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Abstract

Applying reinforcement learning to dialogue
policy learning requires prohibitively large
rounds of human-machine interactions. To
improve the learning performance, the Deep
Dyna-Q framework with a world model that
imitates real users is widely used in recent
years. Unfortunately, how to build an effec-
tive world model and how to evaluate the ex-
periences generated by the world model effi-
ciently have not been well studied. In order
to further improve the effectiveness and effi-
ciency of dialogue policy learning, we present
a novel Gaussian Process based Deep Dyna-Q
approach in this paper. The Gaussian Process
model, which is analytically tractable and fits
for small-sample problems, is introduced to
build the world model. In addition, we design
a highly efficient Kullback-Leibler divergence
based discriminator to evaluate the quality of
experiences generated by the world model. Ex-
tensive experiments validate the effectiveness
and robustness of our proposed approach. The
task-completion success rate can be improved
by about 20% with fewer human-machine in-
teractions.

1 Introduction

Task-completion dialogue policy learning aims to
build a task-completion dialogue system that can
help people complete a specific single task or multi-
domain tasks through several rounds of natural lan-
guage interactions. It has been widely used in chat
robots and personal voice assistants, such as Siri of
Apple and Cortana of Microsoft.

Reinforcement learning (RL) becomes the main-
stream dialogue policy learning method in recent
years (Chen et al., 2020; Saha et al., 2020; Li et al.,
2020). Based on the RL, the task-completion dia-
logue system can gradually adjust policy through
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interacting with real users to improve performance.
However, the vanilla RL methods require many
rounds of human-machine dialogue interactions be-
fore getting a satisfactory dialogue policy, which
not only increases the training cost but also dete-
riorates user experience during the early training
phase.

In order to address the above problem and accel-
erate the learning process of dialogue policy, Deep
Dyna-Q (DDQ) (Peng et al., 2018) is proposed
based on the Dyna-Q framework where a environ-
ment model, known as world model, is introduced
to generate simulated user experiences in the dy-
namic environment. The world model is trained by
the real user experience to make itself act more like
real users. During the dialogue policy learning, the
dialogue agent is trained by both real experiences
collected from interacting with real users and sim-
ulated experiences collected from interacting with
the world model.

By introducing the world model, DDQ can pro-
mote the learning efficiency effectively during dia-
logue policy learning. However, it still faces two
critical challenges which are crucial to further im-
prove the dialogue policy learning with limited
dialogue interactions.

Firstly, the world model in DDQ is built as a
deep neural network (DNN) whose performance
heavily relies on the amount of training data. In the
initial training stage when the real experiences are
relatively few, the data-hungry problem caused by
DNN may make the world model fail to generate
simulated user experiences with enough quality. It
requires a lot of real experiences to train a qualified
DNN-based world model that can produce high-
quality simulated experiences. The world model
implemented by the data-hungry model such as
DNN erodes the advantage brought by Dyna-Q
framework and makes DDQ less effective in reality.

Secondly, it has been pointed in (Peng et al.,
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2018) that the simulated experience generated by
the world model does not necessarily improve per-
formance. Low-quality experiences even hinder the
performance seriously. To address this issue, some
recent works attempted to control the quality of
simulated experiences by using generative adversar-
ial network (GAN) to discriminate the low-quality
experiences (Su et al., 2018). Nonetheless, the
notorious instability of training GANs may make
dialogue policy learning suffer badly from non-
convergence and high sensitive to the hyperparam-
eter selections, which is demonstrated in Section
3 of our paper. It is an important yet unsolved
problem to efficiently discriminate low-quality ex-
periences during dialogue policy learning.

In order to tackle the above two challenges, we
propose a new Gaussian Process based Deep Dyna-
Q approach. Compared with the previous works
(Peng et al., 2018; Su et al., 2018), the world model
in our approach is built as a Gaussian Process (GP)
model rather than a DNN model. The GP model is
analytically tractable and enjoys the advantage of
dealing with small-sample problems (Patacchiola
et al., 2019; Gašić et al., 2017; Su et al., 2016),
which makes it more competitive than DNN mod-
els in this work. In addition, we design a novel
method to evaluate the quality of simulated user
experiences by comparing them with real user expe-
riences based on Kullback-Leibler (KL) divergence
directly without any extra training of discriminator.
The main contributions of this work are as follows:

• We present a new GP-based Deep Dyna-Q ap-
proach, which can generate high-quality simu-
lated experiences to supplement the limited real
user experience. To build the world model as
a GP model, we design a Dyna-Q framework
that supports regression mode meeting the basic
requirements of using GP methods.

• We propose a KL divergence based discrimina-
tor which is able to fluently control the quality
of simulated experiences. By introducing KL
divergence, we can check the distribution of ex-
periences without wasting extra work to design
and train a complex discriminator. It is easier to
evaluate the quality of simulated experiences in
reality, and greatly improve the computational
efficiency while ensuring the robustness and ef-
fectiveness of the dialogue policy.
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Figure 1: Architecture of the proposed dialogue learn-
ing approach.

2 Gaussian Process based Deep Dyna-Q
Approach

In this section, we introduce the proposed GP based
DDQ approach in detail. Figure 1 shows the archi-
tecture of the proposed approach. Our GP based
DDQ approach follows the learning process of
DDQ, and concentrates on two issues: 1) how to
build an effective world model, and 2) how to evalu-
ate simulated experiences efficiently. Accordingly,
we build the world model as a GP model and de-
sign a novel KL divergence based discriminator to
promote the efficiency of dialogue policy learning.

The dialogue policy learning starts with initial-
izing the policy model and the world model by
using the human conversational data. In direct rein-
forcement learning, the policy model is trained by
interacting with real users to improve the dialogue
policy. Meanwhile, the real experiences collected
from real users are used to train the world model,
which is referred to as world model learning. In
data management, the simulated experiences gen-
erated by the world model are evaluated by com-
paring with the real experiences based on the KL
divergence. Then, the qualified ones are pushed
into the replay buffer for controlled planning to
train the policy model without interaction with real
users.

2.1 Gaussian Process based World Model

During the planning process, we implement the
world model to generate simulated experience that
can be used to improve dialogue policy. The world
model, denoted by W (s, a; θw), consists of three
GP models shown in Figure 2, parameterized by dif-
ferent θw. Three GP regression models are used to
generate response action au, reward r, and variable
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Figure 2: The training and prediction stage of world model.

t indicating whether the dialogue terminates, re-
spectively. We denote the simulated experience as
a tuple e = (au, r, t). In a practical GP regression
problem, the observed targets y are generated from
the function f(x) by adding independent Gaussian
noise (Williams and Rasmussen, 2006):

y = f(x) + ε, (1)

where p(f |x) = N(f |µ,K(x, x)) with mean µ
and kernel function K, and ε∼N(0, σ2I), I is the
identity matrix. According to the Bayesian princi-
ple, the conditional mean and covariance of poste-
rior distribution, p(y∗|y, x, x∗), with test input x∗

is as follows:

µ+K(x∗, x)Σ−1(y − µ) (2)

K(x∗, x∗) + σ2I −K(x∗, x)Σ−1K(x, x∗), (3)

where Σ = K(x, x) + σ2I . To accommodate the
correlation properties of human dialogue, the sta-
tionary kernel function Matérn is used in our case:

KMat(r) = σ2f
21−ν

Γ(ν)

(√
2νr

l

)ν
Kν

(√
2νr

l

)
,

(4)
where σf and l are magnitude and lengthscale pa-
rameters, respectively. Γ is the gamma function,
Kν is the modified Bessel function of the second
kind, and ν are positive parameters of the covari-
ance. The argument r represents distance between
observations (Hensman et al., 2017). For the multi-
dimensional input case, its automatic relevance de-
termination (ARD) version could be introduced to
deal with this situation (Duvenaud, 2014).

In each round of the world model learning, the
current dialogue state s and the last agent action

a are concatenated as input for the world model.
We set all the GP priors with constant mean and
the Matérn kernel (ν = 7

2 ) function. The world
model W (s, a; θw) is trained to mimic the real di-
alogue environments. The training data for the
world model learning are collected from the real
user and are stored in the replay buffer Mw. The
loss function is set as the summation of the negative
log marginal likelihood (NLL) of three GP models.
Because of the conjugate property, each NLL could
be analytically solvable, and their general formulas
can be written as:

− log p(y|x) =
n

2
log(2π) +

1

2
log |Σ|

+
1

2
(y − µ)TΣ−1(y − µ), (5)

where |·| represents determinant of the matrix and
n is the number of the training data. The world
model W (s, a; θw) is refined at the end of each
epoch via L-BFGS-B algorithm (Zhu et al., 1997)
using real experiences.

During prediction, we use these trained GP mod-
els to generate simulated experiences. To increase
diversity of the simulated experiences, the uncer-
tainty of GP models is taken into account in the pre-
diction stage, shown by the black box frame labeled
as “uncertainty” in Figure 2. We calculate the 50%
confidence interval1 of these three variables. The
lower bound and the upper bound of the simulated
experience are represented by el = (aul , rl, tl) and
eb = (aub , rb, tb), respectively. Then, we have three
simulated experiences el, e, and eb per prediction.
The quality of the three simulated experiences will

1The usual 95% confidence interval isn’t used here to nar-
row the variable domain.
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be measured by KL divergence, which will be de-
tailed in the following subsection. The qualified
simulated experiences will be stored in the replay
buffer Mp for training the dialogue policy model.

Differing to DDQ where the world model is es-
sentially a classification model to generate user
action au, the above GP-based world model is a re-
gression model to make it tractable and much easier
to handle than classification model. Considering
the user action should be an integer and have finite
action domain, the user action generated by the pro-
posed world model should be filtered to meet these
inherent requirements. The filtering mechanism
consists of the following two steps. Firstly, when
the user action is not an integer, which is common
in regression case, au is round to its nearest integer,
aul is replace by its ceiling value, and the floor value
of aub is chosen, respectively. Secondly, if the user
action is beyond the defined action domain, the
upper or the lower bound of the domain will be se-
lected. Through the above process, the user action
generated by a regression model can achieve the
approximately equivalent effect as the task-specific
representation in classification models.

2.2 Management of Replay Buffer

As mentioned in the Introduction, low-quality ex-
periences generated by the world model can hinder
the learning performance seriously. In this subsec-
tion, we evaluate the quality of the simulated expe-
rience to determine whether it can be pushed into
the replay buffer for training the dialogue policy
model. The whole structure is shown in Figure 3.

We give two dictionaries, i.e., world-dict and
real-dict, to record the frequency of all actions
generated by the world model and the real user
from the beginning of the dialogue policy learning.
The key of the dictionary is user action, and the
corresponding value is the frequency of this action.
A high-quality simulated experience means that
its action is similar to the real user. Therefore,
we evaluate the quality of simulated experience
by measuring the similarity between world-dict
and real-dict based on the KL divergence which
is a non-symmetric variable (Raiber and Kurland,
2017).

The evaluation process is shown in Algorithm 1.
This algorithm runs repeatedly during the planning
(see Line 19 in Algorithm 2). The variable KLpre,
which is initialized as a extremely large number,
tracks the KL divergence between world-dict and

Algorithm 1: Evaluate Simulated Experi-
ences

Input: User actions in the experience generated by
the world model auw; Previous action
dictionary of the world model world-dict;
Previous action dictionary of the real user
real-dict; KL divergence KLpre.

1 Update world-dict with the current user actions auw ;
2 foreach a in world-dict.key do
3 if a in real-dict.key then
4 same-dict[a]← [world-dict[a],real-dict[a]]

5 qualified← FALSE ;
6 if Length(same-dict) ≥ cut-off then
7 Calculate current KL divergence KL using

same-dict;
8 if KL ≤ KLpre then qualified← TRUE;
9 KLpre ← KL;

10 else
11 qualified← TRUE ;

12 if qualified then
13 Push current simulated experience into Mp;

real-dict. When evaluating a simulated experience,
we first use its user action to update world-dict.
Then, we use same-dict to save the intersection
keys of world-dict and real-dict, and store their
frequencies respectively (see Line 2-4). During the
initial stage of planning, there is limited actions
in world-dict, and hence the length of same-dict
is quite small. To warm up the world model and
expand the replay buffer, we regard the simulated
experience as a qualified one directly when the
length of same-dict is smaller than a constant value
cut-off. Otherwise, we calculate the current KL
divergence KL by using same-dict. If the current
KL divergence is smaller than that of the previous
round KLpre, we regard the current experience as
a qualified one (see Line 7-8) because it make the
world model more similar to the real user. The
qualified experience will then be pushed into Mp

for training the dialogue policy model.

s: state

a: agent 
action

Trained 
GP1

Trained 
GP2

Trained 
GP3

NLL: negative log marginal likelihood

Trained 
GP1

Trained 
GP2

Trained 
GP3

s': state

a': agent 
action

（   ,   ,    ）

（   ,   ,    ）

filter

world-dict

real-dict

replay buffer       

u

oa

same-dict

KL divergence

uncertainty

KL 
divergence

Training Prediction

Trained with 
summation of 

three NLL
GP2

GP1

GP3

u

ra

pM

（   ,   ,    ）

u

la

ua

u

ba

lr

r

br

lt

t

bt

ua r t

u

ba br bt

u

la lr lt

e

le

be

u

wa

Figure 3: KL divergence calculation.

2.3 Direct and Indirect Reinforcement
Learning

For the direct reinforcement learning, the Deep Q-
Network (DQN) (Mnih et al., 2015) is adopted to
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Algorithm 2: GP based DDQ Approach
Input: Learning epoch count; probability ε for

ε-policy; planning step K; period T to update
Q′(s, a; θQ′); user goal G = (C,R), where
C is a set of constraints and R is a set of
requests; training epoch Z1 and Z2.

1 Initialize Q(s, a; θQ) and W (s, a; θw) via
pre-training on human conversational data ;

2 Initialize Q′(s, a; θQ′) with θQ′ = θQ ;
3 Initialize the replay buffer Mw for world model and

Mp for policy model using Reply Buffer Spiking
(Lipton et al., 2016) ;

4 for i← 1 to count do
5 #Direct Reinforcement Learning:
6 User starts a dialogue with action au ;
7 Generate an initial dialogue state s ;
8 while t is not terminal state do
9 Policy model selects and executes action a

based on ε-policy ;
10 User responses aur , reward r, and terminal

state t;
11 Update real-dict ;
12 Store (s, a, r, aur , t) to Mp and Mw ;
13 s← s′ ;

14 #Controlled Planning:
15 for k ← 1 to K do
16 Sample user action au from G ;
17 while t′ is not terminal state do
18 Policy model selects and executes

action a based on ε-policy ;
19 World model responds auw, r and t′ ;
20 Store (s, a, auw, r, t

′) to Mp based on
qualified from Algorithm 1 ;

21 s← s′ ;

22 Sample random mini-batch samples from Mp ;
23 Update θQ via Z1-step Q-learning ;
24 θQ′ ← θQ every T steps;
25 #World Model Learning:
26 Sample random mini-batch samples from Mw ;
27 Update θw via Z2-step L-BFGS-B algorithm ;

improve the dialogue policy based on real experi-
ences. The dialogue agent interacts with the user
and uses a DNN to approximate the non-linear Q
function. In each step, the agent chooses the cor-
responding action a to execute using an ε-greedy
policy (Watkins and Dayan, 1992) according to the
observed dialogue state s. In ε-greedy policy, a
threshold ε is set for logical selection, i.e., a ran-
dom action or a action chosen by the greedy policy
a = argmaxa′Q(s, a′; θQ) where Q(·) is the value
function. Then, the agent receives the reward r.
The real user responses aur based on the current
environment. The next state s′ is updated in the
state tracker module. Before we store the expe-
rience (s, a, r, aur , t) in the replay buffer Mp, the
statistical distribution of aur , denoted as real-dict,
is updated for further KL divergence inspection.

The value function Q(s, a; θQ), approximated

by a DNN, is updated by optimizing θQ to mini-
mize the mean-squared loss function as below:

L(θQ) = E(s,a,r,s′)∼Mp [(yi −Q(s, a; θQ))2]

yi = r + γmax
a′

Q′(s′, a′; θQ′), (6)

where γ ∈ [0, 1] is a discount factor, and Q′(·) is a
separate network that is only updated periodically
for generating the targets value yi. In each itera-
tion, we improve Q(·) by using mini-batch deep
Q-learning. We can use several optimization al-
gorithms such as Adam (Kingma and Ba, 2014),
Stochastic gradient descent (Sutskever et al., 2013)
and RMSprop (Ruder, 2016) to train the deep Q
network.

During the indirect reinforcement learning, also
known as planning, the dialogue agent improves
its dialogue policy by interacting with the world
model rather than the real user to reduce the train-
ing cost. The frequency of planning is controlled
by the parameter K, which means that the plan-
ning is performed K steps per step of the direct
reinforcement learning. The value of K tends to be
large when the world model is able to capture the
feature of the real environment accurately. In each
step of planning, the world model responses auw
based on the current environment. As mentioned in
the last subsection, the experience (s, a, r, auw, t

′)
generated during planning will be evaluated by the
KL divergence inspection before pushing it into the
replay buffer Mp to ensure the quality of experi-
ences.

Algorithm 2 gives the whole process of our pro-
posed approach. Each epoch of dialogue policy
learning consists of direct reinforcement learning,
controlled planning, and world model learning.

3 Experiment

To illustrate the effectiveness and superiority of our
method, we test it in the movie ticket booking task,
and compare it with the other methods from two
aspects : 1) the change of performance in different
hyperparameters; 2) the performance comparison.
The source codes and the implementation details
are packed in the supplementary materials for re-
production.

3.1 Dataset

We use the same raw data as original DDQ method.
It is collected via Amazon Mechanical Turk. The
dataset has been manually labeled based on a
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schema defined by domain experts, which con-
sists of 11 dialogue acts and 16 slots (Peng et al.,
2018). In total, the dataset contains 280 annotated
dialogues, the average length of which is approxi-
mately 11 turns.

3.2 Dialogue Agents for Comparison

We develop different versions of task-completion
dialogue agents to benchmark the performance of
our proposed method and its variants.
• The GPDDQ(M , K, N ) agents are learned by

our GPDDQ method, where M is the buffer size,
K is the number of planning steps and N is the
batch size. The initial world model is pre-trained
on human conversational data. Note that we do
not utilize uncertainty attribute and KL diver-
gence inspection in this agent.

• The UN-GPDDQ(M , K, N ) agents are very
similar to GPDDQ(M , K, N ) agents, but the
uncertainty is considered in this case. Currently,
el, e and eb are returned in the world model pre-
diction stage.

• The KL-GPDDQ(M , K, N ) agents are the
same to the UN-GPDDQ(M , K, N ) agents, ex-
cept that the KL divergence inspection is also
considered.

• The GPDDQ(M , K, N , rand-init θw) agents
are learned by the GPDDQ method with a ran-
domly initialized world model. The reward r and
terminal variable t are randomly sampled from
their corresponding GP models. And for action
au, we uniformly sample it from its defined ac-
tion domain.

• The GPDDQ(M , K, N , fixed θw) agents are
only refined during warm-up stage on human
conversational data. After that, the world model
will not be trained any more.

• The GPDQN(M , K, N ) agents are learned
by direct reinforcement learning. Its perfor-
mance can be viewed as the upper bound of its
GPDDQ(M , K, N ) counterpart, assuming that
the world model perfectly matches real users.

• For other agents which are not mentioned above,
please refer to (Peng et al., 2018; Su et al., 2018).

3.3 Parameter Analysis

To illustrate the advantages of our model in terms
of sensitivity to hyperparameter changing, we con-
duct a series of experiments by changing the corre-
sponding parameters such as batch size, planning
step, parameter update policy, and buffer size.
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Figure 4: Learning curve for DDQ and GPDDQ with
different parameter settings: M = 5000, N = 4, 16
and K = 0, 2, 5, 10, 20.

3.3.1 Batch Size and Planning Step

In this group of experiments, we use the 16 and 4 as
the batch size to train the policy network Q(·) and
world model W (·) with different planning steps
K. The main results are shown in Figure 4 which
indicates that the GPDDQ agents consistently out-
perform the DDQ agents in a statistical sense. In
Figure 4 (a) and (b), it can be found that the conver-
gence value of the success rate of GPDDQ agent
is much better than that of DDQ agent with the
same planning step K. The converged success
rate oscillates around 0.8 in our proposed method,
however, the corresponding value is about 0.74
in the DDQ method. As the planning steps in-
crease, the learning speeds generally become faster.
This phenomenon is consistent with intuition that
a large planning step brings faster learning speed.
Nonetheless, we can notice that there is no sig-
nificant difference between the learning curve of
K = 20 and K = 10. This is due to the reduc-
tion of the quality of simulated experiences caused
by a too large K. To find the optimal value of K,
the trade-off between the amount of simulated ex-
perience and the quality of simulated experience
should be considered seriously.

Since GP method is more robust to hyperparam-
eters (Kuss, 2006), we speculate that it still has
better performance with a small batch size. In Fig-
ure 4 (c) and (d), we shrink our batch size to 4,
and keep the other parameters the same as previ-
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Figure 5: Learning curve for DDQ and GPDDQ with
M = 5000, K = 10 and N = 16, but with different
parameter update strategies.

ous experiments. For GPDDQs with K > 0, their
performances still outperform the DDQ(5000, 0,
4) agent. Moreover, compared to the results when
batch size is 16, there is no obvious performance
degradation. Besides, since the matrix inversion
operation costs more time during training when the
batch size is large, the training time consumption
can be greatly reduced if the batch size becomes
smaller. On the contrary, for DDQ methods, only
when K = 10, the learning curve is better than
DDQ(5000, 0, 4) method in terms of the stable
success rate. When increasing the planning step
to K = 20, its performance degrades dramatically.
This may be caused by the insufficient training of
DNN when the batch size is too small.

3.3.2 Parameter Update Policy

In this group of experiments, we set M = 5000,
K = 10, N = 16, and change its parameter update
policy. The results are given in Figure 5. The re-
sults indicate that the quality of the world model
has a significant impact on the performance of these
agents. The DQN and GPDQN method is the com-
pletely model free method with K times training
data larger than other methods in Figure 5. Due
to randomness, the two rising curves are slightly
different, but basically the same. Obviously, if the
world model is fixed after the warm-up stage, it
will produce the worst results. The huge drop in
the learning curve of DDQ(5000, 10, 16, fixed) at
about 250 epoch may be the result of insufficient
training data. For each learning curve of GPDDQ,
the proposed GPDDQ method can achieve almost
the same maximum value as DQN. In addition, the
final sucees rates of GPDDQ are always larger than
those of DDQ methods. Even if we use different
parameter update policies, the final success rates
do not fluctuate too much.
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Figure 6: Learning curve for DDQ and
GPDDQ with different parameter settings:
M = 5000, 3500, 2000, 1000, K = 20, 30 and
N = 4.

3.3.3 Buffer Size
In this subsection, we evaluate our KL-GPDDQ
method, ignoring the other simplified methods, by
changing the buffer size. From the perspective
of overall performance shown in Figure 6, our pro-
posed method is more stable in different conditions,
i.e., different buffer sizes and planning steps. Af-
ter reducing the buffer size from 5000 to 1000,
the learning curve does not change much in our
methods. However, for DDQ methods, their per-
formances are still poor. These phenomena make
us suspect that the world model in DDQ, built by
DNN, may generate many low-quality experiences
during planning. Nevertheless, when the buffer size
becomes smaller, high-quality experiences become
the dominant part of the replay buffer. In terms
of convergence, the success rate of KL-GPDDQ
method stabilizes around 0.8 after 200 epochs when
planning step is 20, and slightly smaller when
K = 30. On the contrary, the DDQ methods do not
converge after 200 epochs. Their success rates are
basically lower than those of our proposed meth-
ods when converging. This result argues that our
method can achieve better and more robust perfor-
mance with relatively small buffer sizes.

3.4 Performance Comparison
To demonstrate the performance of our proposed
method, we compare it with other baseline algo-
rithms. We can find from Table 1 that the DDQ
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Agent Epoch = 100 Epoch = 200 Epoch = 300
Success Reward Turns Success Reward Turns Success Reward Turns

D3Q(10)∗ .6333 28.99 16.01 .7000 37.24 15.52 .6667 33.09 15.83
DDQ(5000, 20, 4) .5379 12.60 25.90 .6466 26.79 23.60 .6612 29.14 22.41
GPDDQ(5000, 20, 4) .7069 35.09 21.48 .7706 43.65 19.60 .7874 45.72 19.54
UN-GPDDQ(5000, 20, 4) .5800 17.61 25.98 .7050 34.32 22.57 .7726 43.84 19.75
KL-GPDDQ(5000, 20, 4) .6138 22.57 24.17 .7915 46.39 19.16 .7985 47.34 18.97
*The result for D3Q method is borrowed from its original paper (Su et al., 2018).

Table 1: Results of different agents with buffer size 5000 at training epoch = {100, 200, 300}. The best and the
worst agents for planning step K = 20 are highlighted in blue and red, respectively. (Success: success rate, Turns:
dialogue turns)

0 100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

D3Q(5000, 20, 4)
DDQ(5000, 20, 4)
GPDDQ(5000, 20, 4)
UN-GPDDQ(5000, 20, 4)
KL-GPDDQ(5000, 20, 4)

(a)

0 100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

D3Q(5000, 30, 4)
DDQ(5000, 30, 4)
GPDDQ(5000, 30, 4)
UN-GPDDQ(5000, 30, 4)
KL-GPDDQ(5000, 30, 4)

(b)

Figure 7: Learning curve for DDQ, GPDDQ, UN-
GPDDQ and KL-GPDDQ agent with M = 5000,
K = 20, 30 and N = 4.

methods are still the worst among the five methods.
Due to its extremely large training time consump-
tion and high sensitivity, for D3Q method, we only
calculate it once in Figure 7 and borrow its perfor-
mance from its original paper (Su et al., 2018) in
Table 1. From the results of GPDDQ, UN-GPDDQ,
and KL-GPDDQ agents, it is obvious that the KL
divergence inspection we design is helpful for per-
formance improvement, which can be concluded
based on the clear increase of success rate and re-
ward shown in Table 1. Compared with DDQ, our
proposed method can improve the success rate by
about 20% with fewer user interactions.

Figure 7 shows that the learning speeds of our
proposed methods are much faster than those of
DDQ and D3Q. It should be noted that the learning
curve of D3Q vibrates violently. Especially, when
K = 30, D3Q even cannot converge to the optimal
value. Although D3Q can discriminate low-quality
experiences, it is very hard to implement D3Q in
reality due to the instability of GANs.

4 Related Work

Most of the works on task-completion dialogue
policy learning focus on how to use fewer conver-
sation rounds to complete a specific task (Lu et al.,
2019). There are four typical methods, including
rule based method (Weizenbaum, 1966), retrieval

based method (Mikolov et al., 2013; Pennington
et al., 2014; Serban et al., 2017), supervised learn-
ing based method (Sukhbaatar et al., 2015; We-
ston et al., 2016), and reinforcement learning based
method (Levin et al., 2002). Since the reinforce-
ment learning based method can fine-tune the cur-
rent dialogue strategy based on users’ feedback
to promote user satisfaction, it has been the main-
stream of dialogue policy learning method in recent
years (Chen et al., 2020; Saha et al., 2020; Li et al.,
2020).

However, the vanilla RL methods require pro-
hibitively many rounds of human-machine dialogue
interactions before getting a usable dialogue pol-
icy. Deep Dyna-Q (DDQ) (Peng et al., 2018) is
proposed based on the Dyna-Q framework which
introduces an environment model, known as world
model, to generate simulated user experiences in
the dynamic environment to decrease the heman-
machine interactions. Based on (Peng et al., 2018),
(Su et al., 2018) attempted to control the quality
of simulated experiences by using GANs to dis-
criminate the low-quality experiences. (Zhao et al.,
2020) proposed a method called DR-D3Q to learn
policies in noise robustly by combining dynamic
reward and Dueling DQN. Based on human demon-
strations, (Wang et al., 2020) presented how to effi-
ciently learn dialogue policy through policy shap-
ing and reward shaping, in which the world model
is replaced by an imitation model.

5 Conclusion

In this paper, we propose a Gaussian Process based
Deep Dyna-Q approach. The world model is built
as a GP model, and a novel KL divergence based
discriminator is designed to evaluate simulated ex-
periences. Extensive experiments demonstrate the
superiority of our proposed method thanks to the
newly-designed world model and discriminator.
Compared with existing DDQ framework based
methods, both efficiency and robustness are pro-



1794

moted by our proposed method. With this satisfac-
tory result, it is potential to develop more valuable
algorithms based on our method. In the future work,
we will try to incorporate other strategy, such as
tree-based search algorithms (Schrittwieser et al.,
2020), to further improve the learning performance.
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A Implementation Details

We implement our experiment on Thinkstation-
P520 with Intel W-2223 CPU, 64G memory and
two Nvidia GeForce RTX 2080 cards. And the
average runtime for each DDQ and GPDDQQ ap-
proach are about from 2 to 3 hours and from 3 to 4.5
hours, respectively. For D3Q method, it takes about
2 days to run. The policy network Q(s, a; θQ) of
direct reinforcement leaning in these models are
approximated by deep neural network with tanh
activations. It has one hidden layer with 80 hidden
nodes. And the discount factor γ introduced in loss
function is set to be 0.9. In our each GP model,
there are 4 parameters need to be optimized. We
limit the maximum length of a simulated dialogue
to 40. In all our experiments, we only train the
dialogue agents by interacting with user simula-
tor which is publicly available. Only if the movie
ticket is successfully booked and the information
provided by the agent satisfies the constraints, the
dialogue is considered successfully. If the dialogue
is successful, the agent receives a positive reward
of 2L, otherwise, the reward value will be −L,
where L is the defined maximum number of dia-
logue turns. Furthermore, shorter conversations
are encouraged in this dialogue system since the
agent will receive a reward of −1 per round. If
there are no other instructions, in order to eliminate
errors, each experiment are conducted five times to
average.
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