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Abstract

Continuous representations of linguistic struc-
tures are an important part of modern natu-
ral language processing systems. Despite the
diversity, most of the existing log-multilinear
embedding models are organized under vector
operations. However, these operations can not
precisely represent the compositionality of nat-
ural language due to a lack of order-preserving
properties. In this work, we focus on one of
the promising alternatives based on the embed-
ding of documents and words in the rotation
group through the generalization of the cou-
pled tensor chain decomposition to the expo-
nential family of the probability distributions.
In this model, documents and words are rep-
resented as matrices, and n-grams representa-
tions are combined from word representations
by matrix multiplication. The proposed model
is optimized via noise-contrastive estimation.
We show empirically that capturing word or-
der and higher-order word interactions allows
our model to achieve the best results in several
document classification benchmarks.

1 Introduction

The current progress in natural language process-
ing systems is largely based on the success of the
representation learning of linguistic structures such
as word, sentence and document embeddings. The
most promising and successful methods are based
on learning representations via two types of models:
shallow log-multilinear models and deep neural
networks. Despite the efficiency and interpretabil-
ity of log-multilinear models, they can not use
higher-order linguistic features like dependency
between subsequences of words. To avoid these
disadvantages, we usually use nonlinear predictors
like recurrent, recursive, convolution neural net-
works, and more recently Transformers. Neverthe-
less, these methods can achieve high performance

at the cost of loss of some interpretability and the
cost of increased computation time.

However, there exist other ways to utilize higher-
order interactions and still preserve the efficiency
of linear models. In this research, we focus on more
data-oriented, i.e., more linguistic grounded, and
better interpretable methods which still can achieve
high results in the practical tasks. Particularly, we
investigate the matrix-space model of language, in
which semantic space consists of square matrices
of real values. The key idea behind this method
goes from realization of the Frege’s principle of
compositionality through order-preserving prop-
erty of matrix operations. As shown by Rudolph
and Giesbrecht (2010), this type of models can in-
ternally combine various properties from statistical
and symbolic models of natural language and there-
fore it is more flexible than vector space models.

In spite of that fact, such models are usually hard
to optimize on the real data. To this end, Yesse-
nalina and Cardie (2011) took attention to the needs
of nontrivial initialization and proposed to learn the
weights by the bag-of-words model. Asaadi and
Rudolph (2017) used complex multi-stage initial-
ization based on unigrams and bigrams scoring.
Both approaches try to solve the sentiment anal-
ysis task. Recently Mai et al. (2019) considered
the problem of self-supervised continuous repre-
sentation of words via matrix-space models. They
optimized a modified word2vec objective function
(Mikolov et al., 2013) and proposed a novel initial-
ization by adding small isotropic Gaussian noise to
the identity matrix.

In this paper, we use a similarity function be-
tween matrices similar to Mai et al. (2019), but
instead of neural network type of learning, we im-
plement the model as the coupled tensor chain and
impose the rotation group constraint. We focus on
the document representation problem. Given a doc-
ument collection, we try to find unsupervised doc-
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ument and word representation suitable for down-
stream linear classification tasks. To this end, we
represent words, n-grams and documents as ma-
trices and train self-supervised model. Our intu-
ition is based on the fact that modeling interaction
between words and documents is insufficient for
modeling relations between complex phrases and
documents.

Contributions. The main contributions of this
work can be summarized as follows:

• To the best of our knowledge, this is the first
representation learning method based on the
Riemannian geometry of matrix groups.

• We show that our approach to model the com-
positionality and word order allows us to in-
crease the quality of document embedding on
downstream tasks. Moreover, it is also more
computationally efficient in comparison with
neural network models.

• Our model achieves state-of-the-art perfor-
mance on the task of representation learning
for multiclass classification both on short and
long document datasets.

Our implementation of the proposed model is
available online1.

2 Related work

Euclidean embedding models (Mikolov et al.,
2013; Pennington et al., 2014) based on implicit
word-context co-occurance matrix factorization
(Levy and Goldberg, 2014) are an important frame-
work for current NLP tasks. Proposed models
achieve relatively high performance in various NLP
tasks like text classification (Kim, 2014), named
entity recognition (Lample et al., 2016), machine
translation (Cho et al., 2014).
Riemannian embedding models have shown
promising results by expanding embedding meth-
ods beyond Euclidean geometry. There are sev-
eral models with negative sectional curvature like
Poincare (Dhingra et al., 2018; Nickel and Kiela,
2017) and Lorentz models (Nickel and Kiela, 2018).
Furthermore, Meng et al. (2019) proposed a text
embedding model based on spherical geometry.
Tensor decomposition models have been applied
to many tasks in the NLP. Particularly, Van de
Cruys et al. (2013) proposed the Tucker model
for decomposing subject-verb-object co-occurance

1https://github.com/harrycrow/RDM

tensor for computation of compositionality. The
most similar to our task is the word embedding
problem. In this direction, Sharan and Valiant
(2017) explored the Canonical Polyadic Decom-
position (CPD) of word triplet tensor. Bailey and
Aeron (2017) used symmetric CPD of pointwise
mutual information tensor. Frandsen and Ge (2019)
extended the RAND-WALK model (Arora et al.,
2016) to word triplets. The main drawback of exist-
ing approaches is that they can not preserve word
order information of long n-grams properly. For
example, in the case of the CPD, we need to use
separate parameters for each word based on its po-
sition in the text. This restriction does not allow
us to efficiently use the linguistic meaning of ten-
sor modes. The symmetric CPD completely loses
word order information and the Tucker model suf-
fers from exponentially increasing parameter size
in the case of long length n-grams. Our approach
eliminates these disadvantages.

3 Problem and model description

In this section, we describe our model for the doc-
ument representation task. We begin with a short
introduction of the multilinear algebra, then present
the proposed document modeling framework in
the view of the coupled tensor decomposition and
provide the detailed description of our model and
indicate benefits/drawbacks which are related to
rotational group constraints.

3.1 Basic multilinear algebra

A tensor is a higher-order generalization of vectors
and matrices to multiple indices. The order of a
tensor is the number of dimensions, also known
as modes or ways. An N -th order tensor is rep-
resented as X ∈ RI1×I2×···×IN , and its element
is denoted as xi1...iN . We can always represent a
tensor X as sum of rank-1 tensors, where each of
them is defined as outer product of N -vectors, i.e.,
a(1) ◦ · · · ◦ a(N) and a(n) ∈ RIn for n = 1, . . . , N .
The minimal number of rank-1 tensors in this sum
defines tensor rank.

In this research we focus on a particular type of
tensor decomposition called tensor chain (Perez-
Garcia et al., 2007; Khoromskij, 2011; Zhao et al.,
2019). It represents tensor via the following sum
of rank-1 tensors

X =

R1,...,RN∑
r1,...,rN=1

a(1)
r1r2 ◦ · · · ◦ a(N)

rNr1 , (1)

https://github.com/harrycrow/RDM
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Notation Description
a Scalar
a Vector or tuple
A Matrix
A Higher-order tensor
◦ Outer (tensor) product
⊗ Kronecker product
tr(·) Trace of matrix
vec(·) Vectorization of tensor
[·]+ Euclidean projection onto

nonnegative orthant, i.e., max{0, ·}
QR(·) QR decomposition

Table 1: Basic notation.

where R1, . . . , RN are called ranks of the TC
model and the element-wise form of the follow-
ing decomposition is given by

xi1i2...iN = tr(A
(1)
i1

A
(2)
i2
· · ·A(N)

iN
), (2)

and A
(n)
in
∈ RRn×Rn+1 represents the in-th frontal

slice of the core tensors A(n) ∈ RRn×In×Rn+1 for
n = 1, . . . , N and RN+1 = R1 and a(n)

rnrn+1 are
tubes of A(n).

3.2 Document modelling setting
In our research, we use the fact that the same text
can be represented in different ways via differ-
ent sets of n-grams with fixed lengths {Wn}Nn=1,
where Wn = W× · · · ×W︸ ︷︷ ︸

n

and W is the word set.

The main hypothesis is that the occurance statistics
of the each of these n-grams sets contains some new
information about this text, which can not be ex-
tracted from any other n-grams set. If we combine
information from all of these sets we can achieve
better quality for our document embedding model.

Due to the fact that the occurrence of the se-
quence of words depends on the occurrence of each
word from this sequence, it is reasonable to treat the
distribution of each fixed-length n-grams set sep-
arately. Otherwise, by the reason of dependence
between the length of word sequence and their fre-
quency, small length n-grams can downweight the
importance of long length n-grams. Thus the effect
of higher-order interaction can become low. Also,
we notice that consider p(w) as a distribution over
unordered sets is a quite restrictive assumption on
the structure of the model due to the importance
of the order of the words in the language seman-
tics. For all these reasons, we work with each n-

gram distribution as with the separate distribution
of the single random variable rather than define
joint distribution for all n-grams sets and assume
that particular distribution for each n-gram set can
be constructed through marginalization from this
joint distribution.

Following this intuition for each n-gram set, n,
we assign appropriate joint distribution, p(w, d),
where w ∈ Wn and d ∈ D. We represent co-
occurrence of each n-gram, w = (w1, . . . , wn),
and each document, d ∈ D, as (n + 1)th-order
tensor X(wd) ∈ R|W|×···×|W|×|D|, where

x
(wd)
ij =

{
1, if i = w, j = d

0, otherwise .
(3)

Then we represent probability p(w, d) as the mean
of these tensors

X̄
(n)

= E(w,d)∼p(w,d)X
(wd).

Note that co-occurrences of n-grams and doc-
uments define bipartite graphs between them and
X̄

(n) can be interpreted as adjacency tensors of
these graphs.

3.3 Proposed model

Following compositional matrix-space modelling
approach we represent each word, w ∈ W, as a
matrix Uw ∈ RR×R, a n-gram, w ∈ Wn, as
Uw =

∏n
k=1 Uwk

, and each document, d ∈ D,
as a matrix Vd ∈ RR×R. To measure dependence
between n-gram, w, and document, d, we use the
Frobenius inner product, defined as 〈Uw,Vd〉F =
tr(UT

wVd) = tr(UwVT
d ) = vec(Uw)Tvec(Vd).

We assume that embeddings organized accordingly
to this operation can be suitable for linear classi-
fiers.

The resulting model is the generalized to expo-
nential family of probability distributions coupled
tensor decomposition (Collins et al., 2001; Yilmaz
et al., 2011) of the set of tensors {X̄(n)}Nn=1 by
the corresponding set of tensor chain models with
restricted set of parameters

Θ = {Uw}|W|w=1 ∪ {Vd}
|D|
d=1, (4)

in the following optimization problem

min
Θ

N∑
n=1

KL[X̄
(n)||X̂(n)

; Θ], (5)
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Figure 1: Illustration of representation of document collection in a multi-view way as a collection of bipartite
graphs. Each of these graphs represents dependence (number of co-occurrence) between word’s strings of length
n and documents. Adjacency matrices X̄(n) ∈ R|W|n×|D| of these graphs can be appropriately tensorized to
adjacency tensors X̄

(n) ∈ R|W|×···×|W|×|D| which can be linked through modified multinomial link function with
latent tensors Z(n) ∈ R|W|×···×|W|×|D|. Latent tensors can be decomposed via the Coupled Tensor Chain model.
In our model, all core tensors U (VT ) which represent words (documents) are additionally restricted to have the
same parameters {Uw}|W|w=1 ({VT

d }
|D|
d=1).

where each Kullback-Leibler divergence can be
expressed as

KL[X̄
(n)||X̂(n)

; Θ] =
∑

w∈Wn

∑
d∈D

x̄
(n)
wd log

(
x̄

(n)
wd

x̂
(n)
wd

)

=

|W |∑
w1=1

· · ·
|W |∑

wn=1

|D|∑
d=1

x̄
(n)
w1...wnd

log

(
x̄

(n)
w1...wnd

x̂
(n)
w1...wnd

)
,

and x̂(n)
wd = p(w, d).

Our model represents p(w, d) by using follow-
ing mean function

p(w, d) ∝ p(w)p(d) exp(vec(X(wd))Tvec(Z(n))),

where vec(X(wd))Tvec(Z(n)) = z
(n)
wd is one of

natural parameters, which organized in the la-
tent tensors Z(n) ∈ R|W|×···×|W|×|D|. This latent
tensors contain pointwise mutual information be-
tween n-grams and documents and we assume that
each of this tensor has low tensor chain rank, i.e.,
z

(n)
wd = tr(UwVT

d ).

3.4 Intuition from geometric interpretation
If we avoid generative assumptions (Saunshi et al.,
2019), our task can be interpreted as maximizing
the similarity between document d and n-grams
from its document distribution p(w|d) with simul-
taneous minimization of similarity between this
document and n-grams from common n-gram distri-
bution p(w). As shown in previous works (Kumar

and Tsvetkov, 2019; Meng et al., 2019) enforcing
the spherical geometry constraints is a promising
choice for tasks focusing on directional similar-
ity. For doing so it can be reasonable to constrain
our model to the orthogonal group. In this case
Frobenius inner product became proper similarity
measure and the sequential matrix product always
preserves fixed norm and group structure (i.e., in-
vertibility of matrix multiplication). Due to the
group structure, our model has an interesting prop-
erty to uniquely determine each word in the n-gram
by their left and right aggregated context matrices
and general n-gram matrix.

However, orthogonal group is a disjoint set of
two connected components: set of rotations

SO(R) = {A|ATA = AAT = I,det(A) = +1}

and set of reflections {A|ATA = AAT =
I, det(A) = −1}. We impose constraints on our
model parameters enforcing rotation matrices since
the product of any number of rotations is always
rotation, i.e. rotation set forms a matrix group.
While the product of an even number of reflections
becomes rotation.

3.5 Noise-contrastive estimation

In practice we do not need to construct set of ten-
sors {X̄(n)}Nn=1 explicitly. Instead, since each X̄

(n)

represents a higher-order frequency table, we can
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optimize the sum of MLE tasks:

E
w,d∼X̄

(1) log(x̂
(1)
wd)+ · · ·+E

w,d∼X̄
(N) log(x̂

(N)
wd ).

Usually, we have huge amount of data which make
problem of computing partition function for each
x̂

(n)
wd intractable for many current computing ar-

chitectures. We can avoid this problem by us-
ing noise-contrastive estimation (Gutmann and
Hyvärinen, 2012) for conditional model (Ma and
Collins, 2018). Similar to Chen et al. (2017), we
construct negative samples from our batch by con-
necting non-linked n-grams and documents. Fi-
nally, for parameter set

Θ = {Uw}|W|w=1 ∪ {Vd}
|D|
d=1 ∪ {κ

(n)}Nn=1, (6)

we formulate optimization problem in the follow-
ing way:

min
Θ

N∑
n=1

L(n)(Θ) +
λ

2

N∑
n=1

(κ(n))2 (7)

s.t. Uw ∈ SO(R), w = 1, . . . , |W|
Vd ∈ SO(R), d = 1, . . . , |D|
κ(n) ≥ 0, n = 1, . . . , N,

where each risk function is equal to

L(n)(Θ) = E{(wi,di)}Ii=1∼
∏I

i=1 x̄
(n)
widi

− log
exp

(
κ(n)tr(UwiV

T
di

)
)

∑I
j=1 exp

(
κ(n)tr(UwjV

T
di

)
) . (8)

We add concentration parameters κ(n) to our
loss function to overcome the problem of fixed
scale. This makes our model more flexible to rep-
resent sharp distributions. Due to the fact that each
n-gram distribution has its own scale, it can be rea-
sonable to have a different κ(n) for different n-gram
distributions.

4 Optimization setup

4.1 N-gram construction
We construct n-grams from text corpora by using se-
quentially moving of the sliding window of length
n (from 1 to N ) inside each document.

4.2 Parameters initialization
Initialization from the uniform distribution on the
Stiefel manifold (Saxe et al., 2014) is one of promis-
ing ways to initialize deep neural network. To ini-
tialize parameters only from rotation component of

Stiefel manifold we can swap two columns for each
parameter matrix if the determinant of the this ma-
trix is -1. However, this initialization can be below
optimal way, because these rotation matrices can be
far away from each other and due to the non-trivial
structure of the loss function on this manifold we
can stuck in local minima. To overcome this prob-
lem, we can fix particular point on the manifold for
all matrices and perform small movement from this
point in arbitrary direction. We use following strat-
egy for each parameter A ∈ {Uw}|W|w=1∪{Vd}

|D|
d=1:

A0 ∼ N
(

0,
1

R2

)
[Q,R] = QR

(
I +

1

2
(A0 −AT

0 )

)
A = Q.

(9)

We initialize all concentration parameters us-
ing following equation κ(n) = u

R , where u ∼
U(0.9, 1.1) and n = 1, . . . , N .

4.3 Riemannian optimization
We solve our problem on the product manifold
of rotation group and nonnegative orthant by
simultaneous optimization of model parameters
{Uw}|W|w=1 ∪ {Vd}

|D|
d=1 and {κ(n)}Nn=1 by Rieman-

nian (Bécigneul and Ganea, 2019) and projected
Adagrad (Duchi et al., 2011) respectively.

LetM be a real smooth manifold and L :M→
R a smooth real-valued function over parameters
θ ∈ M. Riemannian gradient descent (Gabay,
1982; Absil et al., 2008) based on two sequential
steps. At first we compute Riemannian gradient
by orthogonal projection of the Euclidean gradient
on the tangent space at the same point on which
we compute Euclidean gradient by projθt

: R →
TθM

∇RL(θt) = projθt
(∇EL(θt)), (10)

and then we perform movement on the manifold
by specific curve, which called retraction Rθt :
TθM→M

θt+1 = Rθt(−α∇RL(θt)). (11)

For optimization on rotation group the orthogonal
projector of matrix G ∈ RR×R on the tangent
space at the point A ∈ SO(R) is given by:

projA(G) =
1

2
(G−AGTA), (12)
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For movement on the manifold in this direction we
use QR-based retraction:

[Q,R] = QR (At − α∇RL(At))

At+1 = Q.
(13)

We choose the QR-based retraction because it al-
lows Riemannian Adagrad to achieve the fastest
convergence in our experiments in comparison
with Cayley retraction (first-order), Polar retraction
(second-order), and geodesic (matrix exponential).

Algorithm 1 Optimization algorithm for RDM

Input: Learning rates α and β, number of itera-
tions T , maximum n-gram length N .
Output: Embedding parameters {Uw}|W|w=1 ∪
{Vd}

|D|
d=1 and {κ(n)}Nn=1.

for t = 1 to T do . after computing gradients:
for all At ∈ {Uw}|W|w=1 ∪ {Vd}

|D|
d=1 do

∇EL(At) =
∑N

n=1∇EL(n)(At)
∇RL(At)← (12) with∇EL(At)

αt =
α√∑t

i=1 ‖∇RL(Ai)‖2F
At+1 ← (13) with αt

end for
for n = 1 to N do

grad(κ
(n)
t ) = ∇EL(n)(κ

(n)
t ) + λκ

(n)
t

κ
(n)

t+ 1
2

= κ
(n)
t − β grad(κ

(n)
t )√∑t

i=1 grad2(κ
(n)
i )

κ
(n)
t+1 =

[
κ

(n)

t+ 1
2

]
+

end for
end for

4.4 Computational efficiency

The computational complexity of our model de-
pends on the complexity R3 of multiplication of
matrices of size R × R, and QR decomposition
4
3R

3 (Layton and Sussman, 2020; Trefethen and
III, 1997). Due to the number of elements in these
matrices d = R2, we can transform the complexity
of our model in the dimension of embedding. In
this view, the time complexity is O(kd1.5), where
k is the size of the context window. As shown in
Table (2), our model has computational benefits
in comparison with Transformer due to the linear
dependence of time complexity on the word se-
quence length. We note that in comparison with

Bi-LSTM models like ELMo, our model has lower
complexity on embedding dimension, and can be
computed in parallel using the associativity prop-
erty of matrix multiplication. Although our model
has a higher theoretical time complexity than the
vector space models, the real gap between them is
relatively small at ordinary embedding dimension
(∼ 400).

Method Time Space
PV-DBOW O(kd) O(d)
PV-DM (Concat) O(kd) O(kd)
ELMo O(kld2) O(ld2)
BERT O(k2hld) O(khld)
RDM (Ours) O(kd1.5) O(d)

Table 2: Comparison of time and space complexity of
several document embedding models, where k - size of
context window, d - embedding dimension, l - number
of layers, h - number of heads. The time complexity of
other discussed here vector space models is equivalent
to the complexity of PV-DBOW.

5 Numerical experiments

5.1 Experimental setup
Downstream Linear Protocol. We estimate
quality of pre-trained representations on the multi-
class document categorization tasks on the 20
Newsgroups and the ArXiv based long document
dataset (He et al., 2019). We choose these datasets
for our benchmarks because they are significantly
different in the document’s average length. This im-
plies that statistics of long n-grams differ between
these datasets too and in the case of the ArXiv
dataset statistics of n-grams are significantly bet-
ter converged than in the case of 20 newsgroups.
This fact allow us to hypothesize that matrix-space
models should less overfit on the ArXiv dataset.

We fix the document embeddings and optimize
multinomial logistic regression with SAGA opti-
mizer and l2-norm regularization. Instead of test
set we use nested 10-fold cross-validation to esti-
mate statistical significance using Wilcoxon signed-
rank test (Japkowicz and Shah, 2011; Dror et al.,
2018). For each fold we estimate the hyperparam-
eter of l2-regularization on 10 point logarithmic
grid from 0.01 to 100 by using additional 10-fold
cross-validation with macro-averaged F1 score. For
text preprocessing, we use CountVectorizer from
the Scikit-learn package. Additionally we remove
words which occur in the NLTK stopwords list or
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occur only in 1 document. In the case of ArXiv
dataset we use half of this dataset and use only
documents in the range from 1000 to 5000 words
(smaller documents are removed and bigger docu-
ments are reduced to the first 5000 words).

Dataset #cls |W| |D| #w
20 Newsgroups 20 75752 18846 180
ArXiv 6 251108 16371 3829

Table 3: Datasets considered in the paper, where #cls
- number of classes, #w - average number of words in
documents, |W| - vocabulary size, |D| - number of doc-
uments.

Baselines. We compare our model with differ-
ent vector space models: paragraph vectors (Le
and Mikolov, 2014), weighted combinations of
the word2vec skipgram vectors (Mikolov et al.,
2013) (average, TF-IDF and SIF (Arora et al.,
2017)), Doc2vecC (Chen, 2017), sent2vec (Pagliar-
dini et al., 2018) and recently proposed JoSe (Meng
et al., 2019). The comparison with the last two of
these models seems to be more informative than
with others because of some similarity of these
models to our model (sent2vec can use n-gram in-
formation and JoSe also based on the spherical type
of embedding geometry).

Due to the large number of possible values of hy-
perparameters for each model, we used the default
values proposed by the authors of these models or
proposed in subsequent studies of these models like
in the case of paragraph vectors (Lau and Baldwin,
2016). We modify only the min count to 1 and
window size to be equal to the number of negative
samples for paragraph2vec and word2vec models
because it gives better results for these methods in
our experiments. We choose n-grams number equal
to 1 for sent2vec, because other values doesn’t im-
prove results. To preserve the fairness of compar-
ison we use fixed embedding dimension, number
of negative samples, and number of epochs for all
models including ours. These values try to mimic
the usual values of these hyperparameters in prac-
tice.

We compare our model not only with vector mod-
els but also with neural network models. We use
5.5B ELMo (Peters et al., 2018) version which
is pre-trained on Wikipedia (1.9B) and all of the
monolingual news crawl data from WMT 2008-
2012 (3.6B). ELMo embedding dimension is equal
to 1024. Also we use 768-dimensional embedding

vectors from BERT model ”bert-base-uncased”.
Following Devlin et al. (2019) we take the last layer
hidden state corresponding to the [CLS] token as
the aggregate document representation. If length of
document is bigger than 512 we cut document on
512-length parts and average representation of this
parts. Finally, we add Sentence BERT (Reimers
and Gurevych, 2019) to the baseline models. This
model is fine-tuned on SNLI and MultiNLI datasets
for sentence embedding generation. We use 768-
dimensional embedding vectors from model ”bert-
base-nli-mean-tokens”.

We do not perform fine-tuning of BERT and
ELMo models for our datasets, because in our ex-
periments it doesn’t give any positive effect on
the final performance of these models. However,
this is not true for Sentence BERT. Fine-tuning
slightly improve performance of this model on the
20 newsgroup (50 epoch with maximum margin
triplet loss).

We should notice that this experimental design
gives some benefits to neural network models in
comparison with log-multilinear models, but it is
more consistent with the ordinary practical use case
of the Transformers and RNN models. However,
the next experiment will show that log-multilinear
models can still outperform pre-trained neural net-
works.

Ablation study. For ablation study, we use dif-
ferent settings of our model. RDM means rotation
document model, i.e. our model. RDM-R means
our model without rotation group constraints. By
(1) we mean model which utilize only unigrams
and documents co-occurance information. By (3)
and (5) we mean model which utilizes informa-
tion from (1, 2, 3)-grams and (1, 2, 3, 4, 5)-grams
respectively. For RDM, we use 1e-2 and 1e-3 as
learning rates of Radagrad and projected Adagrad
respectively and we use λ = 15 for 20 newsgroups
and change λ to 5 for ArXiv dataset due to smaller
number of epoch in this experiment. For RDM-R
we use 1e-2 as learning rate for Adagrad.

5.2 Experimental results and comparison of
performance

Comparison to baselines. As one may observe
in the Table (4), our models yield results compara-
ble or outperforming the baseline methods, includ-
ing the simpler log-multilinear models (e.g. Skip-
gram) and more complex models featuring nonlin-
ear transformations, such as recurrences (ELMo)
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Models 20 Newsgroups ArXiv
Acc Prec Rec F1 Acc Prec Rec F1

PV-DBOW 88.7 88.4 88.2 88.2 89.1 89.2 89.2 89.2
PV-DM 77.2 76.8 76.5 76.5 42.2 42.3 42.0 41.9
Skipgram+Average 90.3 90.2 90.0 90.0 92.4 92.3 92.3 92.3
Skipgram+TF-IDF 90.4 90.2 90.1 90.1 92.6 92.5 92.4 92.4
Skipgram+SIF 90.4 90.2 90.1 90.1 92.4 92.3 92.3 92.3
Sent2vec 87.9 87.6 87.5 87.5 91.9 91.7 91.7 91.7
Doc2vecC 90.0 89.8 89.7 89.7 93.2 93.1 93.1 93.1
JoSe 87.8 87.6 87.4 87.4 91.3 91.3 91.2 91.2
ELMo 79.2 78.8 78.8 78.7 91.6 91.5 91.4 91.4
BERT 74.3 73.6 73.6 73.5 92.3 92.2 92.1 92.1
Sentence BERT 79.5 79.1 79.0 79.0 89.0 88.9 88.8 88.8

RDM-R (1) 86.8 86.4 86.3 86.3 94.0∗ 93.9∗ 93.8∗ 93.8∗

RDM-R (3) 87.9 87.6 87.4 87.4 94.5∗ 94.4∗ 94.4∗ 94.4∗

RDM-R (5) 88.3 88.0 87.9 87.9 94.6∗ 94.4∗ 94.4∗ 94.4∗

RDM (1) 89.3 89.2 89.0 89.0 94.0∗ 93.9∗ 93.9∗ 93.9∗

RDM (3) 90.7 90.5 90.4 90.4 94.0∗ 93.9∗ 93.9∗ 93.9∗

RDM (5) 91.1∗ 90.9∗ 90.8∗ 90.8∗ 94.0∗ 93.9∗ 93.9∗ 93.9∗

Table 4: Text classification performance on the 20 Newsgroups (short documents) and on the modified ArXiv (long
documents) datasets. We fix the number of epochs to 50, the embedding dimension to 400, and the number of neg-
ative samples to 15 for all models on the 20 Newsgroups. On the ArXiv dataset, we use the same hyperparameters
except for only the number of epochs which is equal to 5. We use macro-average for Precision, Recall, and F1.

and transformer blocks (BERT, SentenceBERT).
More specifically, on the 20 newsgroups, the RDM
(5) model yields the best results significantly2 out-
performing all the listed baseline approaches. It is
interesting that contrary to the 20 Newsgroups, all
RDM variants with any number of the n-grams sets
show strong results and significantly outperform
other models on the ArXiv dataset. Weighted com-
binations of the skipgram vectors and doc2vecC
model achieve the closest to our result. This con-
firms that neural models like ELMo and BERT, are
not the best way for all datasets and log-multilinear
models can outperform them. We can see that per-
formance of nonlinear models increase if we use
a large document dataset and BERT can outper-
form some of the log-multilinear approaches (PV-
DBOW, JoSe and sent2vec), but still, its result is
not on the top level.

Comparison between our models. On observ-
ing the results we can see that our model increase
the performance of classification when adding the
n-gram set with a bigger length. This property has
both models with rotation group constraints and
without such constraints. Despite this fact, as we

2We use ∗ if the comparison of our model with the baseline
models has p < 0.05.

can see the model without rotation constraints is
less robust in respect to noisy statistics of small doc-
ument dataset and achieve performance less than
the PV-DBOW model, while the rotation group
model outperforms all other models. However,
once we move on to a dataset with a larger doc-
ument’s average length (ArXiv), RDM-R performs
better than all other models, including RDM. This
confirms our hypothesis that the existence of good
statistics of long n-grams has critical value for
matrix space models. Due to strong associativ-
ity between sets of n-grams, our model needs more
parameters to approximate all the co-occurrences.
The RDM-R has a higher number of degrees of
freedom than the RDM R2 vs R(R−1)

2 . We think
that it allows RDM-R to outperform RDM in this
experiment. This intuition can be also confirmed
by the fact that RDM (1) and RDM-R (1) have the
same performance level. And only if we increase
the number of n-grams for the model from 1 to
3, then RDM-R can achieve better performance.
However, if we increase the number of n-grams set
from 3 to 5 both models stay on the same level of
performance. This is the sign that we need to use a
bigger embedding dimension if we want to achieve
even better results.
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In summary, if we have short documents, it’s
better to use RDM. For long document dataset with
restriction on the embedding dimension, we sug-
gest to relax the rotation group constraints. This
trick allows RDM to use more degrees of freedom
to estimate data precisely.

6 Conclusion

In this paper, we proposed a novel unsupervised
representation learning method based on the gener-
alized tensor chain with rotation group constraints,
which can utilize higher-order word interactions
and preserve most part of the computational effi-
ciency and interpretability of vector-based mod-
els. Our model achieves state-of-the-art results in
the document classification benchmarks on the 20
newsgroups and modified ArXiv dataset. A further
direction of research could be focused on adding
tensor kernel functions to the model to eliminate
problems with dependence on the dimension of
embedding. It could be interesting to augment
this type of model with the different loss functions
based not only on n-gram-document interactions
but also on word-word interactions from the knowl-
edge graph or document-document interaction from
the citation graph of the documents.
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