) Santoro et al.
(2017) propose a neural model for relational reason-
ing. The algorithm considers each pair of sentences
together with the question as inputs. Our implemen-
tation is based on its official open-sourced code?.

Memory Network (MemNN) We follow We-
ston et al. (2015) to build a memory network> that
takes each round of history context as a supporting
fact and stores it in the memory bank; the algorithm

"https://github.com/jimfleming/
recurrent—-entity-networks
https://github.com/siddk/

relation—-network
‘https://github.com/facebook/MemNN
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is expected to learn to refer to the memory when
predicting answers. Specifically, we use an LSTM
to encode each round of history and compute the
association matrix between the queried sequence
and the memory bank. We apply a softmax to the
association matrix to get the attended weight of
the dialogue history. Finally, we compute the at-
tended dialogue history embedding and combine it
with the queried embedding using a simple MLP
to predict answers.

Transformer-based Language Model Fine-
tuning transformer-based language models (e.g.,
GPT (Radford et al., 2018) and BERT (Devlin et al.,
2019)) has shown superior performance on conver-
sational reasoning tasks (Sun et al., 2019). We use
BERT-base-uncased # as our pre-trained model and
apply it to the conversational reasoning task by
adding a single linear layer to generate answers
from the target vocabulary set.

Human Performance We randomly selected
100 dialogues and assigned them to 40 human sub-
jects in a between-subject design; 20 subjects for
the implicature recovery tasks, and another 20 sub-
jects for the conversational reasoning task.

5.2 Evaluation and Results

Implicature Recovery We start by evaluating
the performance of the baseline models on the
implicature recovery task. As discussed in Sec-
tion 3, we evaluate under two different settings
to predict the implicature recovery results: the
discriminative setting and the generative setting
(marked by “-Gen”). For the discriminative set-
ting, we take the encoder output and compute the
similarity score with each candidate answer to pre-
dict the final choice. For the generative setting,
we train the encoder-decoder framework using the
teacher-forcing algorithm by minimizing the nega-
tive log-likelihood between the generated answers
and the ground-truths. Overall, the generative set-
ting is more challenging than the discriminative
one; see Table 5 for results on dev and test sets.

Conversational Reasoning We follow We-
ston et al. (2016) and Nematzadeh et al. (2018)
on performance evaluation of the conversational
reasoning task, measured by the accuracy score in
the vocabulary space; see Table 6 for the results of
all the baseline models on the dev and test sets.

‘nttps://github.com/huggingface/
transformers

Table 5: Performance on implicature recovery task.

Dev Test

Model R@l1 MRR R@l1 MRR
LSTM 81.92 0.9046 83.54 09145
EntNet 89.07 0.9445 91.15 0.9523
RelNet 93.02 0.9623 95.33 0.9602
MemNN 96.76 0.9833 97.29 0.9862
LSTM-Gen 6228 0.7763 65.02 0.7784
MemNN-Gen 86.29 0.9305 88.79 0.9418

Human 99.00 - 98.50 -

Table 6: Performance on conversational reasoning task.
Accuracy (%)

Model " Dev  Test
LSTM 59.77 55.82
EntNet 5791 53.17
RelNet 63.02  65.50
MemNN 64.66 67.32
BERT 6721 71.06
MemNN w/ inf 69.24 73.12
Human 98.50 97.50
Analysis Comparing the model performance

with the human performance in Tables 5 and 6,
we see a consistent and competent performance in
human subjects, whereas the model performance
of the conversational reasoning task drops signif-
icantly even after a relatively good performance
on the implicature recovery task. This contrast in-
dicates that the models that perform well on the
implicature recovery task may not really “under-
stand” the conversational context to be used in the
following conversational reasoning task.

To further test this hypothesis, for the implica-
ture recovery task, we additionally pre-train an in-
ference encoder that predicts the explicit/recovered
answer under the generative settings (MemNN w/
inf), given the previous dialogue history. This ad-
ditional inference model is further appended into
the basic model and fused to predict the final an-
swer. Such a setting would be a reasonable test to
see how well a model could perform if they ex-
plicitly incorporate the recovered implicature from
the implicature recovery task to solve the later con-
versational reasoning task. As shown in both Ta-
ble 6 and Fig. 5, we observe that the conversational
reasoning performance improves an average 5%
with this additional inference module; for certain
implicature types, it boosts the performance for
more than 25%. Of note, it even outperforms the
previous state-of-the-art model that fine-tunes the
pre-trained Bert model, indicating the significance
of incorporating an explicit module of implicature
recovery for pragmatic reasoning in conversation.
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Figure 5: Performance comparison between MemNN

and with additional inference module (MemNN w/ inf)

that explicitly recovers the implicature.

ignorance

6 Discussions and Future Work

Synthetic Corpus vs. Natural Corpus Creat-
ing synthetic datasets is commonly challenged in
the current deep learning community due to the
potential unnaturalness of the generated corpus.
Nevertheless, it is worth noting that the axes along
which the dataset is unnatural are unrelated to our
primary focus—pragmatic implicature. By care-
fully and systematically incorporating the prag-
matic phenomena existing in daily conversations,
the proposed GRICE dataset, though synthetic,
could be considered as one additional dimension
in evaluating language models. In fact, although
moving towards natural conversations may increase
the diversity of responses, it will also introduce
two potential problems: (i) Most daily conversa-
tional snippets only consist of one or fewer impli-
cature, which cannot highlight the core challenges
presented in the proposed GRICE dataset. (ii) The
implicatures in natural dialogues are unstructured,
requiring experts to label their explicit form, which
may introduce errors and uncertainties.

Direct Evaluation vs. Indirect Evaluation
Although the proposed GRICE dataset incorporates
the triadic relations among agents and additional
challenges (e.g., coreference, commonsense) pre-
sented in modern dialogue systems, it is difficult
to directly evaluate these aspects in an open-ended
dialogue system, especially with implicature. One
may use an indirect metric, i.e., whether the sys-
tem performance would improve after integrating
such modules. Moving forward, we call for future
research to design more direct evaluation metrics
in addition to the present implicature recovery and
conversational reasoning tasks.

Human Performance vs. Machine Perfor-
mance The experimental results show that the
existing models do exhibit a certain level of rea-

soning capability, though weak. Additionally, the
performance gap between the implicature recovery
and conversational reasoning tasks leaves us with
many mysteries. Humans seem to be reasonably
consistent in solving both tasks, whereas current
models are not. One possible explanation is that
the computational model is able to fit the relatively
confined space of the implicature recovery task
based on the training data, but fails to incorporate
such knowledge for the more open-ended conver-
sational reasoning task. This possible explanation
is further backed up by the above experiment with
an additional inference module.

Another potential reason is that existing models
may lack generalizability that can leverage knowl-
edge learned from known implicature to solve
unseen conversations. In other words, they can
only memorize token patterns from existing cor-
pus rather than understand the rationale behind
the language context, thus would fail to perform
deductive or abductive reasoning tasks. Similar ob-
servation has been investigated by other reason-
ing tasks, including 1Q test (Zhang et al., 2019a,b,
2021b), number sense (Zhang et al., 2020), causal
reasoning (Edmonds et al., 2018, 2019b, 2020;
Zhang et al., 2021a), and more generic general-
ization tasks (Lake et al., 2015; Xie et al., 2021; Li
et al., 2021; Zhu et al., 2020).

Fundamentally, how could we properly lever-
age the knowledge extracted during the implica-
ture recovery task for the following conversational
reasoning task? Levinson (1995) argues that hu-
man conversation depends on intention-ascription,
where inferences must be made way beyond the
data, therefore forming an abductive process. A
possible and promising future direction would be
using a neural-symbolic solver, capable of handling
noisy inputs using neural-network modules and rea-
soning about the answers in a logic-like style.
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