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Abstract

Cross-lingual pre-training aims at providing
effective prior representations for the inputs
from multiple languages. With the model-
ing of bidirectional contexts, recently preva-
lent language modeling approaches such as
XLM achieve better performance than tradi-
tional methods based on embedding align-
ment, which strives to assign similar vector
representations to semantic-equivalent units.
However, such approaches like XLM cap-
ture cross-lingual information based solely
on shared BPE vocabulary, resulting in the
absence of fine-grained supervision induced
by embedding alignment. Inheriting the ad-
vantages of the above two paradigms, this
work presents a multi-granularity contrasting
framework, namely MGC, to learn language-
universal representations. While predicting
the masked words based on bidirectional con-
texts, the proposal also encodes semantic
equivalents from different languages into sim-
ilar representations to introduce more fine-
grained and explicit cross-lingual information.
Two effective contrasting strategies are further
proposed, which can be built upon semantic
units of multiple granularities covering words,
span, and sentences. Extensive experiments
demonstrate that our approach can achieve sig-
nificant performance gains in various down-
stream tasks, including machine translation
and cross-lingual language understanding.

1 Introduction

Cross-lingual pre-training (Lample and Conneau,
2019) has achieved striking success in the field
of natural language processing. By providing ef-
fective prior representations for the inputs from
different languages, it has boosted performance on
various downstream tasks such as machine transla-
tion and cross-lingual language understanding.

Early efforts regarding cross-lingual pre-training
mainly focus on embedding alignment (Mikolov

et al., 2013b; Lample et al., 2018), which is tar-
geted at the assignment of similar vector repre-
sentations to semantic-equivalent units (e.g., the
parallel bilingual word or sentence pairs). For in-
stance, Mikolov et al. (2013b) attempt to project
pre-trained monolingual word embeddings from
two languages into a common semantic space with
a simple linear transformation, so that parallel bilin-
gual words share the same representation. This al-
lows the introduction of explicit fine-grained super-
vision to guarantee the representational similarity
of semantic equivalents, but neglects the modeling
of bidirectional contexts. Going a step further, re-
cently prevalent approaches of language modeling
such as XLM (Lample and Conneau, 2019) remedy
this by predicting the masked tokens based on bidi-
rectional contexts (Devlin et al., 2019), and also
benefit from larger model capacity (Vaswani et al.,
2017). However, the cross-lingual information
captured by these language modeling approaches
comes solely from the shared BPE vocabulary (Sen-
nrich et al., 2016), resulting in the absence of more
fine-grained explicit supervision induced by em-
bedding alignment.

In light of the pros and cons of the above two
paradigms, we propose a multi-granularity con-
trasting (MGC) framework for cross-lingual pre-
training. In addition to modeling context bidirec-
tionality with the widely used masked language
modeling (MLM) (Devlin et al., 2019), our ap-
proach draws upon contrastive learning (Gutmann
and Hyvärinen, 2010) to introduce more fine-
grained cross-lingual alignment information. The
core idea is to enhance the consistency between
representations of semantic equivalents (e.g., the
aligned word pairs such as “cat” in English and
“chat” in French). To this end, we propose two
effective contrasting strategies: hard contrasting
which constructs pseudo-parallel bilingual word
pairs via external word aligner (Dyer et al., 2013),
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and soft contrasting which employs multi-head at-
tention (Vaswani et al., 2017) to provide posterior
approximation for the representations of the de-
sired semantic equivalents. Considering the inher-
ent multi-granularity of natural language expres-
sions, we build the proposed contrasting framework
upon semantic units of various granularities (in-
cluding word, span, and sentence) to further enrich
cross-lingual information and enhance the model’s
capability of encoding multi-granularity represen-
tations.

We conduct experiments on a variety of down-
stream scenarios, including multiple machine trans-
lation and cross-lingual language understanding
tasks. Comprehensive experimental results demon-
strate that our proposed approach can achieve sig-
nificant performance gains over baselines. To be
more specific, our MGC raises the average accu-
racy of our implemented XLM-R (Conneau et al.,
2019) from 74.4 to 76.0 on XNLI under the setting
of cross-lingual transfer and also surpasses various
baselines on representative translation tasks such
as WMT14 EN-DE and EN-FR.

2 Methodology

In order to introduce more fine-grained and ex-
plicit cross-lingual supervision, we propose a multi-
granularity contrasting (MGC) framework to learn
language-universal representations. We first elabo-
rate on the proposed approach based on word-level
contrasting, and then extend it to span-level and
sentence-level to further enrich cross-lingual infor-
mation.

2.1 Overview

We denote a pair of parallel bilingual instance
as (x,y), where x = (x1, · · · , xm) and y =
(y1, · · · , yn) refer to the source and target sentence,
respectively. Then, the transformer (Vaswani et al.,
2017) encodes x to obtain its hidden representa-
tions hx = (hx1 , · · · , hxm). The hidden repre-
sentations hy = (hy1 , · · · , hyn) of y can be ob-
tained in the same way. In order to introduce more
fine-grained and explicit cross-lingual supervision
similar to embedding alignment, we expect the
semantic-equivalent units (e.g., “cat” in English
and “chat” in French) from different languages to
exhibit similar vector representations. Meanwhile,
the representations of units with different seman-
tics (e.g., “cat” in English and “car” in English or
“voiture” in French) should be distinguished from

each other to capture their discriminative specific
information.

Motivated by this, we employ contrastive learn-
ing (Gutmann and Hyvärinen, 2010) to model such
training objectives. Without loss of generality, we
elaborate on our proposed approach with the units
in the source language as anchors. Formally, we use
u to represent the representation of one unit (e.g.,
“cat” in English) in x. The representation of its
corresponding semantic equivalent (e.g., “chat” in
French) in y is denoted as v+. The set of negative
representations exhibiting different semantic with u
is denoted as v− = {v−1 , · · · , v

−
k }, where k is the

number of negative representations. Then, the con-
trastive loss for the representation tuple (u, v+,v−)
can be defined as:

L(u, v+,v−) = −log

(
exp(u · v+/τ)

Z(u)

)
(1)

where Z(u) = exp(u·v+/τ)+
∑

v− exp(u·v−/τ)
is the normalization factor and τ is the temperature
controlling the concentration level of the sample
distribution. The above equation corresponds to
the negative log-likelihood loss of a softmax-based
classifier measuring semantic similarity by the dot
product. The classifier treats each unit as a dis-
tinct class, and aims at classifying u to the class
of its semantic equivalent v+ and vice versa. By
maximizing the consistency between the represen-
tations of semantic equivalents with such a training
objective, the pre-trained models are encouraged
to introduce more fine-grained explicit alignment
supervision, thereby enhancing their capability of
learning language-invariant representations. Mean-
while, the representations of units exhibiting differ-
ent semantics are penalized to be kept distinguished
from each other, so that the model is equipped with
the ability to capture specific features of the source
inputs.

2.2 Word-Level Contrasting
The word-level contrasting strives to integrate the
word-alignment information contained in parallel
bilingual instance (x,y). However, an intractable
challenge is that ideal semantic-equivalent word
pairs tend to be unavailable in practice. To rem-
edy this, here we propose two effective solutions:
hard contrasting and soft contrasting, detailed as
follows.

Hard contrasting The hard contrasting aims at
constructing pseudo-parallel bilingual word pairs
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via an external word aligner. Specifically, for each
word x in the source sentence x, its aligned word
in y is defined as:

y∗ ≈ ŷ = argmax
y∈y

aligner(y|x) (2)

where aligner(·|·) denotes the alignment proba-
bility that can be computed by the word aligners
such as fast align (Dyer et al., 2013). Consider-
ing that there exists no semantic equivalent for
some words (e.g., “the” in English), we construct
the semantic-equivalent word sets Nword(x,y) as
mutually aligned word pairs in (x,y). For each
aligned word pair (x, y) ∈ Nword(x,y), the repre-
sentations (u, v+,v−) in Eq. (1) can be computed
as: 

u = `2(hx)

v+ = `2(hy)

v− =
{
`2(hz)

∣∣z ∈ y\y
} (3)

where `2 represents `2-normalization and y\y de-
notes words in y other than the word y. Finally,
the word-level hard contrasting loss for the source
sentence x is formalized as:

Lword(x) =
∑

(x,y)∈Nword(x,y)

L(u, v+,v−) (4)

The loss Lword(y) for the target sentence y can be
computed in a similar way by swapping (x,y) to
(y,x). Due to space limitations, here we omit the
related details.

Soft contrasting Due to the strict requirements
on the quality of constructed pseudo-parallel bilin-
gual word pairs, hard contrasting is prone to suf-
fer from potential error propagation induced by
external word aligners. In addition, some source
words may correspond to multiple target words,
which conflicts with the strict one-to-one alignment
of hard contrasting. To tackle the above issues,
we propose soft contrasting, aiming at learning
word alignment implicitly and jointly to approxi-
mate semantic equivalents via the attention mecha-
nism (Vaswani et al., 2017). Specifically, for each
word x in the source sentence x, the aggregated
representation MHA(hx,hy) can be obtained by
performing multi-head attention1 with hx serving
as the query and hy serving as the keys/values.
Since multi-head attention naturally assign larger

1The semantic similarity between different words from
two languages can also be calculated by other approaches
such as bilinear attention.

weights to the words in y that are aligned to x,
MHA(hx,hy) can be regarded as an approxima-
tion of the representation of semantic equivalent
of x. Therefore, the representations (u, v+,v−) in
Eq. (1) can be defined as:

u = `2(hx)

v+ = `2
(
MHA(hx,hy)

)
v− =

{
`2
(
MHA(hz,hy)

)∣∣z ∈ x\x
} (5)

where x\x refers to the remaining words in x ex-
cept x. Soft contrasting not only alleviates the
dependence on external word aligners, but also
frees the model from the limitations of one-to-one
alignment. Additionally, by maximizing the seman-
tic consistency between hx and MHA(hx,hy), the
model is encouraged to learn word alignment in an
implicit manner, introducing richer cross-lingual
information.

2.3 Span-Level Contrasting
Previous work (Joshi et al., 2019) has demonstrated
the superiority of span-level representations over
word-level (Devlin et al., 2019) representations due
to its strength in language understanding and rea-
soning. Therefore, we also perform contrasting
based on semantic-equivalent spans. Since span
gets rid of the limitation that the semantic equiv-
alents of the two languages must share the same
number of words, here we focus on the application
of hard contrasting. To be specific, given the bilin-
gual instance (x,y), we induce the phrase table
via statistical machine translation tools to obtain
span-level semantic equivalents Nspan(x,y). For
each aligned span pair (x̄, ȳ) ∈ Nspan(x,y) where
x̄ ⊂ x is a span of x and ȳ ⊂ y is a span of y,
the representations (u, v+,v−) in Eq. (1) can be
formulated as:

u = `2
(
MP(hx̄)

)
v+ = `2

(
MP(hȳ)

)
v− =

{
`2
(
MP(hz̄)

)∣∣z̄ ∈ y\ȳ
} (6)

where MP(·) represents the mean-pooling layer2

employed to aggregate all hidden representations of
multiple words in a span. hx̄ = (hx̄1 , · · · , hx̄l

) are
hidden representations of span x̄ = (x̄1, · · · , x̄l)
and similarly for hȳ. The span-level contrastive
loss of a given bilingual sentence pair (x,y) is

2Other similar aggregation layers such as max-pooling or
attentive-pooling can also be implemented.
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defined as the sum of the losses corresponding to
all spans (x̄, ȳ) in Nspan(x,y), whose calculation
is similar to Eq. (4).

2.4 Sentence-Level Contrasting
In order to improve the quality of learned sentence
embeddings, we also perform sentence-level con-
trastive learning to obtain the global supervision
signals aggregating all token representations of the
entire source input. Our proposed approach strives
to pull the sentence representation of x towards that
of its corresponding translation y, and push it away
from sentence representations of other instances.
However, the direct application of artificially con-
structed parallel bilingual sentence pairs tends to
result in a significant boundary between positive
and negative samples, which may lead to vanish-
ing contrasting signals. To remedy this problem,
we make use of back-translation to infuse noise in
original positive samples to obtain more competi-
tive cross-lingual information. To be more specific,
we define the sentence-level semantic equivalents
Nsent(x,y) as:

Nsent(x,y) =
{

(x,y)
∣∣x ∈ {x, x̂},y ∈ {y, ŷ}}

(7)
where x̂ is the noisy version of x obtained by means
of back-translation3 and so is ŷ. By sampling from
the original x and the back-translated x̂, both sen-
tences from the two languages for contrasting con-
tain a certain amount of noise. This blurs the bound-
ary between the positive and negative representa-
tions to some extent, thereby effectively alleviating
the vanish of contrasting signals.

As with span-level contrasting, we adopt the
mean-pooling layer to aggregate all token represen-
tations of a given sentence into its corresponding
sentence representation. For each sentence pair
(x,y) ∈ Nsent(x,y), we define the representations
(u, v+,v−) in Eq. (1) for sentence-level contrast-
ing as: 

u = `2
(
MP(hx)

)
v+ = `2

(
MP(hy)

)
v− =

{
`2
(
MP(hz)

)∣∣z 6= y
} (8)

where z 6= y means that the negative representa-
tions used for contrasting are derived from other
instances in the same mini-batch.

3In the implementation, we obtain multiple x̂ by pre-
training the target→source translation model and performing
beam search or top-k sampling.

Following XLM (Lample and Conneau, 2019)
and XLM-R (Conneau et al., 2019), to learn from
bidirectional contexts, we also adopt masked lan-
guage modeling (MLM) as one of pre-training
tasks. The MLM task aims at predicting the masked
words based on the corrupted input. We concate-
nate a parallel bilingual sentence pair into a sin-
gle sentence and randomly select 15% tokens as
candidates for performing corruption. Of these se-
lected tokens, 80% are replaced with special token
[MASK], 10% are kept unchanged, and the remain-
ing are replaced by randomly selected vocabulary
tokens. The final training objective is defined as the
sum of the above-mentioned multiple contrastive
losses as well as the cross-entropy of MLM.

3 Experiments

We conduct experiments on a variety of down-
stream tasks, which can be divided into two cate-
gories: machine translation and cross-lingual lan-
guage understanding tasks.

3.1 Pre-Training

Datasets We pre-train our model on large-scale
datasets involving the 15 languages of XNLI (Con-
neau et al., 2018)4: English, French, Spanish, Ger-
man, Greek, Bulgarian, Russian, Turkish, Arabic,
Vietnamese, Thai, Chinese, Hindi, Swahili, and
Urdu. Following Conneau et al. (2019), we re-
construct Common-Crawl Corpus to obtain mono-
lingual training datasets while the bilingual data
is obtained from the OPUS website 5. We also
conduct up/down-sample for all pre-training data
with a smoothing parameter. The sentence-piece
model (SPM) (Kudo and Richardson, 2018) pro-
vided by Conneau et al. (2019)6 is employed to
tokenize all training data.

Model architecture We implement the proposed
approach based on the Transformer (Vaswani et al.,
2017) encoder with 12 identical layers, each of
which consists of a multi-head attention module
and a feed-forward network. The model dimension
and the number of heads are set to 768 and 12, re-
spectively, with the inner size of the feed-forward
network being 3072. We choose GeLU (Hendrycks
and Gimpel, 2016) as our activation function. We

4https://github.com/facebookresearch/
XNLI

5http://opus.nlpl.eu/
6https://github.com/google/

sentencepiece

https://github.com/facebookresearch/XNLI
https://github.com/facebookresearch/XNLI
http://opus.nlpl.eu/
https://github.com/google/sentencepiece
https://github.com/google/sentencepiece
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use the sentence-piece vocabulary provided by Con-
neau et al. (2019), whose size is 250K.

Training parameters We apply Adam (Kingma
and Ba, 2015) optimizer with a learning rate of
5× 10−4 and adopt invert linear decay schedule to
pre-train our models. We employ a dropout with
probability to 0.1 for both the hidden states and
the attention distribution. The temperature τ in
Eq. (1) is set to 0.1 and the coefficients of all con-
trastive losses are set to 1. We take advantage of
the gradient accumulation technique to simulate the
batch size of 512. Our model is initialized with the
pre-trained checkpoint released by Conneau et al.
(2019)7 and then pre-trained on 8×32GB NVIDIA
V100 GPUs with mixed-precision floating-point
arithmetic. Overall, it took about 3 weeks to con-
verge.

3.2 Machine Translation
Datasets We conduct experiments on three
widely-used machine translation datasets of var-
ious training data sizes: IWSLT14 De-En (160K),
WMT14 En-De (4.5M), and WMT14 En-Fr (36M).
The sentence-piece tokenization with the same vo-
cabulary as pre-training are used to tokenize all
translation samples. The BLEU score computed by
the multibleu.perl script8 is used as the evaluation
metric for all translation tasks.

Model architecture We use the pre-trained
model to initialize a 12-layer encoder. The de-
coder is implemented as a standard 6-layer Trans-
former (Vaswani et al., 2017) decoder, each layer
consisting of a multi-head self-attention module,
a multi-head cross-attention module and a feed-
forward network. The entire decoder is initialized
randomly, and it is jointly trained with the pre-
trained encoder. Other model hyper-parameters
including the hidden size, the number of heads, the
inner size of the feed-forward network, and the
choice of activation function are identical to the
encoder.

Training parameters We also adopt mixed-
precision floating-point arithmetic to train our mod-
els on the machine translation task. The experi-
ments are conducted on 8× 32GB NVIDIA V100
GPUs. We use an Adam optimizer with β1 = 0.9

7https://github.com/pytorch/fairseq/
tree/master/examples/xlmr

8https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

and β2 = 0.98 to optimize our model during train-
ing. The learning rate is warmed up to 1 × 10−4

linearly in the first 4000 updates and then decays at
a rate proportional to the inverse square root of the
update number. We average the last 10 checkpoints
as the final model and perform beam search with
a beam size of 5 during inference. The probability
of dropout is set to 0.1 to avoid over-fitting. The
length penalty is set to 1.0.

3.3 Cross-Lingual Language Understanding

Dataset In order to verify the effectiveness of our
approach on cross-lingual language understanding,
we conduct evaluation on XNLI (Conneau et al.,
2018) dataset. It is an extension of the English natu-
ral language inference dataset MultiNLI (Williams
et al., 2018) where the development and test sets
come in 15 different languages. The training set
contains ∼392K English samples and the test set
for each language contains 5, 010 samples.

Model architecture We use the same model ar-
chitecture as under the pre-training setting. Fol-
lowing Conneau et al. (2019), we update all param-
eters of our model after adding a linear classifier
on top of the hidden state of the first token when
fine-tuning on XNLI.

Training parameters During fine-tuning, the
base transformer model is optimized along with the
extra linear classifier using Adam with β1 = 0.9,
β2 = 0.999 and a learning rate of 0.000025. The
dropout rate is set to 0.1. We fine-tune our model
on 4 NVIDIA GeForce RTX 2080Ti GPUs with a
batch size of 8 sequences per GPU.

4 Results and Analysis

This section presents the detailed experiment re-
sults of different systems. We perform the evalua-
tion on a comprehensive suite of benchmark tasks,
covering cross-lingual classification and machine
translation.

4.1 Cross-Lingual Classification

Following Lample and Conneau (2019), we per-
form evaluation on the cross-lingual natural lan-
guage inference (XNLI) benchmark, where the
model needs to determine the relation (entail-
ment, contradiction and neutral) between the given
premise and hypothesis sentences. We compare
different systems under two settings. (1) Cross-
Lingual Transfer: we fine-tune the model on the

https://github.com/pytorch/fairseq/tree/master/examples/xlmr
https://github.com/pytorch/fairseq/tree/master/examples/xlmr
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
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Models #M en fr es de el bg ru tr ar vi th zh hi sw ur Avg

Fine-tune multilingual model on English training set (Cross-lingual Transfer)

MBERT* N 82.1 73.8 74.3 71.1 66.4 68.9 69.0 61.6 64.9 69.5 55.8 69.3 60.0 50.4 58.0 66.3
XLM (w/o TLM)* 1 83.2 76.7 77.7 74.0 72.7 74.1 72.7 68.7 68.6 72.9 68.9 72.5 65.6 58.2 62.4 70.7
XLM (w/o TLM)* N 83.7 76.2 76.6 73.7 72.4 73.0 72.1 68.1 68.4 72.0 68.2 71.5 64.5 58.0 62.4 71.3
XLM* N 85.0 78.7 78.9 77.8 76.6 77.4 75.3 72.5 73.1 76.1 73.2 76.5 69.6 68.4 67.3 75.1
UNICODER† 1 85.4 79.2 79.8 78.2 77.3 78.5 76.7 73.8 73.9 75.9 71.8 74.7 70.1 67.4 66.3 75.3
XLM-R* 1 85.8 79.7 80.7 78.7 77.5 79.6 78.1 74.2 73.8 76.5 74.6 76.7 72.4 66.5 68.3 76.2
INFOXLM† 1 86.4 80.6 80.8 78.9 77.8 78.9 77.6 75.6 74.0 77.0 73.7 76.7 72.0 66.4 67.1 76.2
XLM-R (reimpl) 1 84.3 78.3 79.1 76.9 75.3 77.8 75.6 74.1 71.9 75.9 72.3 73.5 70.2 64.3 67.1 74.4
MGC-HARD 1 85.9 79.9 80.9 78.3 77.5 79.1 76.8 74.0 73.1 76.6 73.0 75.4 71.7 66.3 68.1 75.8
MGC-SOFT 1 86.3 79.6 80.8 78.5 77.8 79.3 77.3 73.9 73.4 76.9 73.3 76.1 71.9 66.5 67.9 76.0

Fine-tune multilingual model on all training sets (Translate-Train-All)

UNICODER† 1 85.6 81.1 82.3 80.9 79.5 81.4 79.7 76.8 78.2 77.9 77.1 80.5 73.4 73.8 69.6 78.5
XLM (w/o TLM)* 1 84.5 80.1 81.3 79.3 78.6 79.4 77.5 75.2 75.6 78.3 75.7 78.3 72.1 69.2 67.7 76.9
XLM* 1 85.0 80.8 81.3 80.3 79.1 80.9 78.3 75.6 77.6 78.5 76.0 79.5 72.9 72.8 68.5 77.8
XLM-R* 1 85.4 81.4 82.2 80.3 80.4 81.3 79.7 78.6 77.3 79.7 77.9 80.2 76.1 73.1 73.0 79.1
INFOXLM† 1 86.1 82.0 82.8 81.8 80.9 82.0 80.2 79.0 78.8 80.5 78.3 80.5 77.4 73.0 71.6 79.7
XLM-R (reimpl) 1 84.4 81.0 81.5 81.0 80.2 80.9 79.2 77.0 77.9 79.8 77.0 78.5 74.6 71.9 70.4 78.4
MGC-HARD 1 86.0 82.6 82.7 81.8 81.5 82.6 81.3 78.6 79.5 80.9 80.1 81.5 76.7 74.0 72.1 80.1
MGC-SOFT 1 86.5 82.7 83.0 81.5 81.3 82.7 81.8 79.1 79.4 81.3 79.5 81.8 76.6 74.4 71.3 80.2

Table 1: The performance of different systems on XNLI task. “#M=N” indicates that each language is assigned a
separate model based on the performance of the respective dev set, while “#M=1” means only one model is used
for all languages. Results with “*” and “†” are taken from Conneau et al. (2019) and Chi et al. (2020), respectively.
“(reimpl)” means our own implementation using the same training strategy. The best performance is bolded.

English training set and then directly evaluate on
the test sets of the 15 languages. (2) Translate-
Train-All: we fine-tune the model on the combined
data consisting of English training data and pseudo
data that are translated from English to other lan-
guages. As indicated by the results in Table 1, our
method manages to maintain a consistent improve-
ment over our implemented XLM-R under both
settings, raising the average accuracy from 74.4%
to 76.0% for cross-lingual transfer. The similar
conclusions can be drawn from the translate-train-
all setting, where our approach boosts XLM-R by
an increment of 1.8 average accuracy and also out-
performs all other baselines. By means of multi-
granularity contrasting, our approach succeeds in
introducing more fine-grained and explicit align-
ment supervision, which enhances the capability of
the model to learn language-universal representa-
tions.

In addition, we can also note that there is no defi-
nite conclusion about the superiority of the two
contrasting strategies for word-level contrastive
loss. Hard contrasting attempts to integrate explicit
cross-lingual supervision from external word align-
ers, while soft contrasting aims at enabling the pre-
trained model to learn word alignment implicitly
via semantic attention. Both strategies contribute to
the introduction of more fine-grained and explicit

cross-lingual information, thereby lifting the per-
formance of the pre-trained model in downstream
scenarios.

4.2 Machine Translation

Table 2 presents the comparison between our ap-
proach and several representative systems on ma-
chine translation. The results once again confirm
that large-scale pre-training can effectively accom-
plish model transferring and advance the perfor-
mance of machine translation, as all pre-trained
models outperform the unpretrained transformer.
In addition, we observe the significant performance
gain for our approach compared to the baselines.
For instance, it achieves a 1.6% improvement of
BLEU score over the base architecture XLM (Lam-
ple and Conneau, 2019) on the IWSLT14 DE-EN
task. It also surpasses other competitive base-
lines such as mBERT (Devlin et al., 2019) and
MASS (Song et al., 2019) on all three translation
benchmarks by a wide margin. The results effec-
tively demonstrates the ability of our approach to
learn better representations for semantic equiva-
lents across languages, as well as the versatility of
our approach, which can be applied to both lan-
guage understanding and generation tasks.
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Models IWSLT14 WMT14 WMT14
DE-EN EN-DE EN-FR

TRANSFORMER 34.5 28.4 41.9
MBERT 34.8 28.6 –
MASS 35.1 28.9 –
XLM 35.2 28.9 –
ALM 35.5 29.2 –
XLM-R 35.1 30.1 42.4
MGC-HARD 36.4 30.2 43.1
MGC-SOFT 36.8 30.6 42.9

Table 2: The experiment results of different systems on
machine translation. The best performance is bolded.

4.3 Ablation Study

We conduct an ablation study on several major
components of our approach to explore their in-
fluence on cross-lingual pre-training, including the
multi-granularity contrastive losses and sentence-
level semantic equivalent augmentation with back-
translation.

Effect of multi-granularity contrastive losses
To understand how much different levels of con-
trasting account for the overall performance im-
provement, we train the same model but with dif-
ferent contrastive losses. First, as shown in Ta-
ble 3, all three levels of contrasting contribute to
the superiority of our model. This demonstrates
that the incorporation of contrastive learning can
truly introduce training signals that are beneficial
for cross-lingual pre-training on multiple granu-
larities. Among them, sentence-level contrasting
has the largest impact, the removal of which re-
sults in a drop of 1.3 BLEU score on WMT14
EN-DE. The reason behind this phenomenon may
be that this loss makes up for the relative lack of
explicit sentence-level training signals in XLM pre-
training.

Effect of sentence-level semantic equivalent
augmentation To investigate whether augment-
ing the semantic equivalents by means of
back-translation improves sentence-level contrast-
ing, we compare our model (BTSET SENT-
CONTRAST) against a variant where only the
original source and target sentence are used to com-
pute the sentence-level contrastive loss (BIPAIR
SENT-CONTRAST). The results are presented
in Table 4. As can be seen, back-translation leads
to an improvement of 0.7 BLEU on WMT14 DE-
EN, illustrating its efficacy in alleviating vanishing
contrasting signals and boosting cross-lingual pre-
training.

Models WMT14 EN-DE
W/O WORD-CONTRAST 29.8
W/O SPAN-CONTRAST 29.5
W/O SENT-CONTRAST 29.3
FULL MGC-SOFT 30.6

Table 3: The results of ablation study on WMT14 DE-
EN translation task.

5 Related Work

The existing efforts performing cross-lingual pre-
training mainly consist of two typical paradigms:
traditional embedding alignment and the recent
prevalent language modeling.

5.1 Embedding Alignment

Early endeavors regarding cross-lingual pre-
training mainly focus on embedding alignment,
which aims at learning similar vector representa-
tions for semantic-equivalent units. Representative
approaches can be categorized into four research
lines: regression model, hinge loss, canonical anal-
ysis, and linear projection. Based on the observa-
tion that the monolingual word embeddings share
similar geometric properties across languages, sim-
ple but effective linear projection approaches have
become mainstream, which aim at aligning two
disjoint monolingual vector spaces through a lin-
ear transformation. For instance, Mikolov et al.
(2013a) propose to learn the desired linear projec-
tion by minimizing the mean squared error between
the projected source embeddings and the target em-
beddings. Xing et al. (2015) refine this method
by imposing orthogonality constraint and maxi-
mizing the cosine similarity. Artetxe et al. (2017)
explore the bilingual induction in extremely low-
resource scenarios via an effective self-learning
framework. Furthermore, unsupervised embedding
alignment (Lample et al., 2018; Yang et al., 2019)
completely eliminates the dependence on paral-
lel data, which aims to learn cross-lingual word
embeddings in the absence of any aligned word
pairs. The related approaches can be summarized
as: GAN-based distribution matching (Zhang et al.,
2017; Lample et al., 2018), non-adversarial dis-
tribution matching, heuristic alignment, general-
ized Pruck analysis and so on. However, the tra-
ditional embedding alignment can only learn non-
contextualized word representations, which suffers
from intractable polysemy problem. Compared
with the following language modeling that captures
bidirectional contexts and employs large-capacity
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Model WMT14 EN-DE
BIPAIR SENT-CONTRAST 29.9
BTSET SENT-CONTRAST 30.6

Table 4: The comparison of two sentence-level con-
trasting strategies. “BIPAIR SENT-CONTRAST” and
“BTSET SENT-CONTRAST” means sentence-level
contrasting with the original bilingual pair and ex-
tended back-translation set as positive examples, re-
spectively.

transformer, it tends to result in suboptimal perfor-
mance in downstream tasks.

5.2 Language Modeling

This research line focuses on masked language
modeling (MLM), which aims to predict the
masked words based on the corrupted input. In
terms of model architecture, one paradigm at-
tempts to capture language-universal representa-
tions via a single encoder. For instance, Multilin-
gual BERT (Devlin et al., 2019) applies byte-pair
encoding (BPE) to merge tokens from 104 different
languages into a shared vocabulary and performs
MLM on the monolingual sentences. XLM (Lam-
ple and Conneau, 2019) extends it to translation
language modeling (TLM), which strives to pre-
dict the masked words by attending to both source
and target sentences. With the mutual attention
of bilingual contexts, the model is expected to
align representations from two languages in an im-
plicit manner. Unicoder (Huang et al., 2019) intro-
duces several more pre-training tasks such as cross-
lingual word recovery, illustrating that these tasks
can boost model performance by learning interlin-
gual mapping from more perspectives. ALM (Yang
et al.) constructs large-scale instances for masked
language modeling by alternatively selecting words
from source and target languages. Ren et al. (2019)
task the model with predicting the translation of
masked n-grams, with the phrase table inferred
from monolingual corpora in advance as ground
truth. Conneau et al. (2019) pre-train their model
using more than two terabytes of filtered Common-
Crawl data, demonstrating that large-scale dataset
can lead to significant performance gains.

The other research line draws on the idea of the
encoder-decoder framework and aims to mimic
autoregressive generation by generating the target
texts based on the given source input. For instance,
MASS (Song et al., 2019) jointly trains the en-
coder and decoder by reconstructing the desired
sentence fragment based on the remaining part

of the sentence, which enhances the capabilities
of the model in feature extraction and language
modeling. XNLG (Chi et al., 2019) strives to
learn language-universal representations by extend-
ing monolingual masked language modeling and
denoising autoencoding to cross-lingual settings.
mBART (Liu et al., 2020) pre-trains the encoder-
decoder by reconstructing the original text based
on the corrupted input with an arbitrary noising
function, which can be used directly to initialize
text generation models or as a denoising strategy
for language understanding. However, both lines
mentioned above for language modeling focus on
projecting the input from different languages into
the same semantic space through shared vocabu-
lary and representation models. Compared with
traditional embedding alignment, it lacks the in-
troduction of cross-lingual information with more
explicit and fine-grained (e.g., word-level) align-
ment.

Our proposed approach effectively inherits the
advantages of both embedding alignment and lan-
guage modeling, while avoiding their limitations. It
not only captures bidirectional contexts with large-
capacity transformer model and MLM task, but
also introduces more fine-grained cross-lingual su-
pervision by applying contrastive learning on se-
mantic units of multiple granularities, thereby ob-
taining significant performance gains.

6 Conclusion

This paper presents a multi-granularity contrastive
cross-language pre-training framework, which
combines traditional embedding alignment and
the recent prevalent language modeling to learn
language-universal prior representations . Different
from previous work focusing on masked language
modeling to capture bidirectional contexts, the pro-
posed approach introduces more fine-grained and
explicit cross-lingual supervision by maximizing
the representational consistency of semantic equiv-
alents from different languages. Two effective con-
trasting strategies are proposed, which can be built
upon semantic units with different granularity cov-
ering word, span, and sentence. Comprehensive
empirical evidence illustrates that our approach
can achieve consistent improvement on a variety
of downstream tasks including machine translation
and cross-lingual language understanding.
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