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Abstract

Pre-trained Language Models (PLMs) have

achieved great success on Machine Reading

Comprehension (MRC) over the past few

years. Although the general language represen-

tation learned from large-scale corpora does

benefit MRC, the poor support in evidence ex-

traction which requires reasoning across mul-

tiple sentences hinders PLMs from further ad-

vancing MRC. To bridge the gap between gen-

eral PLMs and MRC, we present REPT, a

REtrieval-based Pre-Training approach. In

particular, we introduce two self-supervised

tasks to strengthen evidence extraction dur-

ing pre-training, which is further inherited by

downstream MRC tasks through the consis-

tent retrieval operation and model architecture.

To evaluate our proposed method, we conduct

extensive experiments on five MRC datasets

that require collecting evidence from and rea-

soning across multiple sentences. Experimen-

tal results demonstrate the effectiveness of our

pre-training approach. Moreover, further anal-

ysis shows that our approach is able to enhance

the capacity of evidence extraction without ex-

plicit supervision.

1 Introduction

Machine Reading Comprehension (MRC) is an im-

portant task to evaluate the machine understanding

of natural language. Given a set of documents and a

question (with possible options), an MRC system is

required to provide the correct answer by either re-

trieving a meaningful span (Rajpurkar et al., 2018a)

or selecting the correct option from a few candi-

dates (Lai et al., 2017; Sun et al., 2019; Guo et al.,

2019, 2021). Recently, with the development of

self-supervised learning, the pre-trained language

models (Devlin et al., 2019; Yang et al., 2019b)

*Work is done during internship at Alibaba Group.
†Corresponding author: Liqiang Nie.

fine-tuned on several machine reading comprehen-

sion benchmarks (Reddy et al., 2019; Kwiatkowski

et al., 2019) have achieved superior performance.

The dominant reason lies in the strong and general

contextual representation learned from large-scale

natural language corpora. Nevertheless, PLMs fo-

cus more on the general language representation

and semantics to benefit various downstream tasks,

while MRC demands the capability of extracting

evidence across one or multiple documents and per-

forming reasoning over the collected clues (Fang

et al., 2020; Yang et al., 2018). Put it differently,

there exists an obvious gap, indicating an insuffi-

cient exploitation of PLMs over MRC.

Some efforts have been made to bridge the gap

between PLMs and downstream tasks, which can

be roughly divided into two categories: knowledge

enhancement and task-oriented pre-training (Qiu

et al., 2020). The former introduces commonsense

or world knowledge into the pre-training (Zhang

et al., 2019; Sun et al., 2020; Varkel and Globerson,

2020; Ye et al., 2020) or fine-tuning (Yang et al.,

2019a) for better performance over knowledge-

driven tasks. And the latter includes some deli-

cately designed pre-training tasks, e.g., the con-

trastive approach of learning discourse knowledge

towards textual entailment task (Iter et al., 2020).

Although these approaches have achieved some im-

provements on certain tasks, few of them are specif-

ically designed for evidence extraction, which is

indeed indispensable to MRC.

In fact, equipping PLMs with the capability of

evidence extraction in MRC is challenging due

to the following two factors. 1) The process of

collecting clues from a document is difficult to be

integrated into PLMs without designing specific

model architectures or pre-training tasks (Qiu et al.,

2020; Zhao et al., 2020). And 2) large-scale pre-

training process would make PLMs overfit to pre-
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Input Order:        1 2 3 4 5 6 7 8

Original Order: 1 3 4 2 5 6 7 8

Recovery: 

1. [MASK A] -> education
2. [MASK B] -> care
3. [MASK C] -> Orana

Query

1. History The Mentally Retarded Children’s Society of SA Inc. was
established in 1950 by a group of parents who wanted [MASK A]
employment and accommodation opportunities for their children within
the local community at a time when institutionalised [MASK B] in
Adelaide was their only alternative.

2. Today [MASK C] provides assisted employment, assisted accommodation
and respite services to people with intellectual disabilities.

Passage

3. The society’s aims were to seek education or training facilities for people
with intellectual disabilities to establish sheltered workshops and to
establish residential hostels.

4. A number of sheltered workshops were established and in 1980, the name
was changed to the Aboriginal word Orana which means Welcome.

5. Orana’s current and previous clients include Mitsubishi Motors Clipsal
RAA Elders Limited and Billycart Kids.

6. Orana was one of the first disability service organisations to achieve
Quality Accreditation.

7. After the unveiling of the Australian Government’s Commonwealth Home
Support Programme CHSP and seeing it as a natural step of progression
Orana now provides quality tailored aged care at home.

8. The well resourced organization delivers help across a range of areas
helping the elderly remain where they want to be in the comfort of their
own home during their later years.

Figure 1: A running example obtained from our

method. The query sentences are extracted from the

original document with some crucial information be-

ing randomly masked, i.e., the sentence 1 and 2. The

model is required to predict the preceding and follow-

ing sentence for each query in the original document

and recover the masked clues, i.e., infer the original or-

der from input order and fill the [MASK] with the ini-

tial token. The phrases in boxes are the possible clues

for recovering the masked tokens and the correct order.

training tasks (Chung et al., 2021; Tamkin et al.,

2020). In other words, it is difficult to take full

advantage of the pre-training merits if the training

objectives of pre-training and downstream MRC

are greatly separated.

To deal with the aforementioned challenges, we

propose a novel retrieval-based pre-training ap-

proach, REPT, to bridge the gap between PLMs

and MRC. Firstly, to unify the training objective,

we design a novel pre-training task, namely Sur-

rounding Sentences Prediction (SSP), as illustrated

in Figure 1. Given a document, several sentences

will be firstly selected as queries, and the others are

jointly treated as a passage1. Thereafter, for each

query, the model should predict its preceding and

following sentences in the original document by

collecting clues from each sentence, which is com-

patible with evidence extraction in MRC tasks. It

is worth emphasizing that, the repeated occurrence

of entities or nouns across different sentences of-

1We use passage here to keep consistent with MRC tasks.
And document refers to the combination of queries and pas-
sage.

ten lead to information short-cut (Lee et al., 2020),

from which the order of sentences can be easily re-

covered. In view of this, we propose to mask such

explicit clues. As a result, the model is enforced to

infer the correct positions of queries by gathering

evidence with the incomplete information. Sec-

ondly, to preserve the effectiveness of contextual

representation, the masked clues are also required

to be recovered through retrieving relevant infor-

mation from other parts of the document, which

is implemented via our Retrieval based Masked

Language Modeling (RMLM) task.

In this way, the pre-training stage can be prop-

erly aligned with MRC: 1) the training objectives

are connected through the introduction of the two

pre-training tasks, which will be inherited by down-

stream MRC tasks through consistent retrieval oper-

ation. And 2) the capability of evidence extraction

from documents or sentences is enhanced during

pre-training, and will be smoothly transferred to

MRC. Our contributions in this paper are summa-

rized as follows:

1. We present REPT, a novel pre-training ap-

proach, to bridge the gap between PLMs and

MRC through retrieval-based pre-training.

2. We design two self-supervised pre-training

tasks, i.e., SSP and RMLM, to augment PLMs

with the ability of evidence extraction with

the help of retrieval operation and eliminating

information short-cut, which can be smoothly

transferred to downstream MRC tasks.

3. We evaluate our method over five reading

comprehension benchmarks of two different

task forms: Multiple Choice QA (MCQA)

and Span Extraction (SE). The substantial im-

provements over strong baselines demonstrate

the effectiveness of our pre-training approach.

We conduct an empirical study to verify that

our method are able to enhance evidence ex-

traction as expected.

2 Related Work

MRC has received increasing attention in recent

years. Many challenging benchmarks have been

established to examine various forms of reasoning

abilities, e.g., multi-hop (Yang et al., 2018), dis-

crete (Dua et al., 2019), and logic reasoning (Yu

et al., 2020). To solve the problem, a typical design

is to gather possible clues through entity linking
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(Zhao et al., 2020) or self-constructed graph (Fang

et al., 2020; Ran et al., 2019), and then perform

multi-step reasoning. It is worth noting that, gath-

ering clues is vital but challenging, especially for

long document understanding. Some efforts have

been dedicated to improving evidence extraction

via direct (Wang et al., 2018) or distant supervision

(Niu et al., 2020).

Generally, the fine-tuned PLMs (Devlin et al.,

2019; Yang et al., 2019b) can obtain superior per-

formance in MRC due to their strong and general

language representation. However, there still exist

some gaps between PLMs and various downstream

tasks, since certain abilities required by the down-

stream tasks cannot be learned through the existing

pre-training tasks (Qiu et al., 2020). In order to

take full advantage of PLMs, a few studies attempt

to align the pre-training and fine-tuning stages. For

example, Tamborrino et al. (2020) reformulated

the commonsense question answering task as scor-

ing via leveraging the predicted probabilities for

Masked Language Modeling (MLM) in RoBERTa

(Liu et al., 2019). With the help of the common-

sense learned through MLM, the method achieves

comparable results with supervised approaches in

zero-shot setting, indicating that bridging the gap

between these two stages yields considerable im-

provement. Chung et al. (2021) tried to address

the overfitting problem during pre-training through

decoupling input and output embedding weights

and enlarging the embedding size during decoding.

The resultant model is therefore more transferable

across tasks and languages.

In addition, some task-oriented pre-training

methods have also been developed. For instance,

Wang et al. (2020) proposed a novel pre-training

method for sentence representation learning, where

the masked tokens in a sentence are forced to be

recovered from other sentences through sentence-

level attention. Based on this, the attention weights

can be directly fine-tuned to rank the candidates

in answer selection or information retrieval. Lee

et al. (2019) tried to learn the dense document rep-

resentation for information retrieval by minimizing

the distance between the representation of an query

sentence and its context. Guu et al. (2020) designed

an augmented MLM tasks to jointly train a neural

retriever and a language model for Open-domain

QA. Different from these methods ranking the doc-

uments for open-domain QA, our approach focuses

on enhancing the ability of evidence extraction in

MRC, where the MLM based task by it alone is

insufficient.

3 Method

In this section, we present the details of the pro-

posed method, REPT. We firstly describe the data

pre-processing part (§3.1), and then illustrate the

two pre-training tasks, i.e., SSP and RMLM (§3.3)

and the training objectives (§3.4). Finally, we detail

how to fine-tune our pre-trained model for down-

stream tasks through retrieval-based evidence ex-

traction (§3.5).

3.1 Data Pre-processing
For pre-training, we use the English Wikipedia2 as

our training data. We divide each Wikipedia article

into segments, each containing up to 500 tokens3

without overlapping. We treat each segment as a

document and split it into several sentences4.

In order to increase the difficulty and efficiency

of pre-training, for each document, we select 30%

of the most important sentences as queries and the

rest in their original order as a passage. Specifically,

the importance of each sentence in a document is

measured through the summation of the importance

of entities and nouns it contains, which is further

defined as the number of sentences an entity/noun

occurs. Hereafter, masking is introduced to enti-

ties and nouns in queries according to pre-defined

ratios to eliminate information short-cut. More de-

tails about the masking strategy are described in

Appendix A and an example after pre-processing

can be found in Figure 1.

3.2 Task Definition
We treat a document as a sequence of n sequen-

tial sentences with m tokens. Supposing that

there are t sentences selected as queries follow-

ing §3.1, the rearranged sequence is defined as S =
[s1, s2, · · · , st, · · · , sn], and the index of queries is

Q = {1, 2, · · · , t}. Besides, we define a mapping

function r to map the rearranged sentences to their

original position. Taking Figure 1 as an example,

the mapping r(s1) = 1, r(s2) = 4, r(s3) = 2
and (s4) = 3 indicates that the original order is

{s1, s3, s4, s2, · · · }.

Taking S as input, the Surrounding Sentences

Prediction task should predict the correct sentence

2We use the 2020/05/01 dump.
3The tokenized sub-words following BERT and RoBERTa.
4Any sentence with less than five tokens is concatenated

to its previous one.
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b) Sentence-Level Retrieval for SSP
and MCQA

MLP

Attention

SSP

MCQA

Transformer

[CLS] [SEP] [SEP]

Multi-Head
Attention

[CLS] [SEP] [SEP]

a) Encoder

c) Document-Level Retrieval for RMLM, ODQA and
Span Extraction (SE)

RMLM
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MLP

Query Representation

Token Representation
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Fine-tuning

Weighted Average of Tokens

Figure 2: Framework of our model. a) Encoder composed of a pre-trained Transformer encoder and a query

generator based on multi-head attention. b) The attention-based sentence-level retrieval for evidence extraction for

each sentence, which will be further adopted by SSP during pre-training and MCQA during fine-tuning. c) The

attention-based document-level retrieval for evidence extraction among the input sequence, which is employed for

RMLM. For SE, the similarity function is directly fine-tuned.

index a and b for each query sq with q ∈ Q5:{
r(sa) = r(sq)− 1,
r(sb) = r(sq) + 1.

(1)

As for the Retrieval based Masked Language

Modeling (RMLM) task, the model should recover

all the masked tokens in each query sq.

3.3 Model
First of all, we leverage a pre-trained Transformer

(Vaswani et al., 2017), such as BERT, as our en-

coder to obtain the contextual representation of sen-

tences. The output of Transformer is formulated as:

H = [hcls, · · · ,hm,hsep] = Encoder(S̃), (2)

where H ∈ R
d×(m+3), and d is the hidden size. For

a better illustration, we will use Hi to represent

the hidden state matrix of tokens that belong to

sentence si, such that:

H = [H1,H2, · · · ,Hn], Hi ∈ R
d×li ,

where li is the length of sentence si and m =
∑

i li.
Since the process for each query is exactly the same,

we use q ∈ Q as a representative to introduce the

calculation with respect to each query below.

5Specifically, for r(sq) = 1 or r(sq) = n, the correspond-
ing prediction task is removed since its preceding or following
sentence does not exist.

3.3.1 Query Representation
In order to gather potential clues from a docu-

ment or sentences, we adopt the multi-head at-

tention mechanism proposed by (Vaswani et al.,

2017) to obtain the sentence-level representation

for each query. Formally, the attention mechanism

is defined as MHA(Q,K,V), where Q,K,V are

query, key and value matrices, respectively. To con-

sider the global information, we leverage hcls as

the query vector, and Hq as K and V:

vq
0
�
= MHA(h�

cls,H
q,Hq). (3)

During pre-training, we reuse the layer defined

by Equation 3 with Q = vq
0 and K = V = Hq,

to generate the task-specific query representation

vq, which is designed to alleviate the overfitting

problem (He et al., 2021).

3.3.2 Surrounding Sentence Prediction
To enhance the capability of pre-trained models for

evidence extraction, we have carefully designed the

SSP task, where the model should predict the pre-

ceding and following sentences for a given query by

extracting the relevant evidence from each sentence.

Consequently, we introduce a retrieval operation,

which is implemented via a single-head attention
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mechanism6:

ui
q
�
= Att(vq�,Hi,Hi), (4)

where ui
q is the representation of sentence si, high-

lighting the evidence information pertaining to

query sq. Finally, the score of each sentence in

the document with regard to sq is obtained through:

oiq = W2(tanh(W1u
i
q + b1)) + b2. (5)

3.3.3 Retrieval based MLM
Since the masking noise introduced when construct-

ing queries could also bring inconsistency between

pre-training and fine-tuning, we further designed a

retrieval based MLM task to alleviate this problem.

In the RMLM task, the model should predict the

masked entities or nouns through retrieving rele-

vant information from a document. More specifi-

cally, the query-aware evidence representation of

the input sequence is obtained via:

gq� = Att(vq�,H,H). (6)

Denoting the index of a masked token in query

sq as z, the representation of the masked token sqz
used for recovering is:

h̃q
z = f(hz,g

q), (7)

where the function f(·, ·) is implemented as a nor-

malized 2-layer feed-forward network, and the de-

tails are illustrated in Appendix B.2.

3.4 Optimization
As the definition in Equation 1, given a and b as

the index of the original preceding and following

sentences of the query sq in S, the corresponding

probabilities for surrounding sentences are formu-

lated as:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
pssp(a|q,S) =

exp(oaq)∑n
j=1,j /∈{b,q} exp(o

j
q)
,

pssp(b|q,S) =
exp(obq)∑n

j=1,j /∈{a,q} exp(o
j
q)
.

(8)

The objective of SSP is subsequently defined as:

Lssp = E(− 1

|Q|
∑
q

( log pssp(a|q,S)+

log pssp(b|q,S))).
(9)

6The details are illustrated in Appendix B.1.

As for RMLM, supposing the index set of masked

tokens in query sq is Zq, and the set of correspond-

ing original tokens is X q, the probability for recov-

ering a masked token is:

prmlm(xz|z, q,S) = exp(e(xz)
�h̃q

z)∑
x′ exp(e(x′)�h̃q

z)
, (10)

where z ∈ Zq, xz ∈ X q, x′ is a token in vocabu-

lary, and e(x) denotes the word embedding of x.

Then the objective of RMLM is:

Lrmlm = E(−
∑

q

∑
z log ppmlm(xz|z, q,S)∑

q |Zq| ).

(11)

During pre-training, the model tries to optimize

the two objectives jointly:

L = Lssp + Lrmlm. (12)

3.5 Fine-tuning
During fine-tuning, the input contains a query sen-

tence and a passage. For multiple choice QA tasks,

we concatenate a question with an option to form

a question-option pair and use it as a whole query.

In this section, we use q = 0 to represent the index

of the query and the sentences of passage are kept

in their original order. The input sequence can be

thus denoted as:

S = [sq, s1, s2, · · · , sn].

To inherit the evidence extraction ability aug-

mented during pre-training, we incorporate the

same retrieval operation into fine-tuning to collect

clues from the passage. Firstly, we reuse the at-

tention mechanism defined in Equation 3 to obtain

the query representation vq. As for the evidence

extraction process, we formulate it differently for

Multiple Choice QA and Span Extraction.

3.5.1 Multiple Choice QA
Similar to Equation 4, we adopt an attention mech-

anism, whereby the query-aware sentence represen-

tation ui
q is obtained via gathering evidence from

each sentence:

ui
q
�
= Att(vq�,Hi,Hi), i �= q. (13)

And the final passage representation highlighting

the evidence can be obtained via the sentence-level

evidence extraction:

vp = Att(vq�,U,U), (14)
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where U = [u1
q , · · · ,un

q ] and U ∈ R
d×n. Finally,

we represent the probability of each option c using

both the query vq and the passage vp:

pmc
c ∝ exp(W6(tanh(W5[v

q;vp] + b5)) + b6).
(15)

Specifically, for Multi-RC, since the number of

correct answer options for each question is uncer-

tain, the task is often treated as a binary classifica-

tion problem for each option. As a result, we adopt

a MLP to get the probability of whether an option

c is correct:

pmc
c = σ(W8(tanh(W7[v

q;vp] + b7)) + b8),
(16)

where σ is the sigmoid function.

3.5.2 Span Extraction
Since answer spans are often consistent with corre-

sponding evidences, we directly leverage the query

to extract relevant spans. The probability of select-

ing start position s and end position e of an answer

span is given by:{
pspans ∝ exp(vq�W9hs),

pspane ∝ exp(vq�W10he).
(17)

4 Experiment

4.1 Dataset
4.1.1 Multiple Choice Question Answering
DREAM (Sun et al., 2019) contains 10,197 multi-

ple choice questions for 6,444 dialogues collected

from English Examinations designed by human

experts, in which 85% of the questions require rea-

soning across multiple sentences, and 34% of the

questions also involve commonsense knowledge.

RACE (Lai et al., 2017) is a large-scale reading

comprehension dataset collected from English Ex-

aminations and created by domain experts to test

students’ reading comprehension skills. It has a

wide variety of question types, e.g., summariza-

tion, inference, deduction and context matching,

and requires complex reasoning techniques.

Multi-RC (Khashabi et al., 2018) is a dataset of

short paragraphs and multi-sentence questions. The

number of correct answer options for each question

is not pre-specified and the correct answer(s) is not

required to be a span in the text. Moreover, the

dataset provides annotated evidence sentence.

ReClor (Yu et al., 2020) is extracted from logical

reasoning questions of standardized graduate ad-

mission examinations. Existing studies show that

the state-of-the-art models perform poorly on Re-

Clor, indicating the deficiency of logical reasoning

ability of current PLMs.

4.1.2 Span Extraction
Hotpot QA (Yang et al., 2018) is a question an-

swering dataset involving natural and multi-hop

questions. The challenge contains two settings, the

distractor setting and the full-wiki setting. In this

paper, we focused on the full-wiki setting, where

the system should retrieve the relevant paragraphs

from Wikipedia and then predict the answer.

SQuAD2.0 (Rajpurkar et al., 2018b) is reading

comprehension dataset, consisting of questions

posed by crowdworkers on a set of Wikipedia arti-

cles, where the answer to every question is a seg-

ment of text, or span, from the corresponding read-

ing passage, or the question might be unanswer-

able.

4.2 Implementation Detail

We leave the details about the implementation and

pre-training corpora in Appendix A due to the limi-

tation of space.

4.3 Baseline

Since our method is used for further pre-

training, we mainly compared our model with

BERT/RoBERTa and their variants. For Hotpot

QA, we integrated our models into an open-sourced

and well-accepted system (Asai et al., 2020) and

evaluated the performance. The details of baselines

are summarized as follows:

4.3.1 Multiple Choice QA
BERT is the BERT-base model with 2-layer MLP

as the task-specific module.

BERT-Q & RoBERTa-Q refer to the designed but

not further trained models, which include an extra

multi-head attention for generating query represen-

tation via Equation 3, and our retrieval operation

for evidence extraction as in §3.5.1 and §3.5.2.

BERT-Q w. R/S & RoBERTa-Q w. R/S refer

to the designed models further trained with our

proposed SSP and RMLM tasks (denoted as S and

R, respectively).

BERT-Q w. R & BERT-Q w. S refer to the mod-

els further trained with only one pre-training task,

RMLM or SSP.

BERT-Q w. M & BERT w. M refer to the models

further trained with MLM. For fair comparison, we
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RACE DREAM ReClor Multi-RC
Model / Dataset Dev Test Dev Test Dev Test Dev

Acc. Acc. Acc. Acc. Acc. Acc. EM F1a F1m
BERT-base† – 65.0 63.4 63.2 54.6 47.3 – – –

BERT w. M 67.7 66.3 62.9 63.2 51.6 45.1 26.6 71.8 74.2

BERT-Q 67.2 65.2 62.9 62.3 48.4 45.0 22.8 69.6 72.0

BERT-Q w. M 67.7 66.9 61.8 62.2 48.8 48.3 23.8 70.1 72.6

BERT-Q w. R 65.5 64.7 59.0 58.6 46.8 45.1 26.4 71.5 74.0

BERT-Q w. S 69.5 66.5 64.8 62.2 52.0 46.5 30.0 73.0 75.8

BERT-Q w. R/S 70.1 68.1 64.4 64.0 50.6 49.2 31.9 73.8 76.3
RoBERTa-base 76.0 75.5 71.2 69.8 54.8 50.8 38.7 77.1 79.2

RoBERTa-Q 76.8 75.7 70.9 69.5 56.0 49.7 34.6 75.4 77.4

RoBERTa-Q w. R/S 77.1 74.9 70.9 70.8 54.8 50.3 40.4 77.6 80.0

Table 1: Results on multiple choice question answering tasks. (F1a: F1 score on all answer-options; F1m: macro-

average F1 score of all questions.) We ran all experiments using four different random seeds with the same hyper-

parameters, and report the average performance, except for ReClor and Multi-RC. For ReClor, we submitted the

best model on the development set to the leaderboard to get the results on the test set. For MultiRC, we merely

reported the performance on development set since the test set is unavailable. †: The results are reported by the

leaderboard.

further train BERT with the same Wikipedia corpus

for equivalent steps.

4.3.2 Hotpot QA
For hotpot QA, we constructed the system based

on Graph-based Recurrent Retriever (Asai et al.,

2020), which includes a retriever and a reader based

on BERT. We simply replaced the reader with our

models and evaluated their performance in compar-

ison with several published strong baselines on the

leaderboard7.

5 Results and Analyses

5.1 Results for Multiple Choice QA
Table 1 shows the results of the baselines and our

method on multiple choice question answering.

From Table 1, we can observe that: 1) Compared

with BERT-Q and BERT, our method significantly

improves the performance over all the datasets,

which validates the effectiveness of our proposed

pre-training method. 2) As for the model structure,

BERT-Q obtains similar or worse results compared

with BERT, which suggests that the retrieval opera-

tion can hardly improve the performance without

specialised pre-training. 3) Taking the rows of

BERT, BERT-Q, BERT w. M, BERT-Q w. M for

comparison, the models with further pre-training

using MLM achieve similar or slightly higher per-

formance. The results show that further training

BERT using MLM and the same corpus can only

achieve very limited improvements. 4) Regarding

7https://hotpotqa.github.io/.

the two pre-training tasks, BERT-Q w. R/S leads

to similar performance on the development sets

compared with BERT-Q w. S, but a much higher

accuracy on the test sets, which suggests RMLM

can help to maintain the effectiveness of contex-

tual language representation. However, there is a

significant degradation over all datasets for BERT-

Q w. R. The main reason is possibly because the

model cannot tolerate the sentence shuffling noise,

which may lead to the discrepancy between pre-

training and MRC, and thus need to be alleviated

through SSP. And 5) considering the experiments

over RoBERTa-based models, RoBERTa-Q w. R/S

outperforms RoBERTa-Q and RoBERTa-base with

considerable improvements over Multi-RC and the

test set of DREAM, which also indicates that our

method can benefit stronger PLMs.

5.2 Performance on Span Extraction QA

The results of span extraction on Hotpot QA are

shown in Table 2. We constructed the system using

the Graph Recurrent Retriever (GRR) proposed by

Asai et al. (2020) and different readers. As shown

in the table, GRR + BERT-Q w. R/S outpeforms

GRR + BERT-base by more than 2.5% absolute

points on both EM and F1. And GRR + RoBERTa-

Q w. R/S also achieves a significant improvement

over GRR + RoBERTa-base. During the test stage,

our best system, GRR + RoBERTa-Q w. R/S per-

forms better than the strong baselines and get closer

to GRR + BERT-wwm-large. The above results

strongly demonstrate the effectiveness of our pre-
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Model / Dataset Dev Test

EM F1 EM F1

Transformer-XH (Zhao et al., 2020) 54.0 66.2 51.6 64.7

HGN (Fang et al., 2020) – – 56.7 69.2

GRR + BERT-wwm-Large* 60.5 73.3 60.0 73.0
GRR + BERT-base* 52.7 65.8 – –

GRR + BERT-Q w. R/S 55.2 68.4 – –

GRR + RoBERTa-base 56.8 69.6 – –

GRR + RoBERTa-Q w. R/S 58.4 71.3 58.1 71.0

Table 2: Results of our method and other strong base-

lines on Hotpot QA. GRR means the Graph Recurrent

Retriever proposed by Asai et al. (2020), GRR + BERT-
base means the system whose retriever is GRR and

reader is built on BERT-base. *: The results are re-

ported by Asai et al. (2020).

Model / Dataset EM F1

BERT-Q 71.7 74.9

BERT-Q w. R/S 77.2 80.4
RoBERTa-Q 80.3 83.7

RoBERTa-Q w. R/S 81.7 85.0

Table 3: Results of our method and other baselines on

the dev set of SQuAD2.0.

training method on the task requiring multi-hop

evidence extraction and reasoning.

Besides, we also conducted experiments on the

most common benchmark, SQuAD2.0. The results

on development set shown in Table 3 have also ver-

ified the effectiveness of our proposed pre-training

method.

5.3 Evaluation of Evidence Extraction

To evaluate the performance of our method for

evidence extraction in the setting of implicit super-

vision (with only answers), we ranked sentences in

a passage using their attention weights obtained in

Equation 4 and chose those sentences with higher

weights as the evidences.

As shown in Table 4, the models with our pro-

posed pre-training tasks obtain considerable im-

provements on the precision and recall of evidence

extraction, which verifies that our pre-training

method is able to effectively equip PLMs with the

capability for gathering evidence without explicit

supervision. For a better illustration, we further

provided two examples in Appendix C.

5.4 Effect of Different Masking Ratio During
Pre-training

Table 5 shows the results of our model pre-trained

with different masking ratios. Due to the small

amount of entities contained in the document, we

Model P@1 R@1 P@2 R@2
BERT-Q 21.83 9.66 20.24 17.73

BERT-Q w. R/S 45.30 20.38 38.51 34.55
RoBERTa-Q 28.25 12.45 26.93 23.74

RoBERTa-Q w. R/S 35.34 15.76 30.33 26.85

Table 4: Results of evidence extraction on the develop-

ment set of Multi-RC.

RACE Multi-RC

Model/Dataset Dev Test Dev

Acc. Acc. EM F1a F1m
B.Q w.R/S (30%) 70.1 68.1 31.9 73.8 76.3
B.Q w.R/S (60%) 70.2 67.3 32.0 73.8 76.3
B.Q w.R/S (90%) 70.4 68.2 31.0 73.5 76.2

B.Q w.S (No Mask) 69.0 67.2 29.0 72.7 75.4

Table 5: Results on RACE and Multi-RC using mod-

els pre-trained with different mask ratios. B.Q means

BERT-Q.

only consisdered the masking ratio of nouns as

the variable. Formally, we considered three ratios:

30%, 60%, 90%, and an extra setting, where the

entities and nouns are all kept and the RMLM task

is also removed during pre-training.

As shown in the table, with more possible clues

being masked, the model tend to obtain better re-

sults on the downstream tasks. For example, BERT-

Q w. R/S (90%) achieves the best accuracy on

RACE, and BERT-Q w. R/S (60%) obtains the

highest performance over Multi-RC. And all mod-

els that employ masking outperform BERT-Q w. S

(no masking). The main reason can be that with

more explicit information short-cut being elimi-

nated, it is more difficult for models to collect po-

tential clues, and PLMs are enhanced with stronger

reasoning ability of evidence extraction. However,

there also exists a trade-off: as higher masking

ratio leads to more noise, it could worsen the mis-

match between pre-training and fine-tuning, and

cause performance degradation, e.g., BERT-Q w.

R/S (90%) performs the worst on Multi-RC.

5.5 Performance in Low Resource Scenario

Figure 3 depicts the performance of BERT-Q w.

R/S on the development and test set of RACE with

limited training set. For each specific relative ra-

tio, four reduced training sets are automatically

generated using different random seeds and the cor-

responding accuracies are plotted on the figure. It

is observed that with 70% training data, our model

outperforms the baseline, BERT-Q, which was ini-

tialized using BERT and has not been further pre-
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67.2%

65.2%

BERT-Q  Dev

BERT-Q Test

BERT-Q w. R/S Dev

BERT-Q w. R/S Test

Figure 3: The accuracy of BERT-Q w. R/S on the de-

velopment and test of RACE. The horizontal axis refers

to the ratio K of training data compared to the original

training set.

trained. The results indicate that our method can

help to reduce the amount of annotated training

data for downstream MRC tasks, which is espe-

cially useful in low resource scenarios.

6 Conclusion and Future Work

In this paper, we present a novel pre-training ap-

proach, REPT, to bridge the gap between pre-

trained language models and machine reading com-

prehension through retrieval-based pre-training.

Specifically, we design two retrieval-based pre-

training tasks equipped with self-supervised learn-

ing, namely Surrounding Sentences Prediction

(SSP) and Retreval based Masked Language Model-

ing (RMLM), to enhance PLMs with the capability

of evidence extraction for MRC. The experiments

over five different datasets validate the effective-

ness of our proposed method. In the future, we

plan to extend the proposed pre-training approach

to the more challenging open-domain settings.
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A Implementation Detail

We built our model on Huggingface’s Pytorch trans-

former repository (Wolf et al., 2019), and used

AdamW (Loshchilov and Hutter, 2019) as the opti-

mizer. We used the pre-trained BERT-base-uncased

and RoBERTa-base checkpoint to initialize our en-

coder, and performed pre-training using 16 P100

GPUs simultaneously. The pre-training processes

last around 16 hours for BERT and 4 days for

RoBERTa, which takes 20,000 steps and 80,000

steps with the batch size as 512, respectively. All

hyper-parameters can be found in Table 6 for pre-

training and Table 7 for fine-tuning.

During constructing the training sample for pre-

training, we controlled the masking ratio for entity

and noun in query. For BERT, we masked 90%

entities and 30% nouns. For RoBERTa, we con-

structed two datasets, where the masking ratios for

entity and noun are set to 90%, 30% and 90%, 90%,

respectively. And we mixed the two for jointly

training. We also explored the effect of different

masking ratios and the analysis is detailed in §5.

As for the fine-tuning stage, for multiple choice

QA, we ran all experiments using for different ran-

dom seeds (i.e., 33, 42, 57 and 67) and reported the

average performance, except for ReClor, in which

we only submitted the results obtained from the

model which performs the best on development set

to the leaderboard because the limitation of submis-

sion times. For Hotpot QA, we mainly followed the

hyper-parameters of Asai et al. (2020) and thus did

not repeat the experiments using different random

seeds. Due to the submission limitation, we only

submitted our best model on the development set

to the leaderboard and reported its performance on

test set.

B The Details About Modeling

B.1 Single-head Attention
To reduce the extra parameters introduced, we de-

fine a single-head attention mechanism compared

to the multi-head one. Given the query matrix Q,

key matrix K and value matrix V, the simple atten-

tion mechanism is formualted as:

Att(Q,K,V) = softmax((QW + b)�K)V,

where W and b is the learnable parameters.

B.2 Normalized Feed-forward Network
We adopt a 2-layer feed-forward network with

GeLU activation (Hendrycks and Gimpel, 2016)

and layer normalization (Ba et al., 2016) to predict

the masked entities and nouns. Following Span-

BERT (Joshi et al., 2020), the Equation 7 is decom-

posed as:⎧⎨
⎩

h0 = [hz;g
q],

h1 = LayerNorm(GeLU(W3h0 + b3)),

h̃q
z = LayerNorm(GeLU(W4h1 + b4)).

C Case Study About Evidence
Extraction

In §5.3, the results show that our pre-training

method can augment the ability to extract the cor-

rect evidence. To give an intuitive clarification over

this, we select two cases shown in Figure 4. As we

can see, BERT-Q w. R/S and RoBERTa-Q w. R/S

can select the correct evidence sentences, while

the baselines models attend to the wrong sentences.

Besides, Figure 5 shows the attention maps of the

two groups of comparison. It can be observed that

our pre-training approach can help the model learn

a uniform attention distribution over the possible

evidence sentences.

D Analysis of Extra Parameters
Introduced

For fair comparison, we try to introduce as few

additional parameters as possible. Since the output

layer is highly task-specific and the single head-

attention defined in Appendix B.1 is simple, we

main analyze the extra parameters introduced for

query representation learning defined in §3.3.1. A

single layer of Transformer comprises of a multi-

head attention module and a feed-forward network.

As a result, the multi-head attention module gener-

ating the query representation has introduced 2.8%

extra parameters compared with a 12-layer Trans-

former without consideration to the parameters in

embedding layer and layer normalization.
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HyperParam BERT-base RoBERTa-base
Peak Learning Rate 2e-4 5e-5

Learning Rate Decay Linear Linear

Batch Size 512 512

Max Steps 20,000 80,000

Warmup Steps 2,000 4,000

Weight Decay 0.01 0.01

Gradient Clipping 1.0 0.0

Adam ε 1e-6 1e-6

Adam β1 0.9 0.9

Adam β2 0.999 0.98

Max Sequence Length 512 512

Query Generator Dropout 0.1 0.1

SSP Dropout 0.1 0.1

RMLM Dropout 0.1 0.1

FP16 option level O2 O2

Table 6: Hyper-parameters for pre-training.

HyperParam RACE DREAM ReClor MultiRC Hotpot QA
Peak Learning Rate 4e-5♣/2e-5♠ 3e-5♣/2e-5♠ 2e-5♣/1e-5♠ 3e-5 5e-5♣/3e-5♠

Learning Rate Decay Linear Linear Linear Linear Linear

Batch Size 32♣/16♠ 24 24 32 32♣/48♠

Epoch 4 8 10 8.0 3♣/4♠

Warmup Proportion 0.1♣/0.06♠ 0.1 0.1 0.1 0.1

Weight Decay 0.01 0.01 0.01 0.01 0.01

Adam ε 1e-6 1e-6 1e-6 1e-6 1e-6♣/1e-8♠

Adam β1 0.9 0.9 0.9 0.9 0.9

Adam β2 0.999♣/0.98♠ 0.999♣/0.98♠ 0.999♣/0.98♠ 0.999 0.999

Gradient Clipping 1.0♣/0.0♠ 0.0♣/5.0♠ 0.0 1.0 0.0

Max Sequence Length 512 512 256 512 384♣/386♠

Max Query Length 128 512 256 512 64

Dropout 0.1 0.1 0.1 0.1 0.1

Table 7: Hyper-parameters for fine-tuning. ♣: Hyper-parameters for BERT-based models. ♠: Hyper-parameters

for RoBERTa-based models.
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Case 1
Passage:
(0)A group of researchers at a remote jungle island outpost discover the natives are practicing voodoo and black magic. … (4)She returns years
later as an adult with a group of mercenaries to attempt to uncover what happened to her parents. (5)Shortly after arriving at the island their boat's
engine dies, stranding them. (6)Meanwhile elsewhere on the island a trio of hikers discover a cave, the same cave leading to the underground
temple where the original curse was created. (7)After accidentally reviving the curse, the dead once again return to kill any who trespass on their
island. (8)The mercenaries encounter their first zombie, who injures a member of the team. (9)Taking shelter in the remains of the old research
facilities medical quarters they are soon joined by Chuck, the only surviving hiker. (10)Arming themselves with weapons left behind by the long
dead research team, they make their stand as the dead once again rise. (11)One by one they are injured or killed, one of whom sacrifices himself
to blow up the medical facility and his newly undead team members. (12)Jenny and Chuck flee, the only survivors remaining. (13)They stumble
upon the cave once again, where the zombies appear and attack.
Question: Where did Chuck find weapons?
Option: From the previous research team.
Sentences Used: 9, 10.
BERT-Q:                 Answer: False    Evidence: 0
BERT-Q w. R/S:     Answer: True     Evidence: 10, 9

Case 2
Passage:
(0)The film opens with Sunita, a medical student , and her friends working on a project about the human brain. (1)She wants to investigate the
curious case of Sanjay Singhania, a notable city businessman, who is reported to have anterograde amnesia. (2)Her professor denies access to
Sanjay's records as it is currently under criminal investigation. (3)Sunita, nonetheless, decides to investigate the matter herself. (4)Sanjay is
introduced as he brutally murders a man. (5)He takes a Polaroid picture of the man, and writes on it ``done''. (6)It is revealed that Sanjay has
anterograde amnesia where he loses his memory every 15 minutes. (7)Sanjay uses a system of photographs, notes, and tattoos on his body to
recover his memory after each cycle. (8)It is revealed that Sanjay is ultimately out to avenge the death of his sweetheart Kalpana , and that he is
systematically killing the people who were responsible for it. (9)His main target is ``Ghajini'', a notable social personality in the city. (10)Police
Inspector Arjun Yadav, on the case of the serial murders, tracks Sanjay down to his flat and attacks and disables him. (11)Yadav finds two diaries
where Sanjay has chronicled the events of 2005 and 2006. …
Question: Who denies Sunita access to Sanjay's records, who is reported to have anterograde amnesia, because they are under criminal 
investigation? 
Option: Sunita's professor&Arjun Yadav.
Sentences Used: 1, 2.
RoBERTa-Q:                 Answer: False    Evidence: 0
RoBERTa-Q w. R/S:     Answer: True     Evidence: 2, 1

Figure 4: Two cases from the development set of Multi-RC.

(a) Normalized attention weights for Case 1 in Figure 4.

(b) Normalized attention weights for Case 2 in Figure 4.

Figure 5: Two cases of the normalized attention

weights of evidence extraction.


