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Abstract

Automated program repair (APR) aims to
find an automatic solution to program lan-
guage bugs without human intervention, and
it can potentially reduce debugging costs
and improve software quality. Conven-
tional approaches adopt learning-based meth-
ods such as sequence-to-sequence models for
the patches generation. However, they tend to
ignore the code structure information and suf-
fer from grammar and syntax errors. To con-
sider the grammar and syntax information, in
this paper, we propose a grammar-based rule-
to-rule model, which regards the repair pro-
cess as the transformation of grammar rules,
and leverages two encoders modeling both the
original token sequence and the grammar rules,
enhanced with a new tree-based self-attention.
Besides, to guarantee grammar correctness,
we employ a grammatically restricted infer-
ence method to generate each grammar rule in
a legally constrained sub-search-space consid-
ering the generated previous rules. Experimen-
tal evaluations on a Java dataset demonstrate
that the proposed approach significantly out-
performs the state-of-the-art baselines in terms
of generated code accuracy.

1 Introduction

Advances in machine learning and the availability
of large corpora of source code have led to growing
developments of software engineers. Researchers
have exploited machine learning to automate sev-
eral development and maintenance tasks, such as
code completion (Svyatkovskiy et al., 2020), com-
ment generation (Hu et al., 2018), code search (Gu
et al., 2018), bug localization (Zheng et al., 2016)
and fixing (Tufano et al., 2018). It’s worth noting
that localizing and fixing bugs is known to be an
effort-prone and time-consuming task for software
developers (Weiss et al., 2007). Hence, several
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Figure 1: Schematic diagram of our model. Source
code is parsed into AST (Abstract Syntax Tree) and
then into a sequence of rules. Each rule consists of one
head token (parent node) and several tail tokens (chil-
dren nodes).

works recently focused on automatically repair-
ing programs without human intervention, which
can improve programmer productivity and software
quality (Tufano et al., 2018; Chen et al., 2019; Va-
sic et al., 2019; Yasunaga and Liang, 2020).

Automated program repair (APR) research is
very active and dominated by techniques based on
static analysis (Mechtaev et al., 2016) and dynamic
analysis (Wen et al., 2018). Meanwhile, APR is
also challenging because fixing bugs is a difficult
task. Previous approaches mainly are based on a
relatively limited and manually-crafted set of fixing
patterns, which need substantial effort and exper-
tise (Saha et al., 2017; Jin et al., 2011; Nguyen et al.,
2013). Moreover, these techniques can only fix
bugs in a given language or a specific application
domain and lack scalability and maintainability.

Very recently, deep learning based approaches,
such as sequence-to-sequence learning (Sutskever
et al., 2014), are proposed to automatically repair
program by learning from massive open-source
projects with numerous bug fixes (Tufano et al.,
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2018; Chen et al., 2019). However, these sequence-
to-sequence methods ignore codes’ structure infor-
mation because they are designed for natural lan-
guage which is significantly different from program
language with strict syntactic and grammatical re-
quirements. Hence, the generated patches of these
methods suffer from grammar and syntax errors.

To address the problem, in this paper, we pro-
pose a novel grammar-based approach to automat-
ically generate fixed patches for automated pro-
gram repair. More specifically, instead of using a
sequence-to-sequence model with code sequence,
we first introduce a grammar-based rule-to-rule
model, which regards the repair process as the
transformation of code grammar rules, as shown
in Figure 1. Second, to guarantee the grammatical
and syntactic correctness, we not only introduce
a rule encoder (together with a token encoder) to
directly extract grammatical features but also em-
ploy a grammatically restricted inference method
to generate the fixed code. Experimental results
conducted on BFPs dataset (Tufano et al., 2018) of
CodeXGLUE (Lu et al., 2021) demonstrate that the
proposed grammar-based approach significantly
outperforms the state-of-the-art baselines.

2 Related Work

Automatic program repair, consisting of automat-
ically finding a solution to software bugs without
human intervention, has recently received signif-
icant attention (Tufano et al., 2018; Chen et al.,
2019; Yasunaga and Liang, 2020). Traditional
approaches generate patch candidates by first ap-
plying a predefined set of mutation operators on
the fault space. They then deploy some heuristics
(Qi et al., 2014) to search among these candidates
for a correct patch that passes all given test cases
(Weimer et al., 2009; Qi et al., 2014). Although
these methods have shown to be able to fix a wide
range of bugs, they can only fix bugs in a given
language or a specific application domain (Saha
et al., 2017; Jin et al., 2011; Nguyen et al., 2013).

Inspired by the development of deep learning in
a variety of problems, researchers attempt to em-
ploy deep learning based approaches to automati-
cally repair code by learning from massive buggy-
fixes pairs (Tufano et al., 2018; Chen et al., 2019;
Vasic et al., 2019; Guo et al., 2020). Tufano et al.
(2018) first presented an end-to-end approach to fix
program language based on sequence-to-sequence
learning. They released datasets of APR and eval-
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Figure 2: The framework of our proposed model.

uated the performance of neural machine transla-
tion. SequenceR (Chen et al., 2019) employed copy
mechanism based on line level. DeepFix (Gupta
et al., 2017) and SynFix (Bhatia et al., 2018) repair
syntax errors in programs using neural program
representations. Despite their effectiveness, the
generated patches of these methods suffer from
grammar and syntax errors.

Compared to previous works, our proposed ap-
proach has three advantages: (1) we employ the
state-of-the-art Transformer model as the skele-
ton of code repair model; (2) we incorporate the
grammar information of fixing ingredients into our
model by using token and grammar encoders; (3)
we propose a grammar-guided inference method to
guarantee the grammar correctness.

3 Our Approach

In this section, we will first introduce a grammar-
guided rule-to-rule model (Section 3.1), and then
present a grammar-constrained inference method
(Section 3.2).

3.1 Grammar-Driven Model
Our grammar-guided model, which is based on the
state-of-the-art Transformer model (Vaswani et al.,
2017), has a token encoder, a grammar encoder,
and a grammar decoder, as shown in Figure 2.

3.1.1 Token and Grammar Encoder
To model token representations and grammar struc-
tures, we employ token encoder and grammar en-
coder to model code unit and code grammar, re-
spectively. The two encoders have similar model
architecture and different inputs, which are to-
ken sequence {t1, t2, ..., tm} and rule sequence
{r1, r2, ..., rn}. Considering the difference of se-
quence and tree structure, besides conventional
sinusoidal positional embedding (Vaswani et al.,
2017), we also introduce a depth embedding to
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enhance of capacity of modeling tree structure for
the grammar encoder. As for the model struc-
ture, the first sub-layer of encoders is tree-masked
self-attention, the second sub-layer is interactive
cross-attention, and the last sub-layer is a feed-
forward layer.

Depth Embedding We extract the depth infor-
mation of each rule in the corresponding abstract
syntax tree (AST). For the example in Figure 1, the
depth of rule modifiers→ private is depending on
the depth of its head token modifiers, which counts
1 in this example. The final position embedding is
the sum of the sinusoidal position encoding and the
depth embedding.

Tree-Masked Self-Attention To focus on the
local information from directly contacted tokens
or rules, we propose tree-based attention applied
to one head of multi-head self-attention. Formally,
we first build a distance-based mask Mtree, where
Mtree[i, j] = 0 if node i is the parent or one of
the children of j, else Mtree[i, j] = −e9. Then,
we employ the proposed Mtree to one dot-product
attention:

ATT(Q,K, V ) = softmax(
QKT

√
dk

+Mtree)V

(1)
Interactive Cross-Attention The goal of inter-

active cross-attention is to make full use of token
information and syntax information interactively.
Specifically, given the outputs of tree-masked self-
attention in token encoder and grammar encoder,
e.g., Htok and Hgra, the output of interactive cross-
attention can be expressed as:

Otok = Attention(Htok, Hgra, Hgra)

Ogra = Attention(Hgra, Htok, Htok)
(2)

where Attention(·) is the same as standard self-
attention in Transformer.

3.1.2 Grammar Decoder
For each layer in the grammar decoder, the lowest
sub-layer is the masked multi-head self-attention
network, and the top layer is a feed-forward layer,
as shown in Figure 2. Moreover, we design three
attention strategies to integrates source token and
grammar information.

(1) The standard strategy is the same as the
traditional cross-attention in Transformer. Specif-
ically, the query Q comes from the output of de-
coder self-attention, and the key-value pair {K,V }
is transformed only from the output of the grammar

encoder. (2) Figure 2 shows the cascade strategy,
in which we first compute the cross-attention with
token encoder, then use the output as the query to
calculate the cross-attention with grammar encoder.
(3) The parallel strategy attends to each encoder
independently and then sums up the context vectors.
We will compare the three strategies in Section 4.4.

3.2 Grammar-Constrained Inference

Considering the sensitivity and strictness of pro-
gram language, we further propose a grammar-
constrained inference method to guarantee the
grammatical correctness of the output. More specif-
ically, we first build an AST in the inference pro-
cess according to the currently generated rule se-
quence and maintain an indicator to locate the AST
node where the extension is happening. Then, we
filter out the unsatisfactory rules whose head token
is not the current extending node, by using mask
operation in softmax function. Finally, our AST
and indicator can be updated for the next predic-
tion. It is worth noting that the node pointed by the
indicator is the one that should be expanded as a
parent (head token) in the next inference.

Take figure 1 as an example, when R9 has been
predicted, the indicator is pointing the node param-
eters. We limit the search space of the next rules,
which have to satisfy its head node is parameters
(marked by a brown border). Then applicable rule
with the highest probability (R10 in this case) is
chosen and tail tokens type and identifier of R10
are added into AST. Finally indicator is transferred
from parameters to type, denoting that type is the
next expanded node.

4 Experiments

4.1 Datasets and Metrics

Datasets We evaluate our approach on BFPs
dataset (Tufano et al., 2018), a collection of Java
functions on Github Archive. BFPs consists of
58K bug-fixes data and is divided into training,
validation and test sets by 8:1:1. We extracted
4.5K grammar constraints from the dataset in total,
among which 0.5K are related to vocab and others
related to grammar rules.
Metrics Following Tufano et al. (2018), we em-
ploy XMatch, a metric indicating the percentage
of model’s outputs that exactly match the reference,
including Top XMatch and All XMatch. Top Match
only utilizes top 1 of the beams as output, and All
Match uses all beams as outputs to match the refer-
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Method Beam XMatch
(Top)

XMatch
(All) XBug

NMT 1 9.22%* 9.22%* -
(Tufano et al., 2018) 5 - 27.33%* -

Token-Trans 1 10.03% 10.03% 56
5 10.32% 24.02% 44

Rule-Trans 1 10.87% 10.87% 31
5 11.95% 24.94% 14

Our Model 1 11.47% 11.47% 0
5 13.42% 28.03% 0

Table 1: Main results of our model on BFPs. Results
marked with * are from Tufano et al. (2018).

ence. The correlation coefficient analysis of (Ren
et al., 2020) also shows that human evaluation is
more correlated with XMatch than n-gram match-
ing for code repair task. Besides, we employ XBug
as the auxiliary metric to evaluate the grammati-
cal correctness of output, which examines basic
grammar structure of output, like symbol usage
and context matching.

4.2 Experimental Settting

Our model is built on PyTorch and trained on 4
GPUs of TITAN XP for 7 hours. We parse source
code into AST with tree sitter1, and use the same
Transformer setting as Vaswani et al. (2017). The
hidden size is 512. The layer of both two encoders
and decoder is 6. The dropout probability is 0.5.
The number of trainable parameters in our best
model is 49M. We test system performance with
beam size = 1 and 5, and the latter is used as default.

4.3 Main Results

Table 1 shows the results of all models. The first
line is the performance of the previous RNN-based
NMT model (Tufano et al., 2018) on BFPs. Token-
Trans is built on the Transformer model using se-
quences of source code as input, while Rule-Trans
employs grammar sequences as input and output.

Top Match Token-Trans and Rule-Trans mod-
els get the performance of 10.32% and 11.95%
with beam search respectively, which first demon-
strates the model superiority by using grammar
rules. Furthermore, our proposed model outper-
forms Token-Trans and Rule-Trans by 3.1% and
1.5% respectively, indicating the effectiveness of
our proposed grammar-aware modules and infer-
ence method in the APR task.

1http://tree-sitter.github.io/tree-sitter/
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Figure 3: Comparison on different modules (a) and
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ding and tree-based attention, and “grammar” demotes
the grammar-constrained inference method.

All Match We verify All Match metric to com-
pare with previous work (Tufano et al., 2018),
which judges correct model predictions if any one
of the beams can fix the buggy code. Results show
that our proposed model suggests 28.03% correct
patches with beam search, and our model performs
better with 2.2% and 0.7% improvements than (Tu-
fano et al., 2018) when beam is 1 and 5 respectively.

XBug We further analyze the grammatical qual-
ity of different models. Token-Trans model suffers
from grammatical errors with 56 samples in the
test set, while in Rule-Trans model, the number de-
creases to 31. Due to the ability to model grammar
rules and guide rule generation of our approach,
our proposed model can effectively avoid grammat-
ical errors, guaranteeing the grammar correctness
of generated patches.

4.4 Effect of Modules and Strategies

In this section, we will evaluate the contribution of
different modules and compare the three combina-
tion strategies described in Section 3.1.2.

Figure 3 shows the XMatch results of differ-
ent models, and we also list the XBug number
in brackets. The results in Figure 3 (a) show that
all of the proposed methods have positive effects.
It’s worth noting that the performance significantly
drops in terms of XBug if we remove the grammar-
constrained inference method. Compare different
combination strategies in Figure 3 (b), parallel strat-
egy performs worse than other strategies, and the
underlying reason is that concatenating token and
grammar sequences results in too long sentences.
Besides, the cascade strategy behaves best because
it can make full use of the token information and
the grammar information provided by encoders.
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5 Conclusion

In this paper, we propose a grammar-guided end-to-
end approach for automated program repair. Partic-
ularly, we introduce three structure-aware modules
and three combination strategies, and present a
grammar-based inference algorithm to guarantee
grammar correctness of generated patches. Experi-
ments on BFPs dataset demonstrate that Grammar-
based system performs better than Token-based
system for both model learning and grammar cor-
rectness. Moreover, system that simultaneously
modeling grammar and its inside token information
showed great potentiality in our works. Besides,
the advantage of grammar-constrained inference
inspires us to explore more about the possibility of
combining grammar constraints with NLP model.
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