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Abstract
Recent progress has been made in using BERT
framework for Chinese spelling error correc-
tion (CSC). However, most existing methods
correct words based on local contextual in-
formation, without considering the influence
of error words in sentences. Imposing at-
tention on error contextual information could
mislead and decrease the overall performance
of CSC. To address this issue, we propose
a Global Attention Decoder (GAD) approach
for CSC. Specifically, the proposed method
learns the global relationship of the poten-
tial correct input characters and the candi-
dates of potential error characters. Rich
global contextual information is obtained to
alleviate the impact of the local error contex-
tual information. In addition, a BERT with
Confusion set guided Replacement Strategy
(BERT CRS) is designed to narrow the gap
between BERT and CSC. The candidates gen-
erated by BERT CRS covering the correct
character with more than 99.9% probability.
To demonstrate the effectiveness of our pro-
posed framework, we test our method on three
human-annotated datasets. The experimental
results show that our approach outperforms all
competitor models by a large margin of up to
6.2%, achieving state-of-the-art methods on all
datasets.

1 Introduction

Spelling error correction plays an important
role in NLP domain. A good spelling error sys-
tem is the key to improve the performance of
upper-layer applications. Spelling error correc-
tion aims to detect and correct erroneous charac-
ters/words. These spelling errors are mainly from
human writing, speech recognition and optical char-
acter recognition (OCR) (Afli et al., 2016) systems.
In Chinese, erroneous type is usually from charac-
ter/word’s phonological, visual and semantic sim-
ilarity. According to (Cheng et al., 2020), about

Input 餐厅的换经费产适合约会
The restaurant’s swap property is suitable
for dates

BERT CRS 餐厅的环经非常适合约会
The restaurant’s ring is perfect for dates

+GAD 餐厅的环境非常适合约会
The restaurant environment is perfect for
dates

Table 1: A sample data from SIGHAN 2014 (Yu et al.,
2014), the incorrect and correct characters marked in
red and green color respectively. Since ”经” is highly
related to ”费” in its context, BERT CRS is difficult to
correct. GAD method learns the global relationship be-
tween ”环” and ”境” in candidates of input error char-
acters ”换” and ”经” respectively (see Fig.1). Rich
global contextual information is learned to alleviate the
impact of the local noisy contextual information.

83% and 48% of errors are related to phonolog-
ical and visual similarity respectively. Although
lots of researches have made great progress, Chi-
nese spelling error correction (CSC) still remains a
challenging task. Moreover, because the Chinese
is composed of pictographic characters without
word delimiters, methods from the languages like
English can hardly be used for the Chinese. In ad-
dition, the meaning of same character in different
contexts may change greatly.

Many methods have been proposed for CSC
task, which are mainly divided into two categories:
1) based on language models (Yeh et al., 2013; Yu
and Li, 2014; Xie et al., 2015); 2) based on seq2seq
model (Wang et al., 2019, 2018). Specially, with
the emerge of the pre-trained BERT model, many
methods (Hong et al., 2019; Zhang et al., 2020;
Cheng et al., 2020) are proposed and made great
progress. Almost all methods leveraged a confu-
sion set, which contains a set of similar character
group in terms of phonological and visual. Specifi-
cally, (Yu and Li, 2014) proposed to generate can-
didates based on confusion set and find the best
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Figure 1: The framework of our proposed global attention decoder method. To illustrate the effectiveness of our
model, error words and detection probability are marked with red. For instance ”换经费产” and corresponding
error detection probability in bottom right. Attention weights are represented with color shade in right.

candidate with highest language model probabil-
ity. (Cheng et al., 2020) introduced a convolutional
graph network that captures similarity and prior de-
pendencies among characters using confusion set.
(Wang et al., 2019) proposed a pointer network to
generate a character from the confusion set. Previ-
ous methods predict each character or word based
on its local context that may has noisy information
(other errors). So far, no method has been proposed
to alleviate the impact of this noisy information.

In this paper, we firstly introduced a BERT
with confusion set guided replacement strategy
(BERT CRS), that narrows the gap between BERT
and CSC task. Then, we proposed a novel global
attention decoder (GAD) based on our BERT CRS
model (see Fig.1), which learns rich global con-
textual representations to alleviate the influence of
the error contextual information during correction.
Specifically, in order to solve the impact of the
local error contextual information, we introduce
additional candidates of potential error characters
and hidden state generated by BERT CRS. Next,
global attention component learns the relationships
of candidates to obtain the global hidden state and
latent global attention weights of candidates. Then,
weighted sum operator is adopted among candi-
dates of each character to generate a rich global
contextual hidden state. Finally a fully-connected
layer to generate the correct characters. As shown
in Table.1, Our proposed method is able to correct
all spelling errors correctly. It is worthwhile to
highlight the following aspects for the proposed

approach:

• To narrows the gap between BERT and CSC,
we introduce a BERT with confusion set
guided replacement strategy, that contains a
decision network and a fully-connected layer
to simulate the detection and correction sub-
tasks of CSC respectively.

• We proposed a global attention decoder model,
which learns the global relationships of the
potential correct input characters and the can-
didates of potential error characters. Rich
global contextual information is learned to ef-
fectively alleviate the influence of local error
contextual information.

• Experiments on the three benchmark datasets
demonstrate that our method outperforms the
state-of-the-art methods by a large margin of
up to 6.2%.

2 Related Work

There is a vast prior research on Chinese
spelling error correction (CSC) task so far. Next,
We will discuss the algorithms in different periods.

N-gram period. Early research in CSC fol-
low the pipeline of error detection, candidate gener-
ation and candidate selection. Almost all proposed
methods (Yeh et al., 2013; Yu and Li, 2014; Xie et
al., 2015; Tseng et al., 2015) employed an unsuper-
vised n-gram language model to detect errors. Next,
a confusion set which is an external knowledge of
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the similarity between characters is introduced to
confine the candidates. Finally, the best candidate
with highest n-gram language model probability
is considered as correction character. Specifically,
(Yeh et al., 2013) proposed an inverted index based
n-gram to map the potential spelling error character
to the corresponding characters. (Xie et al., 2015)
utilizes the confusion set to replace the characters
and then evaluates the modified sentence via a joint
bi-gram and tri-gram language model. In (Jia et al.,
2013; Xin et al., 2014), a graph model is used to
represent the sentence and a single source shortest
path (SSSP) algorithm is performed on the graph
to correct spell errors. The others viewed it as
a sequential labeling problem and employed con-
ditional random fields or hidden Markov models
(Tseng et al., 2015; Wang et al., 2018).

Deep learning period. With the development
of deep learning methods (Vaswani et al., 2017;
Zhang et al., 2020; Hong et al., 2019; Wang et al.,
2019; Song et al., 2017; Guo et al., 2016), great
progress has been made in all NLP tasks. BERT
(Devlin et al., 2018), XLNET (Yang et al., 2019),
and Roberta (Liu et al., 2019), and ALBERT (Lan
et al., 2019) achieve superior performance in almost
all NLP task. Confusion set is still an important
part in recent research for CSC task, but more up-
grades have been made. Specifically, in (Hong et
al., 2019), a pre-trained masked language model is
employed as encoder. A confidence-similarity de-
coder utilizes similarity score to select candidates
instead of the confusion set. (Vaswani et al., 2017)
proposed a specialized graph convolutional net-
work to incorporate phonological and visual sim-
ilarity knowledge into BERT model. In (Zhang
et al., 2020), a GRU based detection network is
introduced and connected with BERT based cor-
rection network by a soft-masking technique. The
others (Wang et al., 2019) employed a Seq2Seq
model with copy mechanism, which generates a
new sentence considering the extra candidates from
confusion set.

3 The Proposed Approach

In this section, firstly, the problem formulation
is elaborated. Then, we briefly describe how to
narrow the gap between BERT (Devlin et al., 2018)
and Chinese spelling error correction (CSC) using
our BERT CRS model. Finally, we introduce our
novel global attention decoder (GAD) framework.

3.1 Problem Formulation

CSC aims to detect and correct errors
in Chinese text. Given a sequence X =
{x1, x2, · · · , xn}, n denotes the number of charac-
ters, our BERT CRS model encodes it into a contin-
uous representation space V = {v1,v2, · · · ,vn},
vi ∈ Rd is the contextual level feature of the i-
th character, and it is d-dimensional. Here a de-
cision network Φd models V to fit a sequence
Z = {z1, z2, · · · , zn}, where zi denotes the de-
tection label of the i-th character, and zi=1 means
the character is incorrect and zi=0 means it is
correct. A fully-connected layer on the top of
BERT CRS as correction network Φc models V
to fit a sequence Y = {y1, y2, · · · , yn}, where yi
is the correction label of the i-th character. In-
stead of a simple fully-connected layer as a de-
coder, our GAD models the additional candidates
c = {c1, c2, · · · , cn} to alleviate the impact of lo-
cal error contextual information, where c represents
the potential correct input characters and the candi-
dates of potential error characters and:

ci =

{
ci1, ci2, · · · , cik, if P (zi = 1) ≥ t
xi, if P (zi = 1) < t

(1)

where k is the number of candidates. t is the thresh-
old of error probability for characters.

3.2 BERT CRS approach for CSC

In this section, we take advantage of previ-
ous models (Devlin et al., 2018; Liu et al., 2019;
Cui et al., 2020) and introduce a replacement strat-
egy using confusion set that narrows the gap be-
tween BERT and CSC model. There we call this
model as BERT CRS (BERT with Confusion set
guided Replacement Strategy). Unlike BERT tasks,
BERT CRS has several modifications.

• We drop NSP task and adopt a decision net-
work for detecting error information, that is
similar to detection sub-task of CSC.

• As MacBERT (Cui et al., 2020), instead of
masking with [MASK] token, we introduce
confusion set guided replacement strategy
by replacing phonological and visual similar
character for masking purpose. Rarely, when
there is no confusion character, we will main-
tain [MASK] token. The strategy similar to
correction sub-task of CSC
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• We use 23% of input characters for masking.
To keep the balance of detection targets (0
for un-replacement, 1 for replacement), we
set 35%, 30%, 30%, 5% probability for un-
masking, replacing with confusion character,
masking with [MASK] token and replacing
with random word respectively. Calculated,
the replacing and masking probabilities are ap-
proximately the same as masking probabilities
of BERT.

With model trained by confusion set guided replace
strategy, the top-k candidate characters are almost
from the confusion set. That prepares for our GAD
model.

Learning. Similar to RoBERTa (Liu et al.,
2019), confusion set guided replace strategy uses a
dynamic approach during training. Error detection
and correction is optimized simultaneously in the
learning process.

Ld = −
n∑

i=1

logP (zi|Φd(V)) (2)

Lc = −
n∑

i=1

logP (yi|Φc(V)) (3)

L = Lc + λ ∗ Ld (4)

where Ld and Lc is the objective of detection
and correction loss respectively, L is the overall
objective that linearly combines Ld and Lc, and
λ ∈ [0, 1] denotes the coefficient of detection loss
Ld. Specially, λ = 0 represents that detection loss
is not considered.

3.3 Global Attention Decoder
In this paper, we propose an global attention

decoder (GAD) model to alleviate the impact of
the local error contextual information. Our GAD is
an extension of transformer layer (Vaswani et al.,
2017), shown in Fig.2.

Self Attention. Relatively, the self-attention
mechanism is part of the transformer layer, which
takes the output of previous transformer layer or
input embedding layer as input to obtain the hid-
den states with higher semantic representation, as
shown in left part of Fig.1. Token representation
VAl

i at i-th position of l-th layer in self-attention
method is defined as below:

VAl
i =

n∑
p=1

apiV
l−1
p WV (5)

Word 
Embedding

cV

Feed Forward

Dense

Add & Norm

Global 
Attention

Add & Norm

Add & Norm

Figure 2: The global attention decoder architecture.

where api is the attention weight from i-th to p-
th token, and

∑n
p=1 ai = 1, Vl−1

p is the p-th to-
ken representation of (l-1)-th layer, WV is a learn-
able projection matrix. This strategy could effec-
tively encode rich token and sentence-level features.
However, spelling error information also encoded
into hidden states for CSC. Then, Imposing atten-
tion on error contextual information could mislead
and decrease the overall performance of CSC.

Global Attention. Instead of using only local
input information (see Eq.5), we consider potential
correct inputs and the candidates of potential error
characters to learn their latent relationships, that
alleviate the influence caused by local error context.
Specifically, as shown in Fig.2, we consider two
input sources:

• Contextual representation V, that contains
rich semantic information

• Top-k candidates c generate by Φc correction
network. To reduce the confusion of our GAD
during learning, we only generate candidates
for the potential error characters (see Eq.1).

To model the two different information, we first
embed candidates into continuous representation
using the word embedding E from BERT CRS.
Then, dense and layer-norm layers are introduced
to model V and E(c) into input state GI:

GI = LayerNorm(Dense(V) + E(c)) (6)
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Our global attention is introduced to learn the latent
relationships between candidates c. Token repre-
sentation GAi,j at j-th candidate of i-th token of
global attention component is defined as below:

GAi,j =

n∑
p=1

k∑
q=1

ap,qi,j GIp,qW
V
g (7)

where WV
g is a learnable projection matrix and

ap,qi,j is the attention weight from j-th candidate of
i-th token to q-th candidate of p-th token, GIp,q
denotes the input state of q-th candidate from p-
th token. Masking strategy is adopted between
candidates from the same token.

ap,qi,j = 0, if i = p & j 6= q (8)

and
∑n

p=1

∑k
q=1 a

p,q
i,j = 1. Finally, the global at-

tention state GAi at i-th position of of global at-
tention component is defined as below:

GAi =

k∑
j=1

βi,jGAi,j

εi,j =

n∑
p=1

k∑
q=1

εp,qi,j

βi,j =
exp(εi,j)∑k
q=1 exp(εi,q)

(9)

where βi,j is the global attention weight at j-th
candidate of i-th token which quantifies the global
relevance of feature GAi,j , ε

p,q
i,j and εi,j denote

the unnormalized relevant scores of ap,qi,j and βi,j
respectively. Similar to standard transformer layer,
feed forward and layer normalization to encode
GA into final global continuous representation.
Moreover, We adopt the multi-head technique used
in the transformer layer in our global attention.

Learning. Given hidden states V and can-
didates c generated by our BERT CRS, our GAD
model fit the correct sequence Y in the learning
process.

Lg = −
n∑

i=1

logP (yi|Φg(V)) (10)

where Φg is our GAD network and Lg denotes our
overall objective of GAD

4 Experiments

In this section, we evaluate our algorithm on
the task of Chinese spelling error correction (CSC).

Training Data # Sent Avg.Len
UnLabeled corpus 3 million -
(Wang et al., 2018) 271,329 44.4
SIGHAN 2013 350(350) 49.2
SIGHAN 2014 6,526(3432) 49.7
SIGHAN 2015 3,174(2339) 30.0
Total Labeled 281,379 44.4
Test Data # sent Avg.Len
SIGHAN 2013 1000(996) 74.1
SIGHAN 2014 1062(529) 50.1
SIGHAN 2015 1100(550) 30.5

Table 2: Statistics of datasets. The number in the
bracket in #Sent column is the count of erroneous sen-
tences

We first present the training data, test data and
the evaluation metrics. Secondly we introduce our
main results compared with previous state-of-the-
art baselines. Then we conduct ablation studies to
analyze the effectiveness of the proposed compo-
nents. Finally, case study are explored.

4.1 Datasets
We consider three publicly available SIGHAN

datasets from the 2013 (Wu et al., 2013), 2014 (Yu
et al., 2014) and 2015 (Tseng et al., 2015) Chinese
Spell Check Bake-offs. Following (Cheng et al.,
2020), we adopted the standard split of training
and test data of SIGHAN. We also follow the same
data pre-processing, that converted the characters
in dataset from traditional Chinese to simple Chi-
nese using OpenCC1.

For training dataset, we also collect 3 million
unlabeled corpus from news, wiki and encyclope-
dia QA domains to pre-train our BERT CRS model.
Following (Wang et al., 2019), we also include ad-
ditional 271K samples as the labeled training data,
which are generated by an automatic method (Wang
et al., 2018). The statistics of the data is showed in
Table.2

4.2 Baselines
To evaluate the performance of our proposed

algorithm, we compare it with following baseline
methods.

• JBT (Xie et al., 2015): This method utilizes
the confusion set to replace the characters and
then evaluates the modified sentence via a
Joint Bi-gram and Tri-gram LM.

• Hybird (Wang et al., 2018): This method pro-
poses a pipeline where a bidirectional LSTM

1https://github.com/BYVoid/OpenCC
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Test Set Model Detection Level Correction Level
Pre.(%) Rec.(%) F1(%) Pre.(%) Rec.(%) F1(%)

SIGHAN13

JBT (Xie et al., 2015) 79.8 50.0 61.5 77.6 22.7 35.1
Hybird (Wang et al., 2018) 54.0 69.3 60.7 - - 52.1
Seq2Seq (Wang et al., 2019) 56.8 91.4 70.1 79.7 59.4 68.1
SpellGCN (Cheng et al., 2020) 82.6 88.9 85.7 98.4 88.4 93.1
BERT (Cheng et al., 2020) 80.6 88.4 84.3 98.1 87.2 92.3
BERT CRS 85.5 89.2 87.3 98.9 88.5 93.4
+GAD 85.8 89.5 87.6 99.0 88.6 93.5

SIGHAN14

JBT (Xie et al., 2015) 56.4 34.8 43.0 71.1 50.2 58.8
Hybird (Wang et al., 2018) 51.9 66.2 58.2 - - 56.1
Seq2Seq (Wang et al., 2019) 63.2 82.5 71.6 79.3 68.9 73.7
SpellGCN (Cheng et al., 2020) 83.6 78.6 81.0 97.2 76.4 85.5
BERT (Cheng et al., 2020) 82.9 77.6 80.2 96.8 75.2 84.6
BERT CRS 84.6 81.2 82.9 97.4 79.3 87.4
+GAD 85.1 80.9 82.9 98.0 79.2 87.6

SIGHAN15

JBT (Xie et al., 2015) 83.8 26.2 40.0 71.1 50.2 58.8
Hybird (Wang et al., 2018) 56.6 69.4 62.3 - - 57.1
Seq2Seq (Wang et al., 2019) 66.8 73.1 69.8 71.5 59.5 69.9
SpellGCN (Cheng et al., 2020) 88.9 87.7 88.3 95.7 83.9 89.4
BERT (Cheng et al., 2020) 87.5 85.7 86.6 95.2 81.5 87.8
BERT CRS 88.1 87.9 88.0 96.1 84.4 89.9
+GAD 88.6 87.8 88.2 96.3 84.6 90.1

Table 3: The character level performance on both detection and correction level. Our BERT CRS model achieves
similar performance compared with previous state-of-the-art models. Our GAD model achieves better perfor-
mance.

based sequence labeling model is adopted for
detection.

• Seq2Seq (Wang et al., 2019): This method in-
troduces a Seq2Seq model with a copy mech-
anism to consider the extra candidates from
the confusion set.

• FASpell (Hong et al., 2019): This model
changes the paradigm by utilizing the simi-
larity metric to select candidate instead of a
pre-defined confusion set.

• Soft-Masked BERT (Zhang et al., 2020): This
method proposes a detection network, which
connected error correction model by a soft-
masking technique.

• SpellGCN (Cheng et al., 2020): This model
incorporate phonological and visual similarity
knowledge into language models for CSC via
a specialized graph convolutional network.

• BERT (Devlin et al., 2018): The word embed-
ding on the top of BERT as correction decoder
for the CSC task.

4.3 Implementation Details
Training Details. Our code is based on the

repository of Transformers2. We first fine-tune
2https://github.com/huggingface/transformers

our BERT CRS model in 3 million unlabeled cor-
pus based on the pre-trained whole word masking
BERT3. The procedure runs 5 epochs with a batch
size of 1024, learning rate of 5e-5 and max se-
quence length of 512. Then, we performed the
fine-tuning process for our BERT CRS model in
all labeled training data with 6 epochs, a batch
size of 32 and a learning rate of 2e-5. Next we
fix our BERT CRS model, and set the number of
candidates k and error detection probability t as
4 and 0.25 respectively. Finally we fine-tune our
GAD model with 3 epochs, a batch size of 32 and a
learning rate of 5e-5. For SIGHAN 13 dataset, we
performed additional fine-tune steps for 6 epochs
as the data distribution in SIGHAN13 differs from
other datasets, e.g. ”的”, ”得” and ”地 are rarely
distinguished.

Evaluation Metrics. To evaluate the perfor-
mance, we employ character and sentence-level ac-
curacy, precision, recall and F1 followed by (Cheng
et al., 2020), which are commonly used in the CSC
task. In addition, we introduce the official eval-
uation metrics tool4, which gives False Positive
Rate (FRT), precision, recall, F1 and accuracy in
sentence level.

3https://github.com/ymcui/Chinese-BERT-wwm
4http://nlp.ee.ncu.edu.tw/resource/csc.html
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Test Set Model Detection Level Correction Level
Pre.(%) Rec.(%) F1(%) Pre.(%) Rec.(%) F1(%)

SIGHAN13

FASpell (Hong et al., 2019) 76.2 63.2 69.1 73.1 60.5 66.2
SpellGCN (Cheng et al., 2020) 80.1 74.4 77.2 78.3 72.7 75.4
BERT (Cheng et al., 2020) 79.0 72.8 75.8 77.7 71.6 74.6
BERT CRS 84.8 79.5 82.1 83.9 78.7 81.2
+GAD 85.7 79.5 82.5 84.9 78.7 81.6

SIGHAN14

FASpell (Hong et al., 2019) 61.0 53.5 57.0 59.4 52.0 55.4
SpellGCN (Cheng et al., 2020) 65.1 69.5 67.2 63.1 67.2 65.3
BERT (Cheng et al., 2020) 65.6 68.1 66.8 63.1 65.5 64.3
BERT CRS 65.4 72.7 68.9 63.4 70.4 66.7
+GAD 66.6 71.8 69.1 65.0 70.1 67.5

SIGHAN15

FASpell (Hong et al., 2019) 67.6 60.0 63.5 66.6 59.1 62.6
Soft-Masked BERT (Zhang et al., 2020) 73.7 73.2 73.5 66.7 66.2 66.4
SpellGCN (Cheng et al., 2020) 74.8 80.7 77.7 72.1 77.7 74.8
BERT (Cheng et al., 2020) 73.7 78.2 75.9 70.9 75.2 73.0
BERT CRS 74.0 80.2 77.2 72.2 77.8 74.8
+GAD 75.6 80.4 77.9 73.2 77.8 75.4

Table 4: The sentence level performance on both detection and correction level. Specially, SpellGCN (Cheng et al.,
2020) reports correction level F1 as 75.9 in SIGHAN15. However, 74.8 is calculated by corresponding precision
and recall. There the latter value is reported in the table.

4.4 Main Results

We compare our model with the state-of-the-
art methods on the three test datasets, and the re-
sults are shown in Tab.3 and Tab.4, that compared
the results in character-level and sentence level
respectively. BERT CRS outperforms almost all
methods in three datasets, and combined with GAD
achieving the best performance. Specifically, under
the same amount labeled training data, for charac-
ter level metric, our method gains the improvement
against previous best results (SpellGCN) are 0.4%,
2.1%, 0.7% respectively for correction level F1
metric. For sentence level score, our model outper-
form SpellGCN by a margin of 6.2%, 2.2%, 0.6%
respectively for correction level F1 metric. In addi-
tion, Soft-Masked BERT uses 5 million examples
that generate by replaced strategy for extra training
data. our method outperforms it by a large margin
in SIGHAN15 test dataset.

We further consider the official evaluation re-
sults of BERT CRS and GAD to compete with
BERT and SpellGCN in SIGHAN15, shown in
Tab.6. Our proposed BERT CRS+GAD achieving
better performance than SpellGCN by a margin of
0.2% for correction level F1 metric. In addition,
the FPR are 13.1% (BERT CRS+GAD) v.s. 13.2%
(SpellGCN).

4.5 Ablation Studies

In this sub-experiment, we explore the impact
of several components, including the coefficient λ
and learning rate lr in BERT CRS and the effective
parameter k that is the number of candidates in

Model Parameters Value F1(%)

BERT CRS
λ

1 72.0
0.5 73.4
0.1 74.8

lr
2e-5 74.8
5e-5 74.6

GAD k
3 75.4
4 75.1
5 74.7

Table 5: The effect of parameters in BERT CRS and
GAD for correction level F1 metric on SIGHAN15.

GAD
The Effect of BERT CRS. Our BERT CRS

introduces confusion set guided replacement strat-
egy using BERT model. Compared with BERT
model, for character level metric in Table.3,
BERT CRS improves the performance by a margin
6.6%, 2.5%, 1.8% respectively for correction level
F1. For sentence level metric in Table.4, we achiev-
ing the scores 81.2% (BERT CRS) v.s. 74.6%
(BERT) on SIGHAN 13, 66.7% (BERT CRS)
v.s. 64.3% (BERT) on SIGHAN 14 and 74.8%
(BERT CRS) v.s. 73.0% (BERT) on SIGHAN 15.

We also show the effect of coefficient λ and
learning rate during fine-tuning in all labeled datas,
shown in Tabel.5. First we fix learning rate as 2e-5
and tune λ ∈ [0.1, 0.5, 1] on SIGHAN15. When
λ=0.1, the best performance is achieved. In addi-
tion, big variation is shown with different λ, That is
to say, if more attention of detection loss, the perfor-
mance is unsatisfactory. The reason of the situation
may be caused by the imbalance of detection label
during the fine-tuning process. In the following
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Model FPR Detection Level Correction Level
Acc. Pre.(%) Rec.(%) F1(%) Acc. Pre.(%) Rec.(%) F1(%)

SpellGCN (Cheng et al., 2020) 13.2 83.7 85.9 80.6 83.1 82.2 85.4 77.6 81.3
BERT (Cheng et al., 2020) 13.6 83.0 85.9 78.9 82.3 81.5 85.5 75.8 80.5
BERT CRS 14.0 83.1 85.1 80.2 82.6 81.9 84.8 77.8 81.1
+GAD 13.1 83.6 86.0 80.4 83.1 82.4 85.6 77.8 81.5

Table 6: The sentence level performance evaluated by official tools on SIGHAN 2015. The smaller FPR score
indicates the better performance.

experiments, we set λ=0.1. We tune learning rate
from [2e-5, 5e-5]. When 2e-5 is adopted, the better
performance is achieved. We set learning rate equal
to 2e-5 during experiments.

The Effect of GAD When combined with
GAD in BERT CRS model, the performance is
improved under character and sentence level met-
ric, shown in Tabel.3 and Tabel.4. Specifically, for
sentence level metric, BERT CRS+GAD outper-
form BERT CRS by a margin of 0.4%, 0.8% and
0.6% respectively for correction level F1 metric.

We also study the impact of candidate num-
ber k. Since k is the key parameter which deter-
mines the coverage of correct character in candi-
dates, it affects the performance of our algorithm.
We study the performance variance with different
k ∈ [3, 4, 5] on SIGHAN15. Shown in Tabel.5,
more candidates may degrade the performance. Ac-
cording to statistics, there are 161,365 error charac-
ters in all test data and 106, 75, 64 not in candidates
for k equal to 3, 4, 5 respectively. The candidates
generated by BERT CRS model have 99.9% prob-
ability covering the correct character. Consider
the trade-off between cover rate of candidates and
performance, We set k = 4 in our experiments.

4.6 Case Study

To further analyze our approach, we show
some correction results on test data (see Table.7).
In Table.7, three categories of spelling error are
selected: 1) Continuous characters error; 2) Single
character error; 3) No character error. For Contin-
uous characters error instance, ”介绍” (introduce)
was misspelled as ”借少” (borrow less). Due to
the influence of error characters, BERT CRS is
difficult to correct them all correctly. However,
BERT CRS+GAD alleviates the impact of the local
error contextual to correct them all correctly. For
single character error instance, ”抱” (pick up) was
misspelled as ”包” (pack). Our BERT CRS+GAD
can also learns richer global contextual informa-
tion to correct it than BERT CRS. Here it has the
same meaning of ”提议” (suggestion) and ”建议”

Continuous characters error
...语言。去外国可以认识很多的人，就可以借少
...语言。去外国可以认识很多的人，就可以借绍
...语言。去外国可以认识很多的人，就可以介绍

... you can meet a lot of people abroad, and introduce
these languages.

Single character error
我把小猫抱起来，赶紧包出去到马路边求救...
我把小猫抱起来，赶紧跑出去到马路边求救...
我把小猫抱起来，赶紧抱出去到马路边求救...
I picked up the kitten and hurried out to the side

of the road for help.
No character error

...课堂之前可以先有一些提议或许参考的资料...

...课堂之前可以先有一些建议或许参考的资料...

...课堂之前可以先有一些提议或许参考的资料...
Some suggestions or reference materials can be

available before the class.

Table 7: Examples of CSC results, the incorrect and
correct characters marked in red and green respectively.
The first line in the block is input sentence. The sec-
ond and third line is corrected by BERT CRS and
BERT CRS+GAD respectively. And the rest is the En-
glish translation of the correct sentence.

(suggestion) in no character instance, BERT CRS
miscorrects it. These cases prove that our GAD can
learn rich global contextual information to alleviate
the impact of the local error contextual for CSC.

We also showed some incorrect case to fur-
ther analyze our model. For example, for the sen-
tence ”希望您帮我素取公平，得到他们适当的
赔偿”(I hope you can help me x for justice and
get proper compensation from them) where the in-
correct word ’x’ is not comprehensible, our GAD
changes ”素取”(x) to ”争取”(strive for) that is
appropriate in the context, but ground-truth ”诉
取”(sue for) is more suitable because the context
contains the meaning of litigation. Our GAD model
also lacks the inference ability of context strong
correlation as described in (Zhang et al., 2020).

5 Conclusions

In this paper, we propose a novel global at-
tention decoder (GAD). Condition on the potential
correct input characters and the candidates of po-
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tential error characters, GAD reforms the self atten-
tion mechanism to learn their global relationships
and obtains the rich global contextual information
to alleviate the influence caused by error context.
In addition, a BERT with Confusion set guided
Replacement Strategy (BERT CRS) is designed to
narrow the gap between BERT and spelling error
correction. Experimental results on three datsets
show that our BERT CRS outperform almost all
previous state-of-the art methods, and higher per-
formance is obtained by combining with our GAD.
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