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Abstract
With pre-trained models, such as BERT, gain-
ing more and more attention, plenty of re-
search has been done to further promote their
capabilities, from enhancing the experimental
procedures (Sun et al., 2019) to improving the
mathematical principles. In this paper, we pro-
pose a concise method for improving BERT’s
performance in text classification by utilizing
a label embedding technique while keeping al-
most the same computational cost. Experimen-
tal results on six text classification benchmark
datasets demonstrate its effectiveness.

1 Introduction

Text classification is a classic problem in natural
language processing (NLP). The task is to anno-
tate a predefined class or classes to a given text,
where text representation is an important interme-
diate step.

A variety of neural models have been developed
to learn better text representations, including con-
volution models (Kim, 2014; Kalchbrenner et al.,
2014; Zhang et al., 2015; Conneau et al., 2017;
Johnson and Zhang, 2017; Zhang et al., 2017; Shen
et al., 2018), recurrent models (Liu et al., 2016;
Yogatama et al., 2017; Seo et al., 2017; Wang et al.,
2018b), and attention mechanisms (Yang et al.,
2016; Lin et al., 2017).

Pre-trained models have also been greatly bene-
ficial in text classification in that they help stream-
line the training process by avoiding a start from
zero (Stein et al., 2019; Wang et al., 2017; Jiang
et al., 2019). One group of approaches has focused
on word embeddings, such as word2vec (Mikolov
et al., 2013) and GloVe (Pennington et al., 2014);
another has focused on contextualized word em-
beddings, from CoVe (McCann et al., 2017) to
ELMo (Peters et al., 2018), OpenAI GPT (Radford
et al., 2018), ULMFiT (Howard and Ruder, 2018),
and BERT (Devlin et al., 2019).

BERT has achieved particularly impressive per-
formances across a variety of NLP tasks. With
its success, models pre-trained on a large amount
of data, such as ERNIE (Zhang et al., 2019),
RoBERTa (Liu et al., 2019), UniLM (Dong et al.,
2019), and XLnet (Yang et al., 2019), have become
popular thanks to their ability in learning contex-
tualized representations. These models are based
on the multi-layered bidirectional attention mecha-
nism (Vaswani et al., 2017) and are trained through
the masked word prediction task, which are two of
the main components of BERT. Continuing to in-
vestigate the potential of BERT remains important,
since the findings can help with the investigation
of variants of BERT as well.

In this work, we propose a simple but effective
method to improve BERT’s performance in text
classification. We enhance the contextual represen-
tation learning through encoding the texts of class
labels (e.g. “world”, “sports”, “business”, and “sci-
ence technology” in the AGNews dataset) along
with the documents, without changing the original
encoder structure. Our main contributions are as
follows.

• The embeddings of both texts and labels are
jointly learned from the same latent space, and
so no further intermediate steps are needed.

• Our implementation takes more thorough and
efficient advantage of BERT’s inherent self-
attention for the interaction between the label
embeddings and text embeddings, without in-
troducing other mechanisms.

• Since only the original structure of BERT
is required, our method barely increases the
amount of computation.

• Extensive results on six benchmark datasets
reveal that our method taps into the deeper
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potential of BERT, leading to optimism that
BERT can be further improved for text classi-
fication as well as other downstream tasks.

2 Related Work

Apart from the pre-trained models for learning
general language representations mentioned above,
some studies have focused specifically on lever-
aging the representations of classes or the higher
level global information. Examples include t-
BERT (Peinelt et al., 2020), which combines topic
models with BERT for pairwise semantic similarity
detection, and LCM (Guo et al., 2020), which gen-
erates an enhancement distribution to the one-hot
vector representing the classes by calculating the
similarity between instances and labels to improve
the classification performance.

Moreover, the label embedding has increasingly
taken a leading role in related research. It is a
technique in which the contents of labels are also
embedded, so that the model can be trained to deal
with the label information and input features at the
same time. It is proven to be effective in various do-
mains including image classification (Akata et al.,
2015), multi-modal learning between images and
texts (Frome et al., 2013; Kiros et al., 2014), text
recognition in images (Rodriguez-Serrano et al.,
2013), and zero-shot learning (Palatucci et al.,
2009; Yogatama et al., 2015; Li et al., 2015; Ma
et al., 2016).

Notably, in the field of text classification, Zhang
et al. (2018) converted the task into a vector-
matching problem, while Yang et al. (2018) uti-
lized a sequence generation framework for cap-
turing the correlation between labels. Wang et al.
(2018a) proposed the label embedding attentive
model (LEAM), an attention-based framework that
jointly learns the embeddings of words and labels
from a shared latent space. Inspired by LEAM, Si
et al. (2020) developed LESA-BERT, where label
embeddings are incorporated into self-attention by
modifying attention scores. Our approach differs
from them in that it can consider bidirectional atten-
tion between both label and document embeddings
in BERT without changing its attention process.

3 Method

3.1 Fusing Label Embedding into BERT

Figure 1 shows the network structure of our model.
Inspired by the sentence pair input configuration of

Figure 1: Structure of proposed method.

BERT, we concatenate texts of labels and an origi-
nal document to be classified with a [SEP] token as
an input, and use different segment embeddings for
the label texts and the document text. The actual
label texts are listed in Appendix A.

We denote the document tokens as Di and their
corresponding token embeddings as EDi . Hence,
DK refers to the last token of the input document,
where K is the number of words in the document.
Let Lj be the label texts of the j-th class of the
total C classes. Since Lj may consist of several
subwords, we calculate ELj , the embedding of Lj ,
by averaging the token embeddings of all subwords
in Lj . In this way, the length of the label sentence
is equal to C, and ELj can be encoded together
with EDi through self-attention. We denote this
method as w/ [SEP].

Then, following the same process as the original
BERT, we apply a linear layer with the Tanh acti-
vation function to the last layer of the hidden-state
at the [CLS] token, T[CLS], for making the input of
the softmax layer. We use cross-entropy loss for
the training.

In addition to the paired input, we examine an-
other setting that concatenates label texts and a
document text without utilizing [SEP] or discrimi-
nating their segment embeddings. The procedure
of computing the token embeddings stays consis-
tent with the paired input setting. We denote this
method as w/o [SEP].

3.2 Further Enhancement Using tf-idf

In addition to encoding the original texts of labels
into BERT with the document, we experiment with
selecting more words as representatives for each
class, which expands the number of tokens in Lj .
We investigate whether this enhancement can fur-
ther improve the performance of our models. After
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tokenizing all the documents under one class in
the training set by using the Bert Tokenizer based
on WordPiece (Wu et al., 2016), we calculate the
average tf-idf score of each subword and add the
top 5, 10, 15, or 20 as the supplemental label texts
to the corresponding class.

4 Experiments

4.1 Datasets
To evaluate the effectiveness of our method, we
performed experiments on six benchmark datasets.
As the original benchmarks do not include the de-
velopment set, we randomly created it from the
training set (after removing duplicate samples) for
each dataset in accordance with the class distribu-
tion of the original test set.

We introduce the original size of each dataset
below; see Table 1 for detailed statistics of our
training, development, and test sets. Except for
IMDb, all the datasets we used were originally
constructed by Zhang et al. (2015).

• AGNews A news article dataset with titles
and descriptions, containing 120,000 training
samples and 7600 for testing. Four classes
are included: World, Sports, Business, and
Science & Technology.

• DBPedia An ontology classification over 14
classes, containing 560,000 samples for train-
ing and 70,000 for testing.

• Yahoo! Answers Topic A dataset containing
1,400,000 training samples and 60,000 testing
samples with ten categories. Each sample
includes the question title, question content,
and best answer.

• IMDb (Maas et al., 2011) A binary sentiment
classification dataset containing 25,000 highly
polar movie reviews for training, and 25,000
for testing. Since its training and test sets are
originally of the same size, we merged them
together and randomly split it into approxi-
mately 8:1:1 for training, development, and
testing.

• Yelp Review Full A dataset extracted from
Yelp Dataset Challenge 2015 data by ran-
domly taking 130,000 training samples and
10,000 testing samples for each starred review
from 1 to 5. In total, there are 650,000 training
samples and 50,000 testing samples.

• Yelp Review Polarity A dataset also ex-
tracted from Yelp Dataset Challenge 2015
data but coarsely divided into two classes, con-
sidering 1 and 2 stars as negative, and 4 and 5
as positive. In total, there are 560,000 training
samples and 38,000 testing samples.

4.2 Settings

For both the baselines (BERT and LESA-BERT)
and our proposed methods, we used the pre-trained
uncased BERT-base model (Wolf et al., 2019),
which consists of 12 Transformer blocks (Vaswani
et al., 2017) with 12 self-attention heads and the
hidden size of 768. We set the learning rate to
2e-5 and the batch size to 24. The drop-out prob-
ability was kept at 0.1. For optimization, we used
AdamW (Loshchilov and Hutter, 2018) with ep-
silon of 1e-8.

The models were trained for five epochs for each
benchmark. At the end of each epoch, they were
evaluated on the development set, and the ones
with the highest accuracy were saved. We report
those models’ performance on the test set. The
training was done for AGNews and DBPedia on
2080Ti and for the rest on Titan RTX. See Table
1 for the maximum sentence length and warm-up
steps we assigned for each dataset. We decided the
max length based on the average length statistics
from Sun et al. (2019) to fully utilize the GPU
memory.

Note that we used adjectives “bad, poor, fair,
good, excellent”, representing the number of stars,
instead of numbers 1 to 5 for the basic label texts
in the Yelp Review Full dataset, since numbers are
used in various unrelated contexts, that may lead to
ambiguity.

We fixed the number of top-ranked subwords
added for each method on each dataset on the de-
velopment set. For example, Table 3 shows the
averaged results on the AGNews development set
for the three methods with top-5, 10, 15, and 20
words added. LESA-BERT (Si et al., 2020), w/
[SEP], and w/o [SEP] all reach the highest accu-
racy when five words were added, and so this was
their final configuration when tested. The compara-
tive experiments were also conducted on the other
five datasets (see Appendix B for details).

4.3 Experimental Results

In Table 2, we report the average performance with
three different random seeds (see Appendix B for
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Dataset Classes Type Train Dev. Test
Max

length
Warm-up

steps
AGNews 4 Topic 112,312 7,600 7,600 230 1,000
DBPedia 14 Topic 489,630 70,000 70,000 230 4,300

Yahoo 10 Topic 1,339,933 60,000 60,000 480 11,900
IMDb 2 Sentiment 39,576 4,800 4,800 480 350
Yelp F. 5 Sentiment 599,960 50,000 50,000 480 5,300
Yelp. P 2 Sentiment 521,985 38,000 38,000 480 4,600

Table 1: Statistics of six benchmarks. In each dataset, the development set is of the same size and class distribution
as the test set. Max length indicates the text length without label sentences: the total sentence length for w/ [SEP]
would be Max Length + C + 1, where C denotes the number of classes. As for w/o [SEP], the length would be
Max Length + C.

Model AGNews DBPedia Yahoo IMDb Yelp F. Yelp P.
BERT 94.456 99.123 75.534 94.667 68.334 97.071
LESA-BERT� 94.522 99.164 75.431 94.743 68.411 97.083
Ours w/ [SEP] 94.557 99.147 75.484 94.931 68.605 97.106
Ours w/o [SEP] 94.653 99.177* 75.494 94.875 68.651* 97.155
LESA-BERT� + tf-idf 94.561*(+5) 99.127 (+10) 75.557 (+15) 94.757 (+20) 68.245 (+10) 97.078 (+15)
Ours w/ [SEP] + tf-idf 94.697*(+5) 99.141 (+10) 75.589 (+15) 94.917 (+ 5 ) 68.367 (+20) 97.165 (+15)
Ours w/o [SEP] + tf-idf 94.886*(+5) 99.139 (+20) 75.628 (+15) 94.938 (+15) 68.252 (+15) 97.176 (+15)

Table 2: Model accuracy on the test set, in percentage. �We ran LESA-BERT using the authors’ implementation.
+tf-idf means top-ranked subwords with average tf-idf scores are added for each class as supplemental label texts,
and (+k) denotes their number. Bold indicates the best score for each dataset. * means the difference from BERT
is statistically significant using paired-bootstrap-resampling test with p<0.05.

No. of words +5 +10 +15 +20
LESA-BERT 94.956 94.903 94.912 94.903
Ours w/ [SEP] 94.860 94.812 94.807 94.802
Ours w/o [SEP] 94.916 94.785 94.912 94.846

Table 3: Model performance on the AGNews develop-
ment set with different numbers of supplemental sub-
words added.

detailed results). We find that fusing only original
label texts either with or without [SEP] yielded an
improvement over the baselines, except on Yahoo.
We assume this is because the original labels are
not discriminative enough for big datasets, and so
they may corrupt the input rather than enhance it,
that leads to the degradation in accuracy.

However, when the top-ranked words were
added, the performance on Yahoo was boosted to
exceed the baselines. We notice this improvement,
caused by adding supplemental words, took place
on most benchmarks. Please note that the added
words can sometimes contribute to the performance
improvement even for the baseline, LESA-BERT.

On the other hand, the performances of all meth-
ods dropped drastically on Yelp F.. We assume this
is because the top-ranked subwords with averaged

tf-idf scores may not be a good representative for
the granularity and polarity of emotions, while they
can be powerful enough for distinguishing between
topics. The enhancement helped IMDb and Yelp
P. but not Yelp F., though all are benchmarks for
sentiment analysis. In contrast to IMDb and Yelp
P., which have only positive and negative labels,
Yelp F. has inherent labels, decided by contexts,
and so the effect of the tf-idf-based enhancement
might be restricted on Yelp F. because the tf-idf
score represents only the importance of the words.

Note that w/o [SEP] is better than w/ [SEP] in
most cases. The Next Sentence Prediction (NSP)
task, used in BERT to learn sentence-level repre-
sentations, concatenates two natural language sen-
tences with a [SEP] token. On the other hand, when
we concatenate a label sequence with an input doc-
ument, the [SEP] token combines a non-natural lan-
guage sequence with a natural language sentence.
This difference may have caused the skewness be-
tween pre-training and fine-tuning in BERT, lead-
ing to the performance degradation. Thus, simply
adding a label sequence as a prefix, as in the w/o
[SEP] method, which provides information gain,
could yield a more stabilized improvement.
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Figure 2: t-SNE visualization of TCLS vectors and av-
eraged TLj

vectors over the Yelp F. test set.

Next, we used t-SNE (Maaten and Hinton, 2008)
to visualize the learned representations on a 2-
dimensional map, as shown in Figure 2. We visual-
ize the vectors learned from the w/o [SEP] model
for the Yelp F. test set. Each color represents a
different class. The point clouds are TCLS vec-
tors, and each point corresponds to a test sample.
The large dots with black circles are the averaged
vectors of TLj , which is the encoded embedding
of each label. Compared with the embedding of
[CLS], the label embeddings are more separated in
the vector space. This is presumably the reason that
the label embeddings can support classification.

5 Conclusion

We proposed a simple but effective method for fus-
ing label embeddings into BERT while utilizing
its inherent inputting structure and self-attention
mechanism, which leads to having significant im-
provements on benchmarks of relatively small and
medium sizes. The results from the experiments
adding subwords with top-ranked average tf-idf
scores as supplemental label texts demonstrated
that our method can generally improve the perfor-
mance as expected. As there may be more appro-
priate methods for constructing enhanced represen-
tations, we intend to explore this further in future
work. We will also examine different ways of un-
covering more potential of pre-trained attentional
models like BERT.
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Appendix

A. Original Label Texts

See Table 4 for the basic label texts for each dataset.
Except for Yelp F., all the texts are provided by the
original constructors of the datasets.

B. Detailed Experimental Results

Tables 5 - 15 are the averaged development and
detailed test results for each dataset, respectively.
Bold indicates the best score for each model on the
devlopment set and among the models on the test
set. * means the difference from BERT is statisti-
cally significant using paired-bootstrap-resampling
test with p<0.05.
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Dataset Classes Label Texts

AGNews 4
world, sports, business,
science technology

DBPedia 14

company, educational institution,
artist, athlete, office holder,
mean of transportation, building,
natural place, village, animal,
plant, album, film, written work

Yahoo 10

society culture,
science mathematics,
health, education reference,
computers internet, sports,
business finance,
entertainment music,
family relationships,
politics government

IMDb 2 negative, positive
Yelp F. 5 bad, poor, fair, good, excellent
Yelp P. 2 negative, positive

Table 4: Basic label texts of the six benchmarks.

AGNews seed 1 seed 2 seed 3 Mean
BERT 94.592 94.421 94.355 94.456
LESA-BERT� 94.671 94.382 94.513 94.522
Ours w/ [SEP] 94.605 94.474 94.592 94.557
Ours w/o [SEP] 94.697 94.645 94.618 94.653
LESA-BERT� + 5 94.487 94.605 94.592 94.561
Ours w/ [SEP] + 5 94.947* 94.658 94.487 94.697
Ours w/o [SEP] + 5 94.776 94.921* 94.961* 94.886*

Table 5: Test results of AGNews.

No. of words +5 +10 +15 +20
LESA-BERT� 99.083 99.098 99.086 99.092
Ours w/ [SEP] 99.082 99.091 99.085 99.081
Ours w/o [SEP] 99.090 99.081 99.092 99.094

Table 6: Averaged dev. results of DBPedia.

DBPedia seed 1 seed 2 seed 3 Mean
BERT 99.136 99.116 99.117 99.123
LESA-BERT� 99.144 99.184* 99.164* 99.164
Ours w/ [SEP] 99.149 99.133 99.159* 99.147
Ours w/o [SEP] 99.179 99.183* 99.170* 99.177*
LESA-BERT� + 10 99.114 99.127 99.139 99.127
Ours w/ [SEP] + 10 99.103 99.177* 99.144 99.141
Ours w/o [SEP] + 20 99.157 99.110 99.151* 99.139

Table 7: Test results of DBPedia.

No. of words +5 +10 +15 +20
LESA-BERT� 75.522 75.554 75.561 75.546
Ours w/ [SEP] 75.541 75.571 75.574 75.554
Ours w/o [SEP] 75.603 75.547 75.621 75.566

Table 8: Averaged dev. results of Yahoo.

Yahoo seed 1 seed 2 seed 3 Mean
BERT 75.637 75.397 75.568 75.534
LESA-BERT� 75.305 75.592* 75.397 75.431
Ours w/ [SEP] 75.470 75.552 75.430 75.484
Ours w/o [SEP] 75.482 75.543 75.458 75.494
LESA-BERT� + 15 75.717 75.478 75.477 75.557
Ours w/ [SEP] + 15 75.617 75.658* 75.492 75.589
Ours w/o [SEP] + 15 75.740 75.567* 75.576 75.628

Table 9: Test results of Yahoo.

No. of words +5 +10 +15 +20
LESA-BERT� 94.604 94.722 94.757 94.812
Ours w/ [SEP] 94.708 94.695 94.694 94.604
Ours w/o [SEP] 94.646 94.653 94.910 94.512

Table 10: Averaged dev. results of IMDb.

IMDb seed 1 seed 2 seed 3 Mean
BERT 94.708 94.438 94.854 94.667
LESA-BERT� 94.750 94.979* 94.500 94.743
Ours w/ [SEP] 94.583 95.292* 94.917 94.931
Ours w/o [SEP] 95.167* 94.646 94.813 94.875
LESA-BERT� + 20 94.813 94.771 94.688 94.757
Ours w/ [SEP] + 5 95.125* 94.917 94.708 94.917
Ours w/o [SEP] + 15 95.063 94.667 95.083 94.938

Table 11: Test results of IMDb.

No. of words +5 +10 +15 +20
LESA-BERT� 68.776 68.819 68.780 68.779
Ours w/ [SEP] 68.719 68.734 68.701 68.777
Ours w/o [SEP] 68.793 68.733 68.799 68.795

Table 12: Averaged dev. results of Yelp F.

Yelp F. seed 1 seed 2 seed 3 Mean
BERT 68.180 68.432 68.390 68.334
LESA-BERT� 68.570* 68.526 68.136 68.411
Ours w/ [SEP] 68.602* 68.600 68.612 68.605
Ours w/o [SEP] 68.638* 68.666 68.648* 68.651*
LESA-BERT� + 10 68.204 68.264 68.268 68.245
Ours w/ [SEP] + 20 68.300 68.392 68.408 68.367
Ours w/o [SEP] + 15 68.172 68.260 68.324 68.252

Table 13: Test results of Yelp F.

No. of words +5 +10 +15 +20
LESA-BERT� 97.157 97.164 97.191 97.169
Ours w/ [SEP] 97.143 97.181 97.193 97.169
Ours w/o [SEP] 97.168 97.151 97.228 97.181

Table 14: Averaged dev. results of Yelp P.

Yelp P. seed 1 seed 2 seed 3 Mean
BERT 97.084 97.037 97.092 97.071
LESA-BERT� 97.155 97.050 97.045 97.083
Ours w/ [SEP] 97.116 97.137 97.066 97.106
Ours w/o [SEP] 97.179 97.184* 97.103 97.155
LESA-BERT� + 15 97.082 97.129 97.024 97.078
Ours w/ [SEP] + 15 97.121 97.179* 97.195 97.165
Ours w/o [SEP] + 15 97.153 97.197* 97.179 97.176

Table 15: Test results of Yelp P.


