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Abstract
In the pursuit of a deeper understanding of
a model’s behaviour, there is recent impetus
for developing suites of probes aimed at di-
agnosing models beyond simple metrics like
accuracy or BLEU. This paper takes a step
back and asks an important and timely ques-
tion: how reliable are these diagnostics in pro-
viding insight into models and training setups?
We critically examine three recent diagnostic
tests for pre-trained language models, and find
that likelihood-based and representation-based
model diagnostics are not yet as reliable as pre-
viously assumed. Based on our empirical find-
ings, we also formulate recommendations for
practitioners and researchers.

1 Introduction

Contemporary statistical models based on deep
learning have made incredible progress towards
solving complex language tasks (Radford et al.,
2019; Devlin et al., 2019; Raffel et al., 2020).
These models generally trade off the interpretability
and simplicity of traditional models for powerful
parameterizations and inductive biases, enabling
their impressive performance. However, their en-
try into critical fields such as medicine, the justice
system, and social media moderation often makes
this trade-off a costly one. Consequently, there has
been surging interest in the development of tools
and suites for diagnosing and better understand-
ing model behaviour, and gaining insight into what
patterns and phenomena they have learned (§4.1).

Ideally, these diagnostics would not only help
practitioners understand the failure modes and ca-
pabilities of large contemporary models, but also
enable them to improve their models based on the
diagnostics. To this end, we believe that model
diagnostics are essential for making meaningful
progress in natural language processing.
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Model diagnostics generally probe a model for
specific learned qualities (§4.1). These may be
a positive qualities (e.g., whether a model has ac-
quired syntactic knowledge) or potentially problem-
atic qualities (e.g., biases and stereotypes. These
probes can be used to identify certain phenomena
that can be used to further improve models.

Given the potential impact that model diagnos-
tics can have for practitioners and the research
community’s fundamental understanding of con-
temporary models, this paper asks the important
and inevitable question of whether these probes
are actually reliable and robust, and to what extent
they are. These diagnostics’ explicit nature as a
tool for understanding also imposes a greater bar
for robustness, as inconsistencies may mislead and
result in compounding errors.

Our findings demonstrate that model diagnos-
tics can be unreliable on multiple fronts. To illus-
trate our point, we select three diagnostics tasks
— StereoSet (Nadeem et al., 2020), CrowS-Pairs
(Nangia et al., 2020), and SEATs (May et al.,
2019) to base our empirical evaluation on. Overall,
we find that likelihood-based and representation-
based diagnostics measured multiple times on
the same training setup can result in wildly dif-
ferent findings. Specifically, a substantial variance
is observed when performing the same model di-
agnostics on identical BERT (Devlin et al., 2019)
pre-training setups while varying minute details
such as the initial random seed or choice of repre-
sentation.

These findings are meant to caution researchers
and practitioners that rely on such diagnostics so
that they can be more mindful of these phenomena
when analyzing their models in the future. We
discuss the implications of our findings and propose
recommendations for practitioners and researchers
in §5.
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2 Methodology

2.1 Training setup
We pre-train 5 BERT BASE and LARGE uncased En-
glish models, each with the same configurations as
in Devlin et al. (2019) using Tensorflow1. However,
each model differs in its random seed, resulting
in different parameter initializations and training
data permutations. Hence, it is expected that the
checkpoints will each end up at a different local
minima. It should be noted that BERT uses static
masking instead of dynamic masking, so the set of
pre-training examples remains the same.

To decouple our findings from phenomena that
occur as a result of using different training setups,
we restrict our experiments to only those that re-
quire pre-trained BERT models, eliminating many
probes mentioned in §4.3. Webster et al. (2020)
report that patterns learned during pre-training are
often resilient to fine-tuning, further supporting our
reasoning.

2.2 Likelihood-base diagnostics
One approach to examining the behaviour of lan-
guage models like BERT is to examine how they
rank certain representative examples above oth-
ers. We use two contemporary datasets that mea-
sure how often stereotypes are ranked above anti-
stereotypes — StereoSet (Nadeem et al., 2020) and
CrowS-Pairs (Nangia et al., 2020). Both datasets
measure ss = 100 ∗

∑|X|
n=1 1[ll(xstern )>ll(xantin )]/|X|.

StereoSet Nadeem et al. (2020) propose a
benchmark that contains intra-sentence and inter-
sentence examples of stereotypes and anti-
stereotypes. Here, likelihoods are calculated as
ll(x) = p(xτ |x\τ ) (where τ is the set of tar-
get demographic word(s) in x ) and ll(x) =
p(isNext|x1, x2) for intra-sentence and inter-
sentence examples respectively. They also propose
and combine a language modeling score (lms) with
ss into a hybrid metric (icat), but we only report
ss to focus on StereoSet’s primary purpose — mea-
suring stereotypical preference in language models.
We report results on the development set.

CrowS-Pairs Nangia et al., 2020 propose a test
that contains intra-sentence examples, where like-
lihoods are calculated by conditioning on the tar-
get demographic word(s) in the sentence (ll(x) =
p(x\τ |xτ )) rather than vice-versa as in StereoSet.

1https://github.com/tensorflow/models/
tree/master/official/nlp/bert

The CrowS-Pairs diagnostic is expected to show
higher variance than StereoSet for two reasons: (1)
it is a smaller dataset (∼1

3 rd the size of StereoSet-
dev) with more categories, so results are more sen-
sitive to changes in individual predictions; and (2)
the pseudo-likelihood it uses is more susceptible to
the poor calibration (Jiang et al., 2020a; Desai and
Durrett, 2020) of contemporary models, since the
number of multiplied probabilities grows linearly
with the number of words in a sentence.

2.3 Vector-space diagnostics

Directly examining representations learned by mod-
els is another way to understand their behavior.
This is typically done by measuring relationships
between different types of inputs, for example in
terms of their relative orientations in a vector space.

SEATs We use Sentence Encoder Associa-
tion Tests (SEATs; May et al., 2019), which
extend the popular Word Embedding Associ-
ation Tests (WEATs; Caliskan et al., 2017)
by constructing “semantically bleached” sen-
tences. A WEAT/SEAT measures the effect
size s(X,Y,A,B) of the association between
two targets (e.g., X=MentalDisease and
Y =PhysicalDisease) and two attributes (e.g.,
A=Temporary and B=Permanent), as well as
the statistical significance of the association using
a permutation test2. We conduct experiments using
the same SEATs as in May et al. (2019). In addi-
tion to testing sentence ([CLS]) representations,
we also test the contextualized word representa-
tions of the target/attribute words in the sentences.
The reason we do this is that even for semantically
bleached sentences, it is often non-trivial for mod-
els to encode information about an entire sentence
in a single vector3.

In addition to examining effect sizes, we also
conduct an experiment to see how distinguishable
representations of certain concepts are in vector
space (e.g., do representations of Pleasant and
Unpleasant sentences form their own clusters?).
We do this by clustering (via k-means) sentence rep-
resentations and subsequently examining how well
the unsupervised clusters align with the actual cate-
gories. The aim of this experiment is to understand
vector space diagnostics behave the way they do.

2Please see Appendix A for how SEATs are computed.
3https://www.cs.utexas.edu/˜mooney/

cramming.html

https://github.com/tensorflow/models/tree/master/official/nlp/bert
https://github.com/tensorflow/models/tree/master/official/nlp/bert
https://www.cs.utexas.edu/~mooney/cramming.html
https://www.cs.utexas.edu/~mooney/cramming.html
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Figure 1: % of examples in likelihood-based tests that
have d different predictions over 5 runs. Ideally, exam-
ples would always (100%) be predicted the same (d=0).

Test Cat. N BERT results (%)
BASE LARGE

C
ro

w
S-

Pa
ir

s

Race 516 54.4± 4.7 55.9± 2.7
Gen. 262 58.2± 2.5 61.1± 1.7
S.O. 84 63.2± 3.4 67.4± 4.6
Rel. 105 68.9± 8.0 72.2± 2.1
Age 87 55.4± 4.2 60.9± 5.6
Nat. 159 51.2± 1.2 55.3± 3.5
Dis. 60 69.0± 3.8 79.0± 1.9
P.A. 63 59.1± 4.9 64.4± 4.3
Occ. 172 54.9± 4.5 58.0± 4.2
all 1508 57.1± 2.8 60.3± 1.7

St
er

eo
Se

t Gen. 496 59.1± 0.7 62.4± 2.0
Occ. 1636 60.5± 0.6 61.4± 0.8
Race 1938 54.8± 1.1 56.4± 0.8
Rel. 156 51.8± 2.8 54.4± 3.3
all 4226 57.4± 0.7 59.0± 0.7

Table 1: Likelihood-based diagnostics over cate-
gories often have high standard deviation (bold) over
pre-training runs, often varying from almost neutral
(∼50%) to a significant amount (highlighted).
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Figure 2: Representations of targets and/or attributes
often don’t cluster over pre-training. The dashed line is
when representations are indistinguishable (acc. = 0.5).

3 Findings and Insights

3.1 Likelihood-based diagnostics are
unstable

Experiments on StereoSet and CrowS-Pairs show
that while likelihood-based ranking diagnostics
may be stable across all categories, instability is ev-
ident in the results of individual categories (Table
1). Many categories have a standard deviation of
over 2.5 percentage points. Some categories also
vary from almost no stereotypical preference to a
significant amount (highlighted in Table 1) — a
result that could potentially cause practitioners to
draw false conclusions.

Additionally, from Figure 1 it is evident that
many examples are assigned different labels over
the 5 pre-trained models, often having 3 models
assign them one label and 2 models assigning them
the opposite label — almost as random as a coin
flip! The implies that the models are probably un-
certain about their predictions for these datapoints,
motivating the consideration of model uncertainty
in diagnostic measures instead of simply making a
binary decision by comparing likelihoods.

Worryingly, both tests report wildly differing re-
sults on religious stereotypes (“Rel.”), with CrowS-
Pairs detecting strong stereotypical preference and
StereoSet detecting almost none. It is also worth
noting that results on CrowS-Pairs exhibit far
higher variance compared to StereoSet (Table 1,
Figure 1), as hypothesized in §2.2.

3.2 Vector-space diagnostics are unstable
Representation-based experiments exhibit high
variance across multiple pre-training runs, choices
of representation, and model sizes (Figure 3). No-
tably, SEAT results are often on both sides of the
“neutral” mark (0), and their statistical significance
is often erratic. In other words, it is possible for
two models to be pre-trained with the exact same
configurations but different random seeds to yield
completely opposite conclusions on some SEATs.
Moreover, the same checkpoint often yields dif-
ferent results depending on whether sentence or
pooled target-word representations are used. Ide-
ally, a SEAT would always or never be statistically
significant, and yield effect sizes with the same
sign over multiple pre-training runs and (seemingly
innocuous) choices of representation.

From Figure 2, the representational instability
of semantically bleached SEAT sentences is fur-
ther evident — how these representations cluster
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Figure 3: SEAT results exhibit high variance across pre-train runs, model sizes, and choice of representation.
Moreover, effect sizes often vary around the “neutral” mark (0) and also have different statistical significances (at
p = 0.01). Ideally, a test would always (5) or never (0) be significant, and yield effect sizes with the same sign.

together is erratic both across pre-training steps as
well as across multiple pre-training runs. This re-
sult gives us further insight into why high variance
is observed for vector-space diagnostics — repre-
sentations often can’t form their own clusters for
certain concepts, so simply examining their relative
orientations is insufficient. Our findings provide
empirical arguments for what May et al. (2019)
surmise — there is scope for sentence embedding-
based tests that do more than naturally extend word
embedding-based tests with semantically bleached
sentences.

We surmise that representation-based diagnos-
tics are less stable than likelihood-based diagnos-
tics because large models like BERT are optimized
to be good at modeling likelihoods via their pre-
training objective. However, there is no constraint
on how sentences must be represented other than it
should be possible to “extract” correct likelihoods
from them. In other words, there is no reason to
expect the orientations of these representations to
provide deep insight into what these models learn.

3.3 Diagnostic instability is despite
equivalent downstream performance

We fine-tuned the 10 checkpoints on SST-2 (Socher
et al., 2013), RTE (Dagan et al., 2006; Bar Haim
et al., 2006; Giampiccolo et al., 2007; Bentivogli
et al., 2009), and QNLI (Rajpurkar et al., 2016)
from the GLUE benchmark (Wang et al., 2019).
Development-split results show that performance
was largely the same across checkpoints (Table 2)
despite diverging behaviour on the model diagnos-
tics as shown in §3.1 and §3.2. This shows that
the different local optima still perform largely
the same on downstream tasks despite behaving
differently with respect to model diagnostics.

Dataset BERT fine-tuning results
BASE LARGE

SST-2 91.2± 0.3 93.0± 0.3
RTE 71.3± 1.2 76.8± 1.8
QNLI 92.1± 0.2 92.1± 0.3

Table 2: The checkpoints generally exhibit equivalent
performance on downstream tasks.

Dev-set performance is also largely consistent
with what is expected of BERT BASE and LARGE

models. It should be noted that we only used one
set of hyperparameters and did not perform the
hyperparameter sweep as in Devlin et al. (2019),
so further tuning would likely improve results.

4 Related Work

4.1 Model Diagnostics

Models have been probed to understand what
exactly they learn beyond traditional language
tasks, ranging from their linguistic capabilities (Adi
et al., 2017; Tenney et al., 2019; Conneau et al.,
2018; Ribeiro et al., 2020; Belinkov et al., 2017;
Hewitt and Manning, 2019; Marvin and Linzen,
2018), multilingual capabilities (Pires et al., 2019;
Kudugunta et al., 2019), world knowledge (Jiang
et al., 2020b; Petroni et al., 2019), and social bias
(Nadeem et al., 2020; Nangia et al., 2020; May
et al., 2019) among other phenomena.

Another axis to compare model diagnostics on is
whether they are intrinsic or extrinsic, i.e., whether
they directly analyze models for certain phenom-
ena that aren’t tied to any downstream task or do
so keeping particular tasks in mind. This paper
restricts itself to intrinsic tasks for reasons men-
tioned in §2.1. An example of an extrinsic task is
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Rudinger et al. (2018), which probes models for
gender bias through the lens of coreference res-
olution. We refer readers to Belinkov and Glass
(2019) for a more comprehensive survey on model
analysis for natural language processing.

4.2 Diagnostic Fragility

It has been shown that classifier probes — which
require an additional classifier (like an MLP) to
be trained on top of frozen model representations
— are unstable (Voita and Titov, 2020), and that
it might not be clear from their results whether
the probe itself learned a phenomena or whether
the diagnosed representations learned it (Hewitt
and Liang, 2019). Similarly, Wang et al. (2020)
find that gradient-based analysis of language tech-
nologies based on neural networks can often be
unreliable and manipulable. Attention-based inter-
pretation can also be unreliable and manipulable to
the point of deceiving practitioners, as Pruthi et al.
(2020) and Jain and Wallace (2019) show. The
works mentioned above all support our arguments,
and some raise similar concerns to those expressed
in this paper.

4.3 Inconsistencies between equivalent
checkpoints

This paper’s findings can be linked to the problems
caused by underspecification in machine learning
(D’Amour et al., 2020), i.e., when multiple unique
predictors trained with the same configuration have
the same performance but differ in subtle ways. In
a setting where practitioners might train and thor-
oughly analyze one model but then retrain it and
assume that the first checkpoint’s model diagnos-
tics hold for the second one, this issue is highly rel-
evant. McCoy et al. (2020) also find that separately
fine-tuned BERT models often vary significantly in
generalizing to auxiliary tasks.

5 Discussion

Recommendations No probe is perfect, but it
is clear that model diagnostics are not as reliable
as previously assumed. Our empirical findings —
coupled with the works mentioned in §4.2 and §4.3
— motivate careful scrutiny of model diagnostics.
We recommend that:

• Practitioners not generalize a single diagnostic
result to the entire training setup, and instead
restrict conclusions to a specific checkpoint.

• Researchers proposing probes not only test on
publicly available checkpoints, but rather ex-
amine a probe’s performance and robustness
across a range of model/probe configurations.

Future Work While this paper primarily aims
to motivate further scrutiny of model diagnostics,
we hope it motivates studies that ask why these
diagnostics often behave unreliably. One future
research direction we are excited about is analyzing
correlations between the properties of the models’
local minima in the loss landscape and behaviour
on model diagnostics. This would not only be
another step towards a better understanding of how
contemporary deep language models work, but also
enable researchers to use that information to design
better, more robust model diagnostics. Such a study
may even help inform the optimization process for
future state-of-the-art language technologies.

It should also be noted that this paper is restricted
to three diagnostics spanning likelihood-based and
representation-based probes, and that future work
is needed to determine the extent to which other
diagnostic probes are reliable.

6 Conclusion

In this paper, we motivate further scrutiny of model
diagnostics that aim to understand the behaviour of
contemporary “black-box” language technologies.
Our results show that model diagnostics are often
fragile and can yield different conclusions as a re-
sult of seemingly innocuous configuration changes.
We hope that our results over multiple pre-train
runs will encourage researchers and practitioners
to be mindful of the reliability of such model di-
agnostics when verifying hypotheses about their
models and training setups.
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A SEAT computation

The effect size of a SEAT — characterized by two
target (X,Y ) and two attribute (A,B) sets of sen-
tences — is calculated as:

d =
meanx∈X s(x,A,B)−meany∈Y s(y,A,B)

stdevz∈X∪Y s(z,A,B)

where:

s(sent , A,B) = meana∈A cos(
−−→
sent,−→a )

−meanb∈B cos(
−−→
sent,

−→
b ).

The p-value of the permutation test to determine
the statistical significance of the effect size is cal-
culated as::

p = Pr[S(Xi, Yi, A,B) > S(X,Y,A,B)]

over partitions (Xi, Yi) of (X∪Y ) such that |Xi| =
|Yi|, where:

S(X,Y,A,B) =
∑
x∈X

s(x,A,B)−
∑
y∈Y

s(y,A,B)


