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Abstract

Transferring knowledge from a label-rich do-
main (source domain) to a label-scarce domain
(target domain) for pervasive cross-domain
Text Classification (TC) is a non-trivial task.
To overcome this issue, we propose EADA,
a novel unsupervised energy-based adversarial
domain adaptation framework. First, a deep
pre-trained language model (e.g. RoBERTa)
is leveraged as a shared feature extractor that
maps the text sequences from both source and
target domains to a feature space. Since the
source features maintain good feature discrim-
inability because of the full supervised train-
ing, we design a method that encourages target
features towards the source ones via adversar-
ial learning. An autoencoder is designed as an
energy function that focuses on reconstructing
source feature embeddings, while the feature
extractor aims to generate source-like target
feature embeddings to deceive the autoencoder.
In this manner, the target feature embeddings
become domain-invariant and inherit great dis-
criminability. Extensive experiments on multi-
domain sentiment classification (Amazon re-
view dataset) and Yes/No question-answering
classification (BoolQ and MARCO dataset)
are conducted. The experimental results val-
idate that EADA largely alleviates the do-
main discrepancy while maintaining excellent
discriminability and achieves state-of-the-art
cross-domain TC performance.

1 Introduction

With the booming development of Natural Lan-
guage Processing (NLP) in recent years, text clas-
sification (TC) is playing a vital role in a myriad
of services in our daily lives, such as online rec-
ommendations, email spam detection, sentiment
classification and social media analysis. Large pre-
trained language models, e.g. BERT (Devlin et al.,
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2019), XLNet (Yang et al., 2019) and RoBERTa
(Liu et al., 2019b), achieve outstanding results on
challenging NLP benchmarks, i.e. GLUE (Wang
et al., 2018), RACE (Lai et al., 2017), and SQuAD
(Rajpurkar et al., 2016). These models enable nu-
merous downstream NLP tasks with compelling
performance, including TC, where the model is
further fine-tuned with annotated data.

TC tasks are usually domain dependent in real-
world. Thus, the performance of these powerful
deep models is still fluctuated and even degraded
when directly implementing them in a unseen do-
main (target domain), where the task topic or the
data distributions are different from the domain
during training (source domain). Although their
performance can be improved via fine-tuning with
full supervision in the target domain, a significant
amount of labeled target data is required. Collect-
ing high-quality data is usually difficult and expen-
sive in many real-world domains. Furthermore, the
annotating process is extremely time-consuming
and labor-intensive. To overcome these issues, un-
supervised domain adaptation (UDA), which aims
to transfer the knowledge from a label-rich domain
(source domain) to a label-scarce or unlabeled do-
main (target domain) is proposed (Li et al., 2017;
Chen et al., 2018; Guo et al., 2018; Zhang et al.,
2019).

The intuitive objective of UDA is to align the
marginal distribution of features across source and
target domains. In general, UDA methods can be
classified into two categories. One line of research
focuses on reducing the discrepancy by minimiz-
ing statistical measurements, e.g. maximum mean
discrepancy (Tzeng et al., 2014a). Another cat-
egory leverages adversarial learning to alleviate
the domain shift. Motivated by Generative Adver-
sarial Network (GAN) (Goodfellow et al., 2014),
adversarial domain adaptation (ADA) introduces a
binary domain discriminator to identify the domain
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label of the data, while an encoder learns to fool
the discriminator. ADA has achieved encouraging
results on nontrivial DA problems across various
applications, such as image classification (Vu et al.,
2019; Yang et al., 2020b), human activity recogni-
tion (Zou et al., 2019; Yang et al., 2018; Zou et al.,
2018), Internet of Things (Yang et al., 2020a), and
also text classification (Li et al., 2017; Zhang et al.,
2019). For instance, AMN (Li et al., 2017) trains
a sentiment classifier and a domain discriminator
to reduce the domain discrepancy. ADAN (Chen
et al., 2018) exploits adversarial learning for cross-
lingual sentiment classification. HAGAN (Zhang
et al., 2019) integrates the hierarchical attention
mechanism with ADA to obtain features that are
sentiment distinguishable but domain indistinguish-
able.

Although these ADA methods achieve good re-
sults in certain cross-domain TC tasks, one major
issue is the unstable prediction performance in the
target domain (Xie et al., 2018; Saito et al., 2018).
After the adversarial training achieves convergence,
the conventional binary domain discriminator can-
not distinguish the domain label of the feature rep-
resentations, which means these representations
obtain good transferability. However, there is no
constraint on the discriminability in the target do-
main. The model can generate trivial but useless
target feature representations as long as they can
fool the domain discriminator. Thus, this uncer-
tainty in adversarial training deteriorates the dis-
criminability of the target feature representations
and ignores the decision boundary learned in the
source domain, which leads to unstable and even
poor prediction performance in the target domain
(Chen et al., 2019a; Cui et al., 2020). Some works
aim to adjust the decision boundary of the label
classifier (Saito et al., 2018; Shu et al., 2018) or
align additional semantic information (Xie et al.,
2018) to overcome this issue during adversarial
training. However, these additional learning steps
either require a sophisticated hyper-parameter tun-
ing process or increase the computational overhead,
that limits the generalization capability of the ADA
methods for NLP tasks. Therefore, a simple yet
efficient solution is urgently desired.

In this paper, we propose EADA, an energy-
based adversarial domain adaptation framework
that tackles the uncertainty issue during adversar-
ial learning and dedicates for text classification
tasks. EADA consists of three modules, a shared

feature extractor, a label predictor, and an autoen-
coder. We employ a deep pre-trained language
model (RoBERTa) as a shared feature extractor
that maps the text sequences from both source do-
main and target domain into a latent feature space.
With the labeled source data, the feature extractor
and the label predictor are fine-tuned under full su-
pervision. Since the source feature representations
generated from the feature extractor contain superb
discriminability, the innovative goal of EADA is to
fix these source features by adding constrains in the
objective and only force the target feature distribu-
tion to align the source feature distribution through
adversarial training so that the target features could
remain discriminative, and the label predictor could
also perform well in the target domain. Since au-
toencoder is acknowledged as an energy function
that learns to map the observed sample to the low-
energy space (LeCun et al., 2006), we design an
autoencoder that leverages this property to fix the
source features by associating lower energies to it
while pushing the target domain to the low-energy
space by minimizing the margin loss of the autoen-
coder. Meanwhile, it can also cluster similar data
to form a high-density manifold, which helps to
preserve more semantic information. We train the
autoencoder to reconstruct the source features and
train the feature extractor to generate source-like
target features to deceive the autoencoder via a min-
imax with a margin loss. In summary, we make the
following contributions:

• To address the problem of conventional bi-
nary domain discriminator that deteriorates
the discriminability of the target feature pre-
sentation, we propose a novel autoencoder
module, which forces the target feature repre-
sentations to simulate source feature represen-
tations such that good discriminability can be
inherited.

• As an energy function, the autoencoder maps
features from both domains to the low-energy
space, which motivates the feature clusters
to be tight in an unsupervised manner. It im-
proves the label classification accuracy in the
target domain.

• Extensive experiments on public cross-
domain TC benchmark datasets, includ-
ing multi-domain sentiment classification
(Amazon review dataset) and cross-domain
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Yes/No question-answering (QA) classifica-
tion (BoolQ and MARCO dataset), are con-
ducted. The experimental results demonstrate
that EADA alleviates the uncertainty during
adversarial training and enhances the feature
discriminability in the target domain. This en-
ables EADA to outperform existing methods
and achieve new state-of-the-art ADA results
for cross-domain TC tasks without requiring
any labeled data in the target domain.

The rest of the paper is organized as follows. Sec-
tion 2 summarizes the existing domain adaptation
methods for TC tasks. The limitation of existing
ADA Methods is elaborated in Section 3. Section 4
presents the framework architecture of EADA. In
Section 5, we present the experimental results and
performance evaluation. We conclude our work in
Section 6.

2 Related Work

Domain Adaptation aims to tackle the domain shift
issue when the data distribution in the source do-
main and target domain are different (Ben-David
et al., 2010). Unsupervised domain adaptation
(UDA) aims to learn a model that is able achieve
good classification accuracy without any annota-
tion in the target domain (Tzeng et al., 2017; Zhao
et al., 2019). Certain statistical measurements, such
as maximum mean discrepancy (MMD) (Tzeng
et al., 2014b; Ma et al., 2019), are leveraged to
quantify the distribution differences.

Inspired by the recent success of Generative Ad-
versarial Network (GAN) (Goodfellow et al., 2014)
for data generation, researchers have proposed ad-
versarial domain adaptation (ADA), that constructs
an adversarial loss to accommodate the domain
shift. It consists of an encoder and a domain dis-
criminator. The generator aims to fool the discrimi-
nator to make the target domain samples look like
the source domain ones, while the discriminator
tries to identify the domain labels (source or target).
ADDA (Tzeng et al., 2017) learns a discriminative
representation using the labels in the source domain
and then a separate encoder that maps the target
data to the same space using an asymmetric map-
ping learned through a standard GAN loss without
weights sharing. CoGAN (Liu and Tuzel, 2016)
trains 2 GANs to synthesize both source and tar-
get images and achieves a domain invariant feature
space by tying the high-level layer parameters of
the 2 GAN to solve the domain transfer problem.

ADA has been adopted for cross-domain NLP
tasks as well (Peng et al., 2018; Li et al., 2017; Shah
et al., 2018; Chen and Cardie, 2018; Cai and Wan,
2019; Wang et al., 2019). AMN (Li et al., 2017)
is an end-to-end adversarial memory network for
cross-domain sentiment classification, which is the
pioneering work for ADA in NLP. An adversarial
deep averaging network is proposed in (Chen et al.,
2018) for cross-lingual sentiment classification. A
dedicated ADA framework for machine reading
comprehension is proposed in (Wang et al., 2019).
(Chen and Cardie, 2018) designed an ADA model
that learns domain invariant representation across
multiple domains for text classification. Target
domain-specific information is being exploited in
(Peng et al., 2018) to further improve the DA per-
formance, while labeled data in the target domain
is required.

Large deep pre-trained language models pio-
neered by BERT (Devlin et al., 2019), have been
employed as feature encoders to embed text se-
quences into a latent feature space. Then, the en-
coder is further fine-tuned with the discriminator
via adversarial learning using the labeled source
data and unlabeled target data (Lee et al., 2019; Ma
et al., 2019). For instance, BERT and ADA were
adopted in (Lee et al., 2019) for domain-agnostic
question-answering. A similar framework that inte-
grates BERT and MMD is proposed in (Ma et al.,
2019) for cross-domain sentiment classification.
However, all these approaches leverage the binary
domain discriminator which has failed to consider
the discriminative features during feature learning.
This leads to severe performance degradation since
the decision boundary of the label predictor trained
with source data is no longer valid in the target
domain due to the domain shift.

3 Limitation of Existing ADA Methods

In this section, we analyze the learning process
of conventional ADA methods and reveal their
limitations. In common UDA setup, Ns labeled
examples from a source domain DS = {xs

i , y
s
i }

and Nt unlabeled examples from a target domain
DT = {xti} are available. The distributions of DS

andDT are different due to the domain discrepancy.
UDA aims to build up a model that provides good
class prediction in both source and target domain.
Discriminability of the feature representation is the
clustering capacity in the feature manifold, that
controls the easiness of class category separation
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Figure 1: EADA constitutes: a pre-trained language model as shared feature extractor Gf , a label predictor Gy

and an autoencoder Ga. In addition to the full supervised learning of Gf and Gy with the labeled source data,
the autoencoder Ga serves as a domain classifier to learn reconstructing the source feature representations and
push the target feature representations away. The feature extractor Gf aims to generate source-like target feature
representations to deceive the autoencoder. This objective is realized by forcing the target feature representations
towards the those from the source domain in the feature space via adversarial learning.

(Chen et al., 2019b). Excellent discriminability can
be achieved for the source features due to the full
supervision learning in the source domain. The ob-
jective of UDA is to transfer and ensure the model
maintains this discriminability in the target domain.

ADA method, as one category of UDA, which is
pioneered by Domain-Adversarial Training of Neu-
ral Networks (DANN) (Ganin et al., 2016) and Ad-
versarial Memory Network (AMN) (Li et al., 2017)
have shown promising performance in numerous
NLP tasks in recent years (Chen and Cardie, 2018;
Shah et al., 2018; Cai and Wan, 2019; Wang et al.,
2019). It usually consists of a shared feature extrac-
tor f = Gf (x), a label predictor y = Gy(x) and
a domain discriminator d = Gd(x). In addition
to the standard full supervision learning process in
the source domain, a minimax game is designed
between f and d. The domain discriminator d aims
to distinguish the domain label between source and
target, meanwhile the feature extractor f is trained
to deceive d. This adversarial training process can
be formulated as

min
Gf ,Gy

Ly(Xs, Ys)− γLf (Xs,Xt), (1)

min
Gd

Ld(Xs,Xt), (2)

where Ly is the cross-entropy classification loss. In
this manner, the model can learn domain-invariant

features and transfer them across domains when the
Nash Equilibrium is achieved (Zhao et al., 2017).
The hyper-parameter γ controls the significance
of adversarial training that improves transferabil-
ity. As shown in Eq(1), the training process of
feature extractor f of conventional ADA methods
aims to achieve two tasks: (1) learn source rep-
resentations with good discriminability; (2) train
representations that are indistinguishable to the do-
main discriminator d. Since both source domain
and target domain data are involved in the adver-
sarial feature learning as presented in the second
term of Eq(1), the objective is equivalent to move
two domains closer in the feature space to deceive
d. However, this process does not impose any
constraint on the discriminability in the target do-
main. The feature extractor f can generate trivial
but useless target representations as long as they
can fool the discriminator d. Therefore, these ADA
methods cannot guarantee that the good decision
boundary learned via full supervision in the source
domain can still separate the categorical clusters
in the target domain (Chen et al., 2019b; Liu et al.,
2019a). This degradation of discriminability in the
target domain is the major reason that hinders the
performance of existing ADA methods.
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4 Energy-based Adversarial Domain
Adaptation

It is not a trivial task to maintain the source mani-
folds during adversarial training. Our solution is to
decouple the adversarial training process of source
and target feature representations. To be specific,
we fix the source representation in the feature space
and only encourage the target representations align
to the source representations. Therefore, the superb
discriminability learned in the source domain can
be preserved and a label predictor that performs
well in both source and target domain can be ob-
tained.

To achieve this goal, we propose Energy-based
Adversarial Domain Adaptation (EADA), which
innovatively utilizes an autoencoder structure as
a domain discriminator during adversarial train-
ing. Figure 1 demonstrates the model structure of
EADA. It consists of three modules, a pre-trained
language model as a shared feature extractor Gf

parameterized by θf to embed input sample to fea-
ture embedding z. After that, a label predictor Gy

parameterized by θy, which consists of several fully
connected layers, further maps the feature embed-
ding z to the predicted label ŷ. Another module
is an autoencoder Ga parameterized by θa, that
reconstructs a feature embedding z to ẑ. The de-
tailed functionality of each module is elaborated as
follows.

4.1 Shared Feature Extractor

Large pre-trained language models (e.g. BERT (De-
vlin et al., 2019), XLNet (Yang et al., 2019) and
RoBERTa (Liu et al., 2019b)) have achieved a se-
ries of state-of-the-art results on NLP benchmarks.
These powerful pre-trained language models are
built up on bidirectional transformer architecture,
and pre-trained on large corpora with a masked
language model, that enable various downstream
NLP tasks, including text classification.

In this work, we employ RoBERTa as the shared
feature extractor Gf (highlighted in blue in Figure
1) that embeds both labeled text data (Xs) from
the source domain, as well as the unlabeled text
data (Xt) from the target domain into a latent fea-
ture space. To be specific, as a QnA classification
problem, the input for the Gf are sequence pairs
<query Q, passage P> as depicted in Figure 1 in
the format of [CLS] <s> Q </s> <s> P </s>,
where [CLS] is a dummy token for classification
and <s> </s> are separator tokens. We leverage

the roberta.base architecture (12-layer, 768-hidden,
12-heads, 125M parameters) (Liu et al., 2019b) as
the shared feature extractorGf . Since our objective
is text classification, the last hidden representation
of the [CLS] token, H[CLS] ∈ R768×1 (feature
embedding z) serves as the output of Gf . These
embeddings z are utilized by both classifierGy and
autoencoder Ga.

4.2 Class Label Predictor

The class label predictor Gy consists of several
fully connected layers that map the feature embed-
ding z to the predicted label ŷ. Since the source
domain is label-rich by default, we assume that n
labeled samples DS = {xs

i , y
s
i } are available from

the source domain for finetuning of the shared fea-
ture extractor (language model) Gf (blue part in
Figure 1) and the label predictor Gy (green part in
Figure 1). The good classification accuracy of Gy

is achieved by minimizing the cross-entropy loss
via back-propagation under full supervision:

min
Gf ,Gy

LCE(Xs, Ys) =

− E(xs,ys)∼(Xs,Ys)

Ns∑
n=1

[I[l=ys] logGy(Gf (xs))].

(3)

4.3 Autoencoder as Domain Discriminator

After obtaining the source feature representation
with good discriminability, the next task is to learn
transferable features with k unlabeled samples
from a target domain DT = {xti}. To ensure both
transferability and discriminability of the feature
representation, we design an autoencoderGa with a
margin Mean Squared Error (MSE) loss to replace
the conventional binary domain discriminator. The
MSE loss of the autoencoder is defined as:

LAE(xi) = ||Ga(Gf (x; θf ); θa)− xi||22, (4)

where || · ||22 denotes the squared L2-norm. Since
the source embeddings zs always contain superb
discriminability due to full supervision during the
training of the classifier, zs should be fixed to pre-
serve the good decision boundary, while the target
embeddings zt should be encouraged to align with
the distribution of zs. To achieve this goal, the
autoencoder Ga is designed to be able to only re-
construct features in the source domain but not
features in the target domain. Namely, when two
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domains distribute similarly, the autoencoder will
incur the same reconstruction loss in both domains.
The training process of the autoencoder is formu-
lated as:

min
Ga

LAE(Xs) + max(0,m− LAE(Xt)), (5)

where m is the margin between the representa-
tions from the source domain and the target do-
main. The autoencoder Ga can be considered as
an energy function that associates lower energies
to the observed samples in a binary classification
problem (LeCun et al., 2006). With the inspiration
of Energy-based GAN which theoretically proves
that using an energy function in GAN, the true
distribution can be simulated by the generator at
Nash Equilibrium (Zhao et al., 2017). In EADA,
the autoencoder module Ga provides similar func-
tionality that associates low energies to the source
features (focuses on reconstructing source embed-
dings zs). As presented in Eq(5), the training goal
of the autoencoder is to have LAE(Xs) = 0 and
LAE(Xt) = m. It behaves proportionally similar
to a binary domain discriminator. But Ga includes
more domain information and can transfer it during
adversarial training.

4.4 The Learning Framework

The adversarial training objective of three modules
forms a minimax game, that is defined by:

min
Gf ,Gy

LCE(Xs, Ys) + γLAE(Xt),

min
Ga

LAE(Xs) + max(0,m− LAE(Xt)),
(6)

where γ is a hyper-parameter to control the effec-
tiveness of Ga. The shared feature extractor Gf

maps both labeled source data Xs and unlabeled
target data Xt to a latent feature space. Both Gf

and the label predictor Gy are trained with full
supervision using the labeled data in the source
domain. Another key role of the feature extractor
Gf is to deceive the autoencoder Ga by generating
source-like features for unlabeled target samples.
Therefore, we only incorporate the LAE(Xt) term
into the training of Gf . The adversarial training of
Gf is formulated by:

min
Gf

LAE(Xt). (7)

In the minimax game, the autoencoder Ga aims to
maximize the domain divergence by pushing two

domains away from a margin m, while the objec-
tive of the feature extractor Gf is to minimize the
domain divergence by deceiving the autoencoder.
When the model achieves convergence, the target
feature representations inherit excellent discrim-
inability from the source domain so that the gen-
eralization capability of the label predictor Gy is
improved and performs well not only in the source
domain but also in the target domain.

5 Experiments

We evaluate the domain adaptation performance
of EADA on two public real-world cross-domain
text classification benchmarks: 1) sentiment classi-
fication (Amazon reviews dataset); 2) Natural QA
Yes/No classification (BoolQ⇔MS Marco), and
compared it with state-of-the-art baselines.

5.1 Evaluation on Sentiment Classification

Amazon reviews dataset (Pan et al., 2010) is the
standard and well-known benchmark for sentiment
classification domain adaptation. It contains re-
views on four domains: Books (B), DVDs (D),
Electronics (E), and Kitchen (K). Each domain
contains 1000 positive reviews (higher than 3 stars)
and 1000 negative reviews (3 stars or lower). 12
cross-domain sentiment classification tasks: D→B,
E→B, K→B, K→E, D→E, B→E, B→D, K→D,
E→D, B→K, D→K, E→K, where the letter be-
fore the arrow represents the source domain and
the letter after the arrow indicates the target do-
main by following (Li et al., 2017). For each pair
of domain adaptation, 800 labeled positive (Pos)
and 800 labeled negative (Neg) reviews from the
source domain (src), together with 1600 unlabeled
reviews from the target domain (tgt) are randomly
selected for training. The rest of 200 positive and
200 negative reviews from the target domain are
used for testing.

We configured the feature extractor module Gf

as RoBERTa.base for single sequences task since
each review is one sequence passage. The input is
tokenized as [CLS] <s> Review </s>. The max-
imum input sequence length is set to 256 tokens.
The autoencoder module Ga consists of 5 fully
connected layers (768-384-96-384-768). The en-
tire EADA framework is implemented in PyTorch.
The Adam optimizer with the constant learning rate
µ = 1e−5 with a batch size of 24 was adopted and
we used 5-fold cross-validation to tune the hyperpa-
rameter m = 4 and γ = 1e−2 during the training.
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Table 1: Cross-domain classification accuracy of different methods on Amazon review dataset.

Tasks
Source-only
RoBERTa

AMN ADAN HAGAN HAGAN-C MoE
ADA

RoBERTa
EADA

D→B 85.55 81.52 81.70 81.22 81.69 81.70 86.80 88.10
E→B 81.95 77.80 78.55 79.05 79.23 79.65 82.10 85.25
K→B 72.65 79.37 79.25 78.52 78.99 80.94 77.60 81.20
B→D 81.95 81.32 82.30 82.07 82.38 84.60 82.47 86.05
E→D 82.50 77.51 79.70 81.00 80.65 84.20 83.70 85.35
K→D 80.00 80.03 80.45 80.83 80.91 81.22 80.58 80.35
B→E 85.95 80.07 77.60 79.87 80.12 84.66 86.00 89.35
D→E 82.75 80.00 79.70 80.57 80.99 84.10 82.99 87.15
K→E 82.45 81.97 86.85 85.94 85.23 85.81 84.32 85.11
B→K 86.80 81.00 76.10 81.25 82.00 86.32 87.00 89.65
D→K 85.75 83.88 77.35 81.73 81.50 86.33 86.55 89.20
E→K 86.95 87.10 83.95 84.30 84.99 85.40 87.10 90.50

Average 82.94 80.96 80.29 81.36 81.56 83.74 83.93 86.44

The performance of EADA is compared with the
following state-of-the-art baselines: Source-only
RoBERTa directly applies the finetuned RoBERTa
model from source domain in target domain; AMN
(Li et al., 2017) adopts attention mechanism and
ADA for cross-domain sentiment classification;
ADAN(Chen et al., 2018) employs ADA to transfer
the knowledge of resource-rich source language
to low-resource language; HAGAN and HAGAN-C
(Zhang et al., 2019) incorporate hierarchical atten-
tion into ADA for cross-domain sentiment classifi-
cation; MoE (Guo et al., 2018) utilizes a mixture of
experts from different source domains to further en-
hance the DA performance in target domain; ADA
RoBERTa uses RoBERTa as a shared feature extrac-
tor and a conventional binary domain discriminator
as the domain classifier for ADA.

Table 1 presents the mean accuracy with 5 runs
of each method on the 12 DA tasks. One observa-
tion is that the accuracy of source-only RoBERTa
(82.94%) is even worse than MoE (83.74%). This
indicates that the problem of DA cannot be solved
by just solely using large pre-trained language mod-
els. It can be observed that EADA provides 86.44%
classification accuracy on average, which outper-
forms all the baselines. It achieves the best DA per-
formance in 10 out of the 12 tasks. Although ADA-
RoBERTa and EADA both adopted RoBERTa as
the feature extractor, the accuracy of EADA is still
2.5% higher than ADA-RoBERTa, which validates
the advantage of the proposed energy-based ADA
method. Moreover, the variance of EADA is the
smallest among all the methods, which indicates its
performance is more stable in general. By learning

a source-like representation for the target feature
embeddings, EADA successfully performs cross-
domain sentiment classification without any anno-
tated data in target domain.

5.2 Evaluation on Yes/No QA classification

We also validated the performance of EADA on
cross-domain naturally occurring yes/no questions
between BoolQ dataset (Clark et al., 2019) and
Marco dataset (Nguyen et al., 2016). Each exam-
ple is a triplet of (query, passage, answer). Thus,
feature extractor module Gf (RoBERTa) is config-
ured for sequence pairs task, which means the in-
put is tokenized in the format as [CLS] <s> query
</s> <s> passage </s>. BoolQ dataset contains
5874 Yes and 3553 No samples for training and
2033 Yes and 1237 No samples for evaluation from
Wikipedia. Samples in Marco dataset are web snip-
pets from Bing Search. There are 17339 Yes and
10550 No samples for training and 2033 Yes and
1237 No samples for testing. The data distributions
at both domain level and categorical level are im-
balanced, which is a common situation in many
real-world applications. The number of training
samples in BoolQ is only 33.8% of those in Marco,
indicating that the data are imbalanced across do-
mains. Moreover, the data categorical distribution
is imbalanced because the number of No-samples is
at least 39.1% less than the number of Yes-samples
in both domains. Since the samples from the two
domains are collected from different sources, there
is a huge domain shift between the two datasets.

The domain adaptation performance is reported
in Table 2. The 2nd column shows the accuracies



1215

Table 2: Cross-domain adaptation for Yes/No QA classification between BoolQ and Marco datasets.

Tasks Source only AMN HAGAN ADA-RoBERTa MoE EADA Target full supervision
BoolQ→Marco 67.63 72.95 73.11 73.86 74.01 78.38 82.51
Marco→ BoolQ 69.30 74.34 74.73 75.11 75.23 79.51 84.31

Figure 2: The t-SNE visualization of features embed-
ded using distinct feature extractor in target domain.
(Marco→ BoolQ).

when the non-adapted source feature extractors and
classifiers are directly applied in the target domain,
which serves as the lower-baseline. The last col-
umn reports the accuracies when the feature extrac-
tors and classifiers are trained with full-supervision
that all the target training data are labeled (as the
upper-baseline). As shown in Table 2, the source-
only classifiers can only provide 68% accuracy,
which verifies that the domain shift hurts the classi-
fication accuracy even when a powerful deep lan-
guage model is adopted. On the other hand, it can
be easily observed from Table 2 that EADA en-
hances the accuracy in both adaptation directions
by at least 15% compared to the lower-baseline
in an unsupervised manner, and outperforms all
the state-of-the-art baselines. It elevates the per-
formance closer to the target full supervision as
well.

We leverage t-Distributed Stochastic Neighbor
Embedding (t-SNE) to map the embedded feature
representations through different feature extractors
to a 2-D space for better visualization and analysis.
Figure 2(a) and Figure 2(b) depict the embedded
features using the non-adapted source feature ex-
tractor and the EADA’s feature extractor learned,
respectively (Yes sample - red, No sample - Green).
If we directly apply the non-adapted source fea-
ture extractor in the target domain, as shown in
Figure 2(a), a large amount samples with different
categorical labels overlap with each other, which
leads to corresponding huge misclassification as
presented in the 2nd column of Table 2. After em-

ploying EADA, the common confusions are fur-
ther separated in the latent feature space and two
clusters are formulated as depicted in Figure 2(b).
These observations further validate that the feature
embeddings constructed via EADA are not only
domain-invariant but also preserve excellent dis-
criminability in both the source domain and the
target domain.

We also conducted a sensitivity study of the two
hyperparameters: m and γ in Eq(6). We evalu-
ated the impact of margin m with different values
from 0 to 10 in both experiments. EADA’s accu-
racy increases while m is increasing. The reason
is that the degree of transferability is limited when
m is small. The performance becomes stable when
m > 4 in both experiments. In general, the objec-
tive of γ is to control the weight of the adversarial
loss during feature learning of ADA as shown in
Eq(1). γ in EADA aims to control the weight of
autoencoder reconstruction loss for target domain
samples during feature learning as presented in
Eq(6)). We evaluated the impact of γ with differ-
ent values (0-1) for EADA and ADA-RoBERTa.
As γ increases, the accuracy of EADA increases
and becomes stable when γ > 0.01. The accuracy
of ADA-RoBERTa fluctuates when γ is increased
and decreased when γ > 0.5. Thus, EADA pro-
vides a more stable training procedure compared to
conventional ADA methods, which makes it easier
for generalization. We recommend using m=4 and
γ=0.01 as the default setup for other tasks.

6 Conclusion

In this paper, we proposed EADA, a novel unsuper-
vised energy-based adversarial domain adaptation
method for cross-domain text classification tasks.
First, a deep pre-trained language model is lever-
aged as a shared feature extractor to map the text
sequences from both source and target domains to a
feature space. The feature extractor and a label pre-
dictor are trained with labeled source data. Since
the source feature representations are obtained un-
der full supervision, they preserve great feature
discriminability. To ensure that the label predictor
also provides good label prediction in the target do-
main, the target feature representations should be



1216

encouraged to align with the source during adver-
sarial training. Thus, we designed an autoencoder
that focuses on reconstructing the source feature
representations, while the feature extractor aims
to generate source-like target feature embeddings
to fool the autoencoder. Extensive experiments on
public cross-domain TC benchmarks are conducted
and demonstrate that EADA not only alleviates the
domain discrepancy but also enhances the feature
discriminability in the target domain, which leads
to compelling cross-domain TC performance with-
out requiring any labeled data in the target domain.
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holmsmässan, Stockholm Sweden. PMLR.

Jianfei Yang, Han Zou, Shuxin Cao, Zhenghua Chen,
and Lihua Xie. 2020a. Mobileda: Toward edge-
domain adaptation. IEEE Internet of Things Journal,
7(8):6909–6918.

Jianfei Yang, Han Zou, Hao Jiang, and Lihua Xie. 2018.
Carefi: Sedentary behavior monitoring system via
commodity wifi infrastructures. IEEE Transactions
on Vehicular Technology, 67(8):7620–7629.

Jianfei Yang, Han Zou, Yuxun Zhou, Zhaoyang Zeng,
and Lihua Xie. 2020b. Mind the discriminability:
Asymmetric adversarial domain adaptation. In Eu-
ropean Conference on Computer Vision, pages 589–
606. Springer.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.
2019. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237.

Yuebing Zhang, Duoqian Miao, and Jiaqi Wang.
2019. Hierarchical attention generative adversarial
networks for cross-domain sentiment classification.
arXiv preprint arXiv:1903.11334.

http://arxiv.org/abs/1412.3474
http://arxiv.org/abs/1412.3474


1218

Han Zhao, Remi Tachet des Combes, Kun Zhang, and
Geoffrey J Gordon. 2019. On learning invariant rep-
resentation for domain adaptation. arXiv preprint
arXiv:1901.09453.

Junbo Zhao, Michael Mathieu, and Yann LeCun. 2017.
Energy-based generative adversarial network. In
Proc. 5th International Conference on Learning Rep-
resentations.

Han Zou, Jianfei Yang, Yuxun Zhou, Lihua Xie, and
Costas J Spanos. 2018. Robust wifi-enabled device-
free gesture recognition via unsupervised adversar-
ial domain adaptation. In 2018 27th International
Conference on Computer Communication and Net-
works (ICCCN), pages 1–8. IEEE.

Han Zou, Yuxun Zhou, Jianfei Yang, Huihan Liu,
Hari Prasanna Das, and Costas J Spanos. 2019. Con-
sensus adversarial domain adaptation. In Proceed-
ings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pages 5997–6004.


