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Abstract

Topic models are effective in capturing the la-
tent semantics of large-scale textual data while
existing methods are normally designed and
evaluated on balanced corpora. However, it
contradicts the fact that general corpora in our
world are naturally long-tailed, and the long-
tailed bias can highly impair the topic model-
ing performance. Therefore, in this paper, we
propose a causal inference framework to ex-
plain and overcome the issues of topic mod-
eling on long-tailed corpora. In a neat and
elegant way, causal intervention is applied in
training to take out the influence brought by
the long-tailed bias. Extensive experiments on
manually constructed and naturally collected
datasets demonstrate that our model can miti-
gate the bias effect, greatly improve topic qual-
ity and better discover the hidden semantics on
the tail.

1 Introduction

Topic models are proposed to discover the under-
lying topics and semantic structures from unla-
belled text collections. Due to the effectiveness
and interpretability, topic models have been ap-
plied in various downstream tasks like information
retrieval (Wang et al., 2007), content summariza-
tion (Ma et al., 2012) and recommendation systems
(McAuley and Leskovec, 2013). One of the most
widely used topic models is Latent Dirichlet Al-
location (LDA) (Blei et al., 2003), a probabilistic
graphical model using the conjugate of Dirichlet
and Multinomial distribution and inferring the pa-
rameters with approximation methods(Griffiths and
Steyvers, 2004; Blei et al., 2017). Recently, some
popular neural topic models based on Variational
AutoEncoder (VAE) (Kingma and Welling, 2014;
Rezende et al., 2014) have been introduced, such
as Neural Variational Document Model (NVDM)
(Miao et al., 2016) and Product of Experts LDA

(ProdLDA) (Srivastava and Sutton, 2017). Com-
pared to probabilistic ones, they can easily carry
out the inference by gradient backpropagation.

However, these topic models are generally de-
signed and evaluated on balanced corpora, such
as the commonly used 20News (Lang, 1995) with
evenly distributed labels through which we can in-
fer that the latent topics are also evenly distributed.
It hence conflicts with the fact that natural text col-
lections are regularly long-tail distributed follow-
ing Zipf’s law (Reed, 2001), especially the textual
data on social network platforms(Zhang and Luo,
2019). More precisely, Figure 1 illustrates that in a
collected corpus, documents about some hot topics
are numerous (head topics), while the documents
about most topics are few (tail topics). Due to
this bias, similar to long-tailed classification tasks
where a classifier favors to predict an image as the
head classes (Kang et al., 2020; Zhou et al., 2020),
topic models on long-tailed corpora tend to reveal
the semantics of documents about head topics and
ignore the documents about tail topics to a great
extent. Namely, the discovered topics are mostly
about the latent head ones in the corpus. As a result,
their diversities are much impaired and incomplete
to represent the whole semantics of a corpus. Thus,
it is crucial to explore effective ways for long-tailed
topic modeling.

Different from other long-tailed tasks like image
classification or relation extraction, the key chal-
lenge of this problem lies in that topic modeling
is originally designed for unlabelled datasets, so
we have no access to classification labels to infer
the latent global topic distributions while design-
ing solutions1. Owing to this factor, we intend
not to introduce complicated modules conditioning

1Admittedly, there are supervised topic models (Mcauliffe
and Blei, 2007; Card et al., 2018), but the necessity of labels
will hugely narrow their application scopes. So, we concen-
trate on solving the issue without additional labels.
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on accessible labels, e.g., re-weighting (Mahajan
et al., 2018) or re-sampling (Khan et al., 2017; Lin
et al., 2017; Cui et al., 2019) approaches for other
long-tail problems.

To overcome this challenge, in this paper, we
present a Structural Causal Model (SCM) (Pearl
et al., 2016; Pearl and Mackenzie, 2018) to pre-
cisely explain how the long-tailed bias undermines
the topic modeling performance. Then, to remove
the bias effect, we propose an approach via the
causal intervention (Pearl et al., 2016) on topic
distributions and adopt the backdoor adjustment
(Pearl, 1995) to calculate the causality in the condi-
tion of no auxiliary information. Furthermore, we
introduce a novel neural model named as Decon-
founded Topic Model (DecTM) in the framework
of VAE with deconfounded training through an
approximation manner. Through comprehensive
experiments, we manifest that our new model can
mitigate the influence of the long-tailed bias and
produce high-quality topics that are more diverse
and better disclose the semantics of documents
about tail topics. The main contributions of this
paper can be concluded as follows:

1. We present a structural causal model to clar-
ify how the problems of topic modeling are
incurred by the long-tailed bias in detail;

2. We further propose a neat method to approxi-
mate the causal intervention for reducing bias
influence, depending on which a novel neural
topic is also introduced with deconfounded
training;

3. We validate our model on both manually-
constructed and extreme multi-label text clas-
sification datasets and demonstrate our model
is effective to alleviate the impact of bias and
greatly improve the topic quality compared to
both probabilistic and neural baseline models.

2 Related Work

Topic Modeling Probabilistic topic models can
date back to Probabilistic Latent Semantic Analy-
sis (PLSA) (Hofmann, 1999) and LDA (Blei et al.,
2003), derving numerous variants(Blei and Laf-
ferty, 2006; Yan et al., 2013; Wu and Li, 2019).
Previously, Wang et al. (2015) adapted LDA to
discover long-tail semantics from large-scale cor-
pora. Those models usually adopt Gibbs Sampling
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Figure 1: Illustration of topic entries assigned to docu-
ments in a long-tailed corpus.

(Griffiths and Steyvers, 2004) or Variational In-
ference (Blei et al., 2017) for parameter estima-
tions. Based on VAE (Kingma and Welling, 2014;
Rezende et al., 2014), neural topic models (Miao
et al., 2016; Srivastava and Sutton, 2017; Wu et al.,
2020a) are introduced. They are derivation-free
and can apply gradient backpropagation directly.
Nevertheless, these former works including proba-
bilistic and neural methods are normally evaluated
on balanced datasets. Since long-tail distributed
data are common in our natural world (Reed, 2001),
this inspires us to find out how these topic models
perform on long-tailed corpora and propose useful
ways to alleviate the long-tailed bias impact.

Causal Inference Causal inference (Pearl et al.,
2016) has been widely adopted in various fields
for years, like psychology, epidemiology, and
medicine (MacKinnon et al., 2007; Richiardi et al.,
2013), providing solutions to investigate the causa-
tion between research objects. Recently, the causal
inference has also increasingly attracted attention
in computer vision and NLP society for remov-
ing the biases in datasets (Tang et al., 2020; Wu
et al., 2020c) or providing counterfactual examples
(Zeng et al., 2020) in domain-specific applications.
In this paper, we propose to employ the causal in-
ference mechanism to investigate wherefores for
the issues of long-tailed topic modeling and pro-
pose a solution with deconfounded training via the
intervention to alleviate the bias effect.
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3 Method

In this section, we first explain how the long-tailed
bias affects topic modeling from the perspective of
causal inference, and then propose a novel model
to overcome this issue with deconfounded training
by the causal intervention.

3.1 SCM for Topic Modeling

First of all, we investigate the causal relationship
between the latent variables in a topic model with
a Structural Causal Model (SCM). SCMs are ex-
pressed visually by using directed acyclic graphs.
In the graph, vertices are random variables, and
directed edges represent direct causation from one
variable to another (Pearl et al., 2016). There is a
special vertex in the graph: confounder, a variable
that influences both correlated and independent
variables, creating a spurious statistical correla-
tion. For example, considering an interesting study
that chocolate consumption is statistically related
to the number of Nobel prizes of a country (Dab-
lander, 2020). Is it justified to argue that people
can get Nobel prizes if they eat more chocolate?
Common sense intuitively tells us this assertion
is inaccurate. We can draw a causal graph to de-
tail it: chocolate consumption ← economy →
number of Nobel prizes, the chocolate consump-
tion is usually higher in a developed country with
good economy, and the number of Nobel prizes
is also larger since the citizens’ education level is
higher in this country. Therefore, the economy acts
as a confounder that creates a spurious correlation
between chocolate consumption and the number of
Nobel prizes.

Similar to the above example, we build a SCM
shown in Figure 2a to describe how a biased cor-
pus influences the text generation process of topic
modeling. In the graph, C means the unobserved
confounding bias in a long-tailed corpus. We note
the vocabulary size is V and set K topic entries
(the topic number is K) which means the model
needs to discover K latent topics. In the setting
of topic modeling, a topic entry k is interpreted
as the related words and represented with a word
distribution βk ∈ RV . Then, the word distribu-
tions of all topic entries (topic-word distribution
matrix) is β = (β1, ...,βk, ...,βK) ∈ RV×K . A
document x is assigned with various topic entries
with each probability as θk, so the distribution
over all topic entries (topic distribution of x) is
θ = (θ1, ..., θk, ..., θK)T ∈ RK . Then, x is gener-
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Figure 2: The structural causal model of topic model-
ing. (a) Complete SCM without interventions. (b) Do
intervention on the topic distribution θ.

ated with its topic distribution θ and the topic-word
distribution matrix β of the whole corpus. The
paths in Figure 2a can be specifically interpreted as
follows:

• C → θ: This path says that the topic distribu-
tions are trained under bias. If there is no bias,
different topic entries are ideally assigned to
documents about various topics, and the in-
ferred topic distributions of these documents
are also different. However, in a long-tailed
corpus with bias, the topic distributions of doc-
uments about different topics could be similar.
As shown in Figure 1, since documents about
the head topics are the absolute majority, most
of the topic entries are assigned to them2. In
this case, for a document about tail topics, its
assigned topic entries probably are also as-
signed to the documents about head topics, as
a result of which, its inferred topic distribution
becomes similar to the topic distributions of
some documents about head topics.

• C → β → x: This link denotes the topic-
word distribution matrix β is trained under
the bias and is used to generate the document
x. Due to the long-tailed bias, the generated
x tends to contain words in the documents
about head topics.

• θ ← C → β → x: Because of the con-
founder C, the inferred topic distribution of
a document about tail topics could be similar
to the topic distributions of some documents
about head topics, and the generated docu-
ments of these similar topic distributions tend
to include words in the documents about head
topics instead of tail topics. Therefore, this

2If the documents about tail topics are few enough to be ig-
norable, all the topic entries will be assigned to the documents
about head topics.
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Figure 3: The magnitude of βi∗ obtained from
ProdLDA sorted by word frequency.

backdoor path via C causes the spurious cor-
relation between the topic distribution of a
document about tail topics and the words in
the documents about head topics.

In consequence, this spurious correlation through
the confounder incurs that the discovered topics
from documents about tail topics are mixed by the
words of latent head topics. When the bias in the
corpus gets severer, the discovered topics are even
totally occupied by these words. Namely, topic
models tend to ignore the semantics of the doc-
uments about tail topics and cannot discover the
latent tail topics of a corpus.

In the above discussion, we clarify how the bias
leads to the problems of long-tailed topic modeling
with the presented SCM. In the next section, we
propose a neat method to solve this issue without
any auxiliary information.

3.2 Intervention on Topic Distribution

To remove the spurious correlation (deconfound),
we propose to do causal intervention via do-
operator (Pearl et al., 2016). Taking the chocolate
and Nobel prizes for example again, intervening on
the chocolate consumption means we fix its value
through which we curtail the natural tendency of
it to vary in response to the economy in nature.
This amounts to remove the edges directed into
the chocolate consumption. For example, if we
were to close all chocolate factories, denoted as
do(chocolate consumption = 0), we will find the
causality between the chocolate consumption and
the number of Nobel prizes.

Similarly, we do intervention on the topic distri-
bution θ to compute the causality of θ on x, i.e.,

p(x|do(θ)). As shown in Figure 2b, doing inter-
vention on θ means cutting off the edge C → θ so
thatC cannot affect θ. But it is difficult to actually
intervene variables (like closing all chocolate facto-
ries), so we utilize the backdoor adjustment (Pearl,
1995). The variable β meets the backdoor criterion
and blocks the backdoor path θ ← C → β → x.
Following the backdoor adjustment, we use Inverse
probability Weighting (Pearl et al., 2016) as

p(x|do(θ))

=
∑
β

p(x|do(θ),β)p(β|do(θ)) (1)

=
∑
β

p(x|θ,β)p(β) (2)

=
∑
β

p(x,θ,β)

p(θ|β)
(3)

In Figure 2b, all of θ and x association flows along
the directed path from θ to x since there cannot
be any backdoor paths because θ has no incom-
ing edges, so p(x|do(θ),β) = p(x|θ,β). Also,
p(β|do(θ)) = p(β|θ) since there’s no other edges
from θ to β except through the collider x.

But this equation is intractable, we need to ap-
proximate it. To find a proper way, we bury in mind
that topics are interpreted as word distributions, so
long-tail distributed topics can also be seen as long-
tail distributed words. If we treat these words as
“labels”, then the generative process of a document
is roughly predicting the probability under each
“label”. This inspires us to discover the relation
between long-tailed topics and long-tailed classifi-
cation tasks (Kang et al., 2020; Tang et al., 2020).
Similar to these tasks, as shown in Figure 3, we ob-
serve that the magnitudes of topic distributions of
words, i.e., βi∗ for word i, gradually decrease along
with the word frequency. Intuitively, the magnitude
of βi∗ means the “correlation score” between word
i and all topics; therefore, this phenomenon may
be because most inferred topics tend to relate to
the words in documents about the head topics as
mentioned before. Due to this finding, we propose
an approximation method following the propen-
sity score modeling (Rosenbaum and Rubin, 1983;
Austin, 2011):

p(x|do(θ)) ≈
∏
i

βi∗θ

‖βi∗‖2‖θ‖2
(4)

where i refers to a word in x and we also empiri-
cally add the magnitude of θ. Here, the denomina-
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tor works as a normalizer that balances the magni-
tude of the variables: βi∗ and θ for approximating
the intervention probability.

3.3 Proposed Model

In this section, we propose a neural topic model
for long-tailed corpora with deconfounded training
based on the aforementioned intervention method,
named as Deconfounded Topic Model (DecTM).
Our network architecture is under the basic frame-
work of VAE (Kingma and Welling, 2014; Rezende
et al., 2014) with an encoder and a deconfounded
decoder.

3.3.1 Encoder
The encoder transforms a text x into its topic dis-
tribution θ. Following the setting of Miao et al.
(2016), we take the bag-of-words (BoW) assump-
tion that ignores the word orders since topic models
normally leverage word co-occurrences for topic in-
ference. Inputted the BoW representation of x, we
first obtain its intermediate representation π with
a Multi-Layer Perceptron (MLP). Based on π, we
then compute q(r|x), the variational distribution
of the latent representation r. Since the prior dis-
tribution p(r) is assumed to be a Logistic Normal
distribution for approximating the Dirichlet distri-
bution (Srivastava and Sutton, 2017), we model the
q(r|x) as N (µ,Σ). The mean µ and variance Σ
are calculated as

µ =Wµπ + bµ (5)

Σ = diag(WΣπ + bΣ) (6)

where Wµ, WΣ, bµ and bΣ are weight matrices
and biases respectively , and diag(·) means con-
verting a vector to a diagonal matrix. Later, to
reduce the gradient variance, we adopt the repa-
rameterization trick (Kingma and Welling, 2014)
to sample r as

r = µ+ Σ1/2ε, ε ∼ N (0, I). (7)

Next, r is normalized with a softmax function to
get the topic distribution θ as

θ = softmax(r). (8)

3.3.2 Deconfounded Decoder
After getting the topic distribution of the input text,
we then feed it to the proposed deconfounded de-
coder for reconstruction. According to the method

in Equation (4), the objective function of DecTM
can be written as

L(x)=KL (q(r|x)‖p(r))

− Eε∼N (0,I)

[
N∑
i=1

log
βi∗θ

‖βi∗‖2‖θ‖2

]
(9)

where the first term is the Kullback-Leibler (KL)
divergence between the posterior and prior distri-
bution. It can be computed with the analytical
solution for two Normal distributions. The sec-
ond term is the reconstruction error between the
input and output text. Different from normal neu-
ral topic models (Miao et al., 2016; Srivastava and
Sutton, 2017), the deconfounded decoder in our
model employs the approximated probability for
causal intervention on θ to weaken the long-tailed
bias. Note that our model can be directly applied
to naturally collected corpora since no additional
auxiliary information is necessary for our model.

4 Experiment Setup

4.1 Datasets

Unfortunately, common datasets for topic model-
ing are almost all balanced, so we manually con-
struct the long-tailed variants of them by repeat-
ing and deleting documents according to the given
labels, making them follow a long-tailed distribu-
tion. Through the distribution of labels, we can
roughly assume the latent topics are long-tailed
distributed. In this way, we form the long-tailed
versions (-LT) of 20News (Lang, 1995)3 and Yahoo
Answer4, called 20News-LT and Yahoo Answer-LT
respectively. Moreover, to better evaluate the per-
formance of long-tailed topic modeling, we adopt
the datasets for eXtreme Multi-label Text Classifi-
cation (XMTC) (You et al., 2019), a task to predict
the most relevant multiple labels for texts from
an extremely large-scale label set. The label set
includes hundreds and thousands, even millions
of labels, and most are tail labels with very few
positive samples. These plentiful labels can be
naturally interpreted as the latent topics of docu-
ments; thus, we can evaluate the proposed model
on these long-tailed distributed datasets. We con-
ducted experiments on the the subsets of standard
benchmark XMTC datasets Amazon-670K, Wiki-
500K, AmazonCat-13K and Amazon-3M (Bhatia

3http://qwone.com/˜jason/20Newsgroups
4https://answers.yahoo.com

http://qwone.com/~jason/20Newsgroups
https://answers.yahoo.com
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Datasets #docs
Average

#labels
Vocabulary Average #labels Average #docs

length size per doc per label

20News-LT 11,314 73.5 20 1,984 - -
Yahoo Answer-LT 99,806 31.0 10 4,738 - -
Wiki-500K 100,000 504.0 175,206 5,000 6.0 3.4
Amazon-670K 100,000 90.0 333,863 5,000 2.0 1.6
AmazonCat-13K 200,000 78.8 11,096 5,000 5.0 91.0
Amazon-3M 300,000 40.7 1,917,999 5,000 13.0 5.6

Table 1: Statistics of datasets.

et al., 2016)5.
For all datasets, we conduct the following steps

for preprocessing: (1) tokenize texts and lowercase
words; (2) remove stop words and illegal charac-
ters; (3) remove low-frequency words. The statis-
tics of preprocessed datasets are reported in Table 1.
It is worth noting that although labels are provided
in these datasets, they are not used by our model.

4.2 Baseline Models

We take both probabilistic and neural topic mod-
els as baselines. For probabilistic models, we
consider the widely used LDA (Blei et al., 2003)
with python-lda6 package for topic inference. For
neural topic models, we use NVDM (Miao et al.,
2016)7, ProdLDA (Srivastava and Sutton, 2017)8

and Scholar (Card et al., 2018)9. Scholar is an ex-
tension of ProdLDA via optionally incorporating
metadata of documents like sentiments.

5 Experiment Results

5.1 Topic Quality Analysis

5.1.1 Evaluation Metrics
Following Nan et al. (2019) and Wu et al. (2020b),
we evaluate the topic quality concerning two as-
pects, topic coherence and diversity. Topic coher-
ence means that the words in the discovered topics
are supposed to be as coherent as possible instead
of irrelevant ones, and topic diversity means that
topics should differ from each other instead of be-
ing similar ones.

Topic Coherence For topic coherence, we em-
ploy CV (Röder et al., 2015), an improved variant

5http://manikvarma.org/downloads/XC/
XMLRepository.html

6https://github.com/lda-project/lda
7https://github.com/ysmiao/nvdm
8https://github.com/akashgit/

autoencoding_vi_for_topic_models
9https://github.com/dallascard/scholar

of the Normalized Pointwise Mutual Information
(NPMI) (Bouma, 2009; Chang et al., 2009; New-
man et al., 2010). Its detailed calculation can be
found in Wu et al. (2020b). We need to mention
that given a topic z and its top T probable words
(x1, x2, ..., xT ), the NPMI of (xi, xj) used in the
CV computation is defined as

NPMI(xi, xj) =
log

p(xi,xj)+ε
p(xi)p(xj)

− log(p(xi, xj) + ε)
(10)

where p(xi) is the occurrence probability of word
xi and p(xi, xj) the co-occurrence probability of
(xi, xj). These probabilities are estimated in a ref-
erence corpus. To exhaustively assess the topic co-
herence performance of long-tailed topic modeling,
we use three kinds of CV scores with the probabili-
ties estimated in different reference corpora. First,
we adopt the public tool10 which uses Wikipedia
documents as the external reference corpus (-E),
so it is named as CV -E. Then, we directly use the
internal training documents (-I) as the reference
corpus, named as CV -I. However, since documents
about head topics occupy the main portion of a
long-tailed corpus, previous CV -E and CV -I prob-
ably are insufficient to appraise the performance
on the documents about tail topics. To this end, we
heuristically introduce CV -T that employs the doc-
uments including the tail labels (-T) provided by
the datasets instead of all the training documents as
the reference corpus, so it can assess whether the
discovered topics can reveal the hidden semantics
of documents about tail topics, i.e., discover the
tail topics.

Topic Diversity For topic diversity evaluation,
we employ the Topic Unique (TU ) (Nan et al.,

10https://github.com/dice-group/
Palmetto

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
https://github.com/lda-project/lda
https://github.com/ysmiao/nvdm
https://github.com/akashgit/autoencoding_vi_for_topic_models
https://github.com/akashgit/autoencoding_vi_for_topic_models
https://github.com/dallascard/scholar
https://github.com/dice-group/Palmetto
https://github.com/dice-group/Palmetto
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Models
20News-LT Yahoo Answer-LT Wiki-500K

TU CV -E CV -I CV -T TQ TU CV -E CV -I CV -T TQ TU CV -E CV -I CV -T TQ

LDA 0.469 0.318 0.712 0.378 0.220 0.531 0.335 0.408 0.384 0.199 0.759 0.426 0.680 0.669 0.449
NVDM 0.849 0.315 0.367 0.492 0.332 0.934 0.352 0.440 0.549 0.417 0.836 0.397 0.429 0.372 0.334
ProdLDA 0.743 0.321 0.521 0.543 0.343 0.830 0.383 0.434 0.516 0.369 0.889 0.438 0.698 0.653 0.530
Scholar 0.787 0.321 0.537 0.528 0.364 0.876 0.380 0.445 0.519 0.392 0.874 0.437 0.682 0.633 0.510
DecTM 0.937 0.324 0.543 0.554 0.443 0.948 0.381 0.516 0.573 0.464 0.979 0.437 0.754 0.716 0.622

Models
Amazon-670K AmazonCat-13K Amazon-3M

TU CV -E CV -I CV -T TQ TU CV -E CV -I CV -T TQ TU CV -E CV -I CV -T TQ

LDA 0.752 0.387 0.601 0.566 0.390 0.722 0.385 0.616 0.585 0.382 0.746 0.368 0.692 0.624 0.418
NVDM 0.873 0.391 0.338 0.366 0.319 0.881 0.403 0.392 0.405 0.352 0.889 0.433 0.425 0.487 0.399
ProdLDA 0.869 0.424 0.606 0.501 0.443 0.893 0.430 0.641 0.531 0.477 0.925 0.442 0.636 0.498 0.486
Scholar 0.874 0.427 0.607 0.502 0.449 0.886 0.428 0.644 0.540 0.476 0.908 0.445 0.614 0.508 0.474
DecTM 0.987 0.404 0.672 0.571 0.542 0.991 0.406 0.702 0.590 0.561 0.991 0.405 0.701 0.530 0.541

Table 2: Topic quality results concerning topic coherence and diversity. The best in each column is in bold.

2019) defined as

TU(z) =
1

T

T∑
i=1

1

cnt(xi)
(11)

where cnt(xi) is the total number of times that
word xi appears in the top T words of all topics.
Accordingly, TU ranges from 1/K to 1, and a
higher TU score means topics are more diverse
since fewer words are repeated across all.

Comprehensive Evaluation It is necessary to
mention that if the topic coherence performance of
a model remains about the same and the diversity
gets higher, it means the overall topic quality is
also improved since it can unearth more various
semantics of documents. To provide a forthright
and comprehensive evaluation of both coherence
and diversity performance, following Dieng et al.
(2019), we propose Topic Quality (TQ) that com-
bines CV and TU as

TQ = TU × 1

3
(CV -E + CV -I + CV -T) (12)

which is the product of TU and the average of
three different CV scores. Thus, TQ can provide
a direct comparison of the overall topic quality
performance.

5.1.2 Results Analysis
Table 2 reports the topic quality results concern-
ing different metrics of the top 15 words with
the topic number K = 50. At first, we notice
that CV -E scores of DecTM are the highest on
20News-LT and are very close to the best on Ya-
hoo Answer-LT and Wiki-500K. Although CV -E
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Figure 4: TU and average CV scores on Wiki-500K
under different topic numbers.

scores of some baseline models are higher on other
datasets, DecTM stably outperforms them in terms
of TU by a large margin, and the CV -I scores of
DecTM are also mostly better. This implies that
baseline models are disposed to generate repeti-
tive topics because of the bias of these long-tailed
corpora, while the topics of our DecTM are more
diverse. Therefore, despite thatCV -E of some base-
lines are higher, their lower diversity performance
indicates that their yielded topics are redundant.
More significantly, DecTM commonly surpasses
baseline models in terms ofCV -T, which shows the
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Figure 5: Topic quality performance (TQ) under different topic numbers.

discovered topics can preferably reflect the seman-
tics of documents about tail topics; thus, the pro-
duced topics of DecTM are more complete. These
arguments are further illustrated with topic exam-
ples in Section 5.3. At last, we find that DecTM
achieves the highest TQ scores on all datasets,
showing the overall performance of our model is
fairly better.

From the above experimental results, we observe
the problems of the long-tailed topic modeling for-
merly mentioned in Section 1 and Section 3.1, that
the performance of existing topic models, espe-
cially topic diversity, is deteriorated on account of
the bias. But with the help of the deconfounded de-
coder, our proposed method can alleviate the effect
of the bias and hugely improve the topic diversity
while remain good coherence performance with a
better ability to expose the semantics of documents
about tail topics.

5.2 Impact of Topic Number

To investigate how performance varies concerning
the topic number, we report the TU and the aver-
age CV (Avg CV ) scores defined in Equation (12)
under topic number K ranging from 50 to 100 on
Wiki-500K in Figure 4. We can see that the AvgCV
of DecTM is relatively better in Figure 4a. Besides,
as shown in Figure 4b, TU scores of all models
gradually decline when the topic number gets big-
ger, but the performance of DecTM is constantly
higher and decreases slower. The reason is that

those baseline models tend to focus on documents
about head topics which are inadequate to support
larger topic numbers, while DecTM can also dis-
cover semantics of documents about tail topics.
Furthermore, Figure 5 presents the TQ with differ-
ent topic numbers of all datasets. We can observe
that whether on manually constructed or XMTC
datasets, our model DecTM outperforms baseline
models under different topic numbers. These ex-
periments demonstrate that the performance of our
model is relatively stable.

5.3 Discovered Topic Examples

To further illustrate the topic quality performance
of different models, Table 3 reports some discov-
ered topic examples. As shown by the compar-
ison of topic diversity in Section 5.1.2, we can
see baseline models produce some topics including
repeated words. To be more specific, LDA gen-
erates topics with repetitive words like “subject’,
“organization” from 20News-LT and “book”, “au-
thor” from Amazon-3M. Similar topics about “new-
castle”, “orchestra” and “hockey” are yielded by
NVDM, ProdLDA, and Scholar respectively. We
also notice that NVDM, ProdLDA and Scholar all
yield several same topics about “census” from Wiki-
500K. These topics are coherent indeed, but they
can trickily improve the CV scores and are redun-
dant in the downstream applications. On the con-
trary, we find only one coherent topic generated by
DecTM corresponding to the aforementioned ones.
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Models Topic examples

LDA

hp nasa organization subject article new re
subject organization access good pc support
subject problem organization file world get
scsi organization subject mark university ide
thanks organization subject pt scott imagine
life book god church author christian spiritual
book students guide text chapter reading
book story love read author stories characters
books author lives writing new years book
guide book design new using use techniques

NVDM

galaxy texas newcastle sky austin theta madrid
edinburgh harbour newcastle fortress tunnel
edwards leeds birmingham newcastle
townships cdp islander nonfamilies
couples females males husband nonfamilies

ProdLDA

orchestra hits songs symphony unreleased song
concert orchestra opera biography symphony
translation symphony subtitles orchestra mozart
median capita nonfamilies residing household
nonfamilies households householder residing
residing township householder nonfamilies
quot bmw yamaha honda macbook laptop

Scholar

guitarist pianist composer hockey player
montreal nhl provincial provinces hockey
championships finals medal olympics hockey
householder nonfamilies households residing
nonfamilies residing households householder
township norway nonfamilies residing
demographics median census hamlet town

DecTM

median residing nonfamilies household
tires tire steering truck motorcycle honda
wales welsh yorkshire scotland glasgow
violin orchestra symphony concerto piano
nonfiction copies manga novels bestseller
championships mens olympic competed
ink inkjet paper printer printers cartridges
episodes episode season vol inspector series
europe russian paris germany german spain

Table 3: Topic examples. Repeated words are under-
lined.

What is more, DecTM also discovers some latent
topics like “printer”, “series” and “europe” while
these cannot be found by baseline models, which
could verify the superior CV -T performance of our
model. These topic examples qualitatively show
the overall topic quality performance of DecTM is
adequately preferable.

6 Conclusion

In this paper, for discovering the topics in long-
tailed corpora, we present a causal inference model

to describe how the bias influences topic mod-
eling, and to reduce the impact of the bias, we
then propose a causal intervention method for de-
confounding, relying on which we introduce the
Deconfounded Topic Model (DecTM) with a de-
confounded decoder. Comprehensive experiments
demonstrate that our model can produce topics with
better quality and mitigate the effect of long-tailed
bias.
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