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Abstract

Fact verification is a challenging task of iden-
tifying the truthfulness of given claims based
on the retrieval of relevant evidence texts.
Many claims require understanding and rea-
soning over external entity information for pre-
cise verification. In this paper, we propose
a novel fact verification model using entity
knowledge to enhance its performance. We
retrieve descriptive text from Wikipedia for
each entity, and then encode these descrip-
tions by a smaller lightweight network to be
fed into the main verification model. Further-
more, we boost model performance by adopt-
ing and predicting the relatedness between
the claim and each evidence as additional sig-
nals. We demonstrate experimentally on a
large-scale benchmark dataset FEVER that our
framework achieves competitive results with a
FEVER score of 72.89% on the test set.

1 Introduction

The rapid development of online applications pro-
vides open and efficient platforms for spreading
information. However, false information, includ-
ing fake news and online rumors, have also been
growing and spreading widely over the past several
years. Vosoughi et al. (2018) shows that false news
travels even faster, deeper and broader than the
truth. To prevent harm from this false information,
automatically verifying the truthfulness of textual
contents is becoming an urgent need for our soci-
ety. In this work, we study fact verification with
the goal of automatically assessing the veracity of
a textual claim given supporting evidence.

Most existing methods consider fact verification
as a natural language inference task (Angeli and
Manning, 2014). Usually, these systems concate-
nate claim and its supporting evidence sentences,
and then feed them into a classification model (Nie
et al., 2019). Alternatively, previous studies con-
struct graph structures based on claim and evidence,

and reason over this graph with graph neural net-
works (Zhou et al., 2019; Liu et al., 2020) or Trans-
former models (Zhong et al., 2020), which are used
in top systems in the FEVER challenge (Thorne
et al., 2018). While these studies focus on reason-
ing based on claim and evidence text, we believe
entity knowledge is also important for precise fact
verification. For example, given the first claim from
FEVER dataset in Table 1, making the correct ver-
ification requires a model to understand what is
“Wii U” and “OS X” and know the fact that they are
not Microsoft and Sony platforms. Similarly, for
the second claim, the knowledge that “New York
City” is in United States can also be potentially
useful for verifying the claim. This information is
not included in the gold evidence provided by the
dataset.

In this work, we present a fact verification model
that can effectively incorporate external entity infor-
mation. Given a claim and its evidence sentences,
we first recognize named entities from them, link-
ing them with Wikipedia articles, and then retrieve
the lead sections of these articles as the entity de-
scriptions. To make the most of this entity knowl-
edge while not introducing noisy information, we
propose a lightweight entity knowledge encoder
module for representing external entity knowledge.
Our large fact verification network then accesses
this knowledge by a unidirectional attention mech-
anism at each encoding layer. Meanwhile, since
the input evidence sentences are obtained by an
upstream retrieval module, some evidence may
be irrelevant to the claim. Thus, we predict and
adopt this relatedness between each evidence and
the claim as an auxiliary signal to train our model.

We experiment with our approach on
FEVER (Thorne et al., 2018), one influen-
tial benchmark dataset for fact verification.
FEVER contains over 185k labeled claims and
each verifiable claim is paired with several natural
language sentences from Wikipedia as their
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Claim #1:
Assassin’s Creed has only ever been released on a Mi-
crosoft and Sony platform.
Gold Evidence:
The main video game series consists of nine games , devel-
oped by Ubisoft, released on PlayStation 3, PlayStation
4, Xbox 360, Xbox One, Wii U, Microsoft Windows, and
OS X platforms .
Entity Knowledge:
Wii U: The Wii U is a home video game console developed
by Nintendo as the successor to the Wii.
OS X: macOS (previously Mac OS X and later OS X) is a
series of proprietary graphical operating systems developed
and marketed by Apple Inc.
Verdict: REFUTED

Claim #2:
Beastie Boys was formed in Australia.
Gold Evidence:
The Beastie Boys were an American hip hop group from
New York City, formed in 1981.
Entity Knowledge:
New York City: New York City (NYC), often called simply
New York, is the most populous city in the United States.
Verdict: REFUTED

Table 1: Two motivating examples for fact checking
and the FEVER task. Identifying the truthfulness of
claims requires understanding and reasoning of entity
knowledge within the claim and the evidence sentences.
The bold phrases are named entities. Underlined enti-
ties are linked to their Wikipedia descriptions, which
can potentially provide useful knowledge for verifying
the claim.

supporting evidence. Our system achieves the
state-of-the-art result on label accuracy and com-
petitive result on FEVER score. Ablation study
shows that the integration of entity knowledge
and auxiliary relatedness signal can effectively
improve performance. We then provide a detailed
error analysis for our system. In summary, we list
our contributions as follows.

• We propose to enhance fact verification mod-
els with external entity knowledge.

• We design an entity knowledge encoder mod-
ule and employ unidirectional attention to ef-
fectively incorporate entity descriptions.

• Empirical results show that our approach
achieves competitive performance on the
FEVER dataset, and ablation study shows that
incorporating entity knowledge is useful for
fact verification.

2 Related Work

2.1 Fact Verification
Fact checking is a challenging task aiming to auto-
matically verify the truthfulness of claims. A claim
can be a plain text or a triple of (subject, predicate,
object) (Nakashole and Mitchell, 2014), and differ-
ent fact checking datasets usually provide different
evidence sources. Vlachos and Riedel (2014) pro-
pose a fact verification dataset by collecting 106
labeled political claims and providing the journal-
ists’ analysis material as the evidence. Ferreira and
Vlachos (2016) construct the Emergent dataset con-
taining 300 labeled rumors and 2,595 associated
news articles, collected and labelled by journalists.
LIAR (Wang, 2017) is a dataset for fake news de-
tection. It contains 2.8K labeled short statements
from the web, with detailed analysis and source
documents as evidence. Chen et al. (2020c) build
TABFACT, a dataset collecting Wikipedia tables as
the evidence for human-labeled statements.

Recently, the FEVER shared task 1.0 (Thorne
et al., 2018) attracts attention from the research
community. It is a challenge that requires partic-
ipants to develop automatic fact verification sys-
tems to check the truthfulness of human-generated
claims by extracted evidence from Wikipedia.
Many systems were proposed for this challeng-
ing task. Nie et al. (2019) design a Neural Se-
mantic Matching Network that takes the concate-
nation of all evidence sentences as input. They
also propose a two-hop evidence enhancement pro-
cess where they apply sentence selection twice to
retrieve more related evidence sentences. Stamm-
bach and Neumann (2019) propose a two-staged
selection process with two different retrieval mod-
els for selecting evidence sentences. Yoneda et al.
(2018) infer the veracity of each claim-evidence
pair and make final prediction by aggregating mul-
tiple predicted labels. Hanselowski et al. (2018)
encode each claim-evidence pair separately, and
use a pooling function to aggregate features for pre-
diction. Zhou et al. (2019) formulates claim verifi-
cation as a graph reasoning task and propose a new
model with graph neural networks. Liu et al. (2020)
regards sentences as the nodes of a graph and uses
Kernel Graph Attention Network (KGAT) to ag-
gregate information. Zhong et al. (2020) further
constructs a semantic-level graph for input claim
and evidence and perform reasoning over this graph
with pretrained XLNet model (Yang et al., 2019).

Similar to our work, some previous systems also
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focus on using entity information for fact verifi-
cation. Taniguchi et al. (2018) first extract enti-
ties from the claim and propose to use a simple
entity-linking system based on text match to re-
trieve evidence documents. Nooralahzadeh and
Øvrelid (2018) select evidence documents by find-
ing article titles which contain the entities and noun
phrases of the claim.

2.2 Modeling External Knowledge in NLP

The usage of external knowledge, like WordNet,
Wikipedia and knowledge graph, has benefited
many natural language processing tasks including
natural language inference and fact verification.
Jijkoun et al. (2005) uses WordNet to measure
word similarity to obtain a better textual entail-
ment recognizer. Chen et al. (2018) proposes a
neural network model for natural language infer-
ence equipped with several external knowledge.
Wang et al. (2019) finds that utilizing ConceptNet
as an external knowledge source can benefit en-
tailment model in scientific domain. Chen et al.
(2020b) proposes WIKINLI, a large-scale naturally
annotated dataset constructed from Wikipedia cate-
gory graph. And they show that model pretrained
on this dataset can achieve better performance on
downstream natural language entailment tasks.

3 FEVER Challenge

In this paper, we tackle the large-scale challenge for
fact extraction and verification: the FEVER Chal-
lenge (Thorne et al., 2018). It contains 185,445
claims generated by altering sentences extracted
from Wikipedia.

To verify a claim in FEVER, a model typically
follows a three-step pipeline framework, i.e. doc-
ument retrieval, sentence selection and claim veri-
fication. In document retrieval, a system matches
the claim to Wikipedia articles by extracted named
entities and phrases using a search engine built
on Wikipedia. In sentence selection, a system
ranks the sentences from retrieved articles by their
similarity scores against the claim. The similar-
ity score can be calculated by a trainable regres-
sion model, like Enhanced LSTM (Chen et al.,
2017), or pretrained language models like BERT
and RoBERTa (Devlin et al., 2019; Liu et al., 2019).
In claim verification, a system classifies the truth-
fulness of the claim based on top-ranked sentences
from the previous step, also known as the evi-
dence sentences. Like most participants in this

challenge, we adopt existing approaches for docu-
ment retrieval and sentence selection, while mainly
focusing on the claim verification model.

4 Method

In this section, we first formalize the fact verifi-
cation problem in Section 4.1 and then introduce
our model for incorporating entity knowledge in
Section 4.2. Finally, we present our complete solu-
tion to the FEVER Challenge including document
retrieval, evidence selection and entity description
collection in Section 4.3.

4.1 Problem Formulation

Given the input claim and its retrieved evidence
sentences, our approach predicts the truthfulness
of the claim. As defined in FEVER dataset, we
frame the prediction as a three-way classification,
i.e. the prediction is ‘SUPPORTED’, ‘REFUTED’
or ‘NOT ENOUGH INFO (NEI)’. Furthermore, we
require the model to predict the relatedness of the
evidence sentences as an auxiliary task.

Formally, the input to our model is
[C,E1, E2, E3, · · · , En], where C is the claim and
Ei is the i-th evidence. The evidence sentences
are obtained by an upstream retrieval module.
The claim and each evidence are composed
of a list of tokens: C = [wc1 , wc2 , · · · , wc|C| ],
Ei = [wei1

, wei2
, · · · , wei|Ei|

]. The target output
is the claim truthfulness label yc. Also, the
FEVER dataset provides a relatedness label for
each evidence sentence as auxiliary targets, i.e.
yei ∈ {‘RELATED’, ‘NOT RELATED’}.

4.2 Model Architecture

The general architecture of our fact verification
model is shown in Figure 1. It is a classifica-
tion neural network based on RoBERTa (Liu et al.,
2019), a Transformer-based model (Vaswani et al.,
2017) pretrained on large corpora with a masked
language modeling objective.

We concatenate the claim with evidences as in-
put to the model. Following the default config-
uration of RoBERTa, we insert a [CLS] token at
the start of the input; the output representation of
this token is used to aggregate information from
the whole sequence. And we insert a token [SEP]
before each evidence sentence as an indicator of
sentence boundaries. We use the output vectors
of these [SEP] tokens as features for the evidence
sentence after it.
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The modified text is then represented as a se-
quence of tokens X = [w1, w2, · · · , wn]. Each
token wi is assigned three types of embeddings:
token embeddings indicate the meaning of each to-
ken, position embeddings indicate the position of
each token within the text sequence, and segmenta-
tion embeddings are used to discriminate between
the claim and the evidence sentences1. These three
embeddings are summed into a single input vec-
tor xi and fed to a bidirectional Transformer with
multiple layers:

H̃ l = LN(H l−1 +Att(H l−1, H l−1)) (1)

H l = LN(H̃ l + FFN(H̃ l)) (2)

where H0 = x are the input vectors; LN is the
layer normalization operation (Ba et al., 2016); Att
is the multi-head self-attention operation (Vaswani
et al., 2017); the superscript l indicates the depth
of the stacked layers. On the top layer, RoBERTa
generates an output vector for each token with rich
contextual information for fact verification.

As shown in the motivating examples in Table 1,
making the correct prediction needs good under-
standing and reasoning of the entities in claim and
evidence. Thus, we collect entity knowledge from
Wikipedia and encode them by a decomposable en-
tity encoder. The result is attended by the previous
fact verification module. In the follows, we will
first introduce the main fact verification module
and then the entity knowledge encoder.

4.2.1 Fact Verification Module
Suppose that in the output contextual embeddings
from RoBERTa, c is the vector for the [CLS] token
and ei is the vector for the i-th [SEP] token. To
predict the truthfulness of the claim, we apply a
three-way softmax classification layer over c:

ŷc = softmax(cWc + bc) (3)

where Wc and bc are weight and bias. We adopt
the cross entropy loss for claim truthfulness classi-
fication against the ground-truth label yc.

Since the input evidence sentences are obtained
by an upstream retrieval module, some of them may
be irrelevant to the claim. Therefore, as an auxiliary
training task, we also predict the relatedness of
each evidence sentence, which has been shown to
be effective in Yin and Roth (2018).

1RoBERTa does not use segmentation embeddings in pre-
training, but we found it is useful in finetuning.

To do that, we apply a sigmoid classification
layer over each ei:

ŷei = σ(eiWe + be) (4)

where We and be are weight and bias, and σ is
the sigmoid function. Likewise, we adopt cross en-
tropy loss for this binary classification of evidence
relatedness against the ground-truth label yei .

The final loss L for our fact verification module
is the weighted summation of the claim loss Lc and
the evidence loss Le:

L = λLc + (1− λ)Le (5)

where λ is searched from {0.1, 0.3, 0.5, 0.7, 0.9}
based on model performance on the development
set. It is set to 0.5 to achieve the best performance.

4.2.2 Decomposable Entity Knowledge
Encoder

To augment fact verification model with external
entity knowledge, we first identify all named en-
tities in the claim and evidence sentences with an
external named entity recognizer. We then link
these entities to Wikipedia articles with a trained
entity linker (more details in Section 4.3). The lead
section of the corresponding Wikipedia article is
used as the description of an entity.

While a straightforward approach is to append
these descriptions to the input claim and evidence,
it may lead to two potential issues. First, since
entity descriptions are retrieved from Wikipedia ar-
ticles, they could contain irrelevant noisy informa-
tion and degrade the model performance. Second,
many descriptions are very long and can reduce
our model’s efficiency in both training and infer-
ence. Therefore, we propose a decomposable entity
knowledge encoder module to represent this exter-
nal entity information in a compact semantic space.

We denote the fact verification module in Sec-
tion 4.2.1 as Tm. We co-train a lightweight entity
knowledge encoder module Te initialized with the
distilled RoBERTa-base (Sanh et al., 2019). Thus,
Te has less parameters and fewer layers than Tm
and the hidden state dimension of Te, i.e. de, is
smaller than that of Tm, i.e. dm.

We concatenate descriptions of entities in the
claim and evidence sentences and feed the concate-
nated text into Te. We denote the input hidden
states to the l-th layer in Tm as H l−1

m and the input
hidden states to the l-th layer in Te as H l−1

e .



54

Figure 1: Architecture of our fact verification system enhanced with entity knowledge. The left part is the fact
verification module based on RoBERTa and the right part is the entity encoder based on distilled RoBERTa. The
dotted green arrows indicate unidirectional attention mechanism which the fact verification module uses to access
outputs from the entity encoder. The final loss of our model is the combination of claim loss and auxiliary evidence
loss.

Then, the fact verification module Tm employs
a unidirectional attention to access outputs from
Te to adopt entity knowledge for fact verification.
Since Tm and Te have different hidden sizes, we
first apply a linear transformation to the outputs of
Te:

ĥl−1
ei = hl−1

ei W l−1
e + bl−1

e (6)

where hl−1
ei is the i-th output of the (l− 1)-th layer

of Te, and W l−1
e ∈ Rde×dm , bl−1

e ∈ Rdm are
weight and bias.

Then the fact verification module Tm conducts
unidirectional attention to Ĥ l−1

e = {ĥl−1
ei }, along

with its self-attention, to produce the output H l
m.

H̃ l
m =LN(H l−1

m

+Att(H l−1
m , [H l−1

m , Ĥ l−1
e ])) (7)

H l
m =LN(H̃ l

m + FFN(H̃ l
m)), (8)

where [∗, ∗] indicates the element-wise concatena-
tion of two lists of vectors.

And the entity knowledge encoder Te carries
out its self-attention as in standard Transformer
models.

H̃ l
e =LN(H l−1

e +Att(H l−1
e , H l−1

e )) (9)

H l
e =LN(H̃ l

e + FFN(H̃ l
e)) (10)

Since Tm has more encoding layers than Te, the
unidirectional attention only works on the lower
layers of Tm where it has a corresponding layer in
Te.

In this way, the fact verification module can effi-
ciently reason about the truthfulness of the claim
with the compact representations of rich entity in-
formation from the entity knowledge encoder.

4.3 Complete Solution

In this section, we introduce our complete solution
to the FEVER Challenge of fact verification.

Document Retrieval We adopt the same docu-
ment retrieval module as in (Hanselowski et al.,
2018; Liu et al., 2020). For a given claim, it first
utilizes the constituency parser in AllenNLP (Gard-
ner et al., 2018) to extract all phrases which poten-
tially indicate entities. Then it uses these phrases
as queries to find relevant Wikipedia pages through
the online MediaWiki API. Then the highest-
ranked results are retrieved and further filtered by
a set of rules.

Evidence Selection We use the evidence selec-
tion module from Liu et al. (2020) to select related
sentences from the retrieved Wikipedia pages. The
module consists of a regression model based on
BERT to score the claim and evidence sentence



55

pair. For each claim, we use the top 5 ranked sen-
tences as evidence.

Entity Descriptions We first use Flair (Akbik
et al., 2019) as the NER tool to extract entities
from input claim and evidence sentences. We then
use the entity linking system REL (van Hulst et al.,
2020) to link entities to Wikipedia articles, and
take the first section of the linked article as the
entity description. We limit the length of any entity
description to 100 tokens, and the total length of
all descriptions for one instance to 512 tokens.

Claim Verification Finally, the claim, evidence
sentences and entity descriptions are fed into our
model in Section 4.2 to verify the claim’s truthful-
ness.

5 Experiments

5.1 Dataset and Evaluation Metrics

We evaluate our model on FEVER 1.0 (Thorne
et al., 2018), a large-scale benchmark dataset for
fact extraction and verification. Detailed statistics
of FEVER are shown in Table 2. Each instance in
FEVER 1.0 consists of a human-written claim, a set
of ground-truth evidence sentences from Wikipedia
and a label (i.e., ‘SUPPORTED’, ‘REFUTED’ or
‘NOT ENOUGH INFO’), indicating the truthful-
ness of claim. FEVER also provides a Wikipedia
dump containing 5,416,537 pre-processed articles
for machine learning models to select evidence sen-
tences.

Models are evaluated by two metrics: label accu-
racy and FEVER score. Label accuracy measures
the accuracy of model’s prediction for claim truth-
fulness. FEVER score considers whether both the
predicted claim truthfulness and the selected evi-
dence sentences are correct.

5.2 Implementation details

We implement our model with Huggingface Trans-
formers (Wolf et al., 2020). The training batch size
is set to 32. We use the Adam optimizer (Kingma
and Ba, 2014) with a learning rate of 1e-5 and
a warm-up proportion of 0.1. The main encoder
is initialized with RoBERTa-large. It has 355M
parameters with 24 layers and a Transformer hid-
den size of 1,024. The entity encoder is initial-
ized with distilled RoBERTa-base with 82M pa-
rameters, 6 layers and a Transformer hidden size
of 768. We train our models for 10 epochs and
the model achieving the highest label accuracy

Data Split SUPPORTED REFUTED NEI
Train 80,035 29,775 35,639
Dev 6,666 6,666 6,666
Test 6,666 6,666 6,666

Table 2: Statistics of the FEVER dataset.

on development set of FEVER is selected. All
source codes of this work are available at https:
//github.com/nlpyang/FeverEntity.

5.3 Baselines
We compare our system to the following top-
performing systems on the FEVER shared task.

• Athene (Hanselowski et al., 2018) models
each claim-evidence pair separately and ap-
plies a pooling operation for feature aggrega-
tion.

• UCL MRG (Yoneda et al., 2018) uses Con-
volutional Neural Network as the encoder for
claim and evidence. Label aggregation is used
for final prediction.

• UNC NLP (Nie et al., 2019) designs a seman-
tic matching neural model for both sentence
selection and claim verification.

• GEAR (Zhou et al., 2019) constructs a graph
with each evidence sentence as a node and
uses a graph neural network over this graph
for prediction.

• DREAM (Zhong et al., 2020) is built upon
a graph derived from semantic role labeling
and embeds a graph-based module into the
pretrained XLNet (Yang et al., 2019) model.

• KGAT (Liu et al., 2020) uses Kernel Graph
Attention Network over a graph with evidence
sentences as nodes. The model is based on the
pretrained RoBERTa-large model.

• LOREN (Chen et al., 2020a) uses design a
neural network that can aggregate probabilis-
tic version of the logic rules for fact verifica-
tion.

5.4 Results
Table 3 shows the results on both the development
set and blind test set of FEVER. The first block
in the table includes the results of systems with-
out using pretrained models. The second block in

https://github.com/nlpyang/FeverEntity
https://github.com/nlpyang/FeverEntity
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Method Dev Test
Label Acc. FEVER score Label Acc. FEVER score

Non-pretrained Systems
Athene 68.49 64.74 65.46 61.58
UCL MRG 69.66 65.41 67.62 62.52
UNC NLP 69.72 66.49 68.21 64.21

Pretrained Systems
GEAR (BERT-Base) 74.84 70.69 71.60 67.10
DREAM (XLNet) 79.16 - 76.85 70.60
KGAT
x BERT-Large 77.91 75.86 73.61 70.24
x RoBERTa-Large 78.29 76.11 74.07 70.38
x CorefRoBERTa-Large - - 75.96 72.30

LOREN (RoBERTa-Large) 81.12 78.94 73.43 74.84
Our Approach
x BERT-Large 78.17 75.44 75.06 71.19
x RoBERTa-Large 81.43 78.65 77.29 72.89

Table 3: Evaluation of fact verification systems on FEVER dataset. Variants of a system using different pretrained
models are listed.

Entity Description Entity Knowledge Encoder Evidence Loss Label Accuracy FEVER Score
X X X 81.43 78.65
X × X 80.89 77.93
X X × 80.15 77.30
× × X 80.44 77.65
× × × 79.87 76.99

Table 4: Ablation study on FEVER development set. Our model is based on RoBERTa-Large in this experiment.

the table includes systems using pretrained models.
The last block includes results from our framework.
For a fair comparison with previous systems, we
also implemented a version of our model based on
BERT-Large.

As shown, our approach achieves the best per-
formance on label accuracy and competitive re-
sults on FEVER score in both development and
test set, proving the effectiveness of our entity
knowledge-based approach. We also show that this
improvement is consistent across different underly-
ing pretrained models. For instance, our approach
of knowledge integration outperforms KGAT when
the language understanding model is initialized
with either BERT-Large or RoBERTa-Large.

Ablation Study To further investigate how our
proposed system improves fact verification, we con-
duct ablation study of different model components.
Table 4 presents the result on the development set
after removing different components in our model
based on RoBERTa-Large.

As shown, when the entity knowledge encoder is
removed and the entity description is concatenated
with the claim and evidence sentences as input, the
label accuracy drops 0.5%. This proves the neces-
sity of using a separate module to represent external
knowledge. When evidence loss is removed, the
label accuracy drops almost 1.3%. When entity de-
scription is not used at all, the FEVER score drops
1%. When evidence loss is further removed, the
FEVER score drop increases 1.6%.

These results show that our proposed entity de-
scriptions, entity knowledge encoder and evidence
loss all contribute to the effectiveness of our model.

5.5 Error Analysis
To take a deeper investigation into current fact ver-
ification systems, we manually analyze 100 ran-
domly selected cases that are incorrectly predicted
by our model. We summarize several primary error
types in this section.

The first error type is the failure of inference
over multiple sentences. About 44% claims in
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FEVER development set have more than one gold
evidence sentences. Identifying the truthfulness
of these claims sometimes requires multi-sentence
inference. For example, to verify the claim “Hour-
glass was released 6 years after New Moon Shine.”,
we need to infer over two evidence sentences: “It
built upon the success of his previous effort, New
Moon Shine.” and “Taylor’s first studio album in
six years was released in 1997 to glowing notices.”

Another primary error type is mistakes in seman-
tic matching. Given the claim “Valencia is in a
country.”, although model successfully retrieved
the gold evidence “Valencia is the capital of the
autonomous community of Valencia and the third
largest city in Spain ...”, it still fails to predict it
correctly. We believe one possible reason is that
model doesn’t realize being a city of a country is
synonymous with being in a country. This suggests
we need more powerful language representation
models to tackle fact verification.

The third error type is caused by ambiguity of
concepts in the claim. For example, the claim de-
scribes “Bones is a movie.”, and our model predicts
its to be true based on retrieved evidence “Bones
is a 2001 American horror film directed ...”. How-
ever, there are different definitions of “Bones” in
Wikipedia and the human annotator was referring
to the TV series also named “Bones”.

6 Conclusion

In this paper, we present a novel framework for
fact verification. When assessing the truthfulness
of a claim, we first identify the entities within the
claim and evidence, and then retrieve external en-
tity descriptions from Wikipedia. We design a de-
composable entity knowledge encoder with uni-
directional attention for effectively incorporating
entity knowledge. Furthermore, we propose to use
the prediction of input evidence sentences’ relat-
edness as an auxiliary task. Experimental results
show that our model achieves competitive results
on the large-scale fact verification dataset FEVER.
And we conduct ablation studies to showcase the
effectiveness of our proposed components.

References
Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif

Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
FLAIR: An easy-to-use framework for state-of-the-
art NLP. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for

Computational Linguistics (Demonstrations), pages
54–59, Minneapolis, Minnesota.

Gabor Angeli and Christopher D. Manning. 2014. Nat-
uralLI: Natural logic inference for common sense
reasoning. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 534–545, Doha, Qatar.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Jiangjie Chen, Qiaoben Bao, Jiaze Chen, Changzhi
Sun, Hao Zhou, Yanghua Xiao, and Lei Li. 2020a.
Loren: Logic enhanced neural reasoning for fact ver-
ification. arXiv preprint arXiv:2012.13577.

Mingda Chen, Zewei Chu, Karl Stratos, and Kevin
Gimpel. 2020b. Mining knowledge for natural lan-
guage inference from Wikipedia categories. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2020, Online.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Diana
Inkpen, and Si Wei. 2018. Neural natural language
inference models enhanced with external knowledge.
In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), Melbourne, Australia.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced LSTM for
natural language inference. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1657–1668, Vancouver, Canada.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and
William Yang Wang. 2020c. Tabfact: A large-scale
dataset for table-based fact verification. In Proceed-
ings of the ICLR Conference.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota.

William Ferreira and Andreas Vlachos. 2016. Emer-
gent: a novel data-set for stance classification. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
San Diego, California.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1–6,
Melbourne, Australia.



58

Andreas Hanselowski, Hao Zhang, Zile Li, Daniil
Sorokin, Benjamin Schiller, Claudia Schulz, and
Iryna Gurevych. 2018. UKP-athene: Multi-sentence
textual entailment for claim verification. In Pro-
ceedings of the First Workshop on Fact Extraction
and VERification (FEVER), pages 103–108, Brus-
sels, Belgium.

Valentin Jijkoun, Maarten de Rijke, et al. 2005. Rec-
ognizing textual entailment using lexical similarity.
In Proceedings of the PASCAL Challenges Work-
shop on Recognising Textual Entailment, pages 73–
76. Citeseer.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. Proceedings of
the ICLR Conference.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Zhenghao Liu, Chenyan Xiong, Maosong Sun, and
Zhiyuan Liu. 2020. Fine-grained fact verification
with kernel graph attention network. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7342–7351.

Ndapandula Nakashole and Tom M. Mitchell. 2014.
Language-aware truth assessment of fact candidates.
In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1009–1019, Baltimore,
Maryland.

Yixin Nie, Haonan Chen, and Mohit Bansal. 2019.
Combining fact extraction and verification with neu-
ral semantic matching networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 6859–6866.

Farhad Nooralahzadeh and Lilja Øvrelid. 2018. Sirius-
ltg: An entity linking approach to fact extraction
and verification. In Proceedings of the First Work-
shop on Fact Extraction and VERification (FEVER),
pages 119–123.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Dominik Stammbach and Guenter Neumann. 2019.
Team domlin: Exploiting evidence enhancement for
the fever shared task. In Proceedings of the Sec-
ond Workshop on Fact Extraction and VERification
(FEVER), pages 105–109.

Motoki Taniguchi, Tomoki Taniguchi, Takumi Taka-
hashi, Yasuhide Miura, and Tomoko Ohkuma. 2018.
Integrating entity linking and evidence ranking for
fact extraction and verification. In Proceedings of
the First Workshop on Fact Extraction and Verifica-
tion (FEVER), pages 124–126.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: a large-scale dataset for fact extraction
and VERification. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 809–819, New Orleans, Louisiana.

Johannes M van Hulst, Faegheh Hasibi, Koen Derck-
sen, Krisztian Balog, and Arjen P de Vries. 2020.
Rel: An entity linker standing on the shoulders of gi-
ants. In Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 2197–2200.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30.

Andreas Vlachos and Sebastian Riedel. 2014. Fact
checking: Task definition and dataset construction.
In Proceedings of the ACL 2014 Workshop on Lan-
guage Technologies and Computational Social Sci-
ence, Baltimore, MD, USA.

Soroush Vosoughi, Deb Roy, and Sinan Aral. 2018.
The spread of true and false news online. Science,
359(6380):1146–1151.

William Yang Wang. 2017. “liar, liar pants on fire”: A
new benchmark dataset for fake news detection. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 422–426, Vancouver, Canada.
Association for Computational Linguistics.

Xiaoyan Wang, Pavan Kapanipathi, Ryan Musa,
Mo Yu, Kartik Talamadupula, Ibrahim Abdelaziz,
Maria Chang, Achille Fokoue, Bassem Makni,
Nicholas Mattei, et al. 2019. Improving natural lan-
guage inference using external knowledge in the sci-
ence questions domain. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in neural in-
formation processing systems, pages 5753–5763.



59

Wenpeng Yin and Dan Roth. 2018. TwoWingOS: A
two-wing optimization strategy for evidential claim
verification. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 105–114, Brussels, Belgium.

Takuma Yoneda, Jeff Mitchell, Johannes Welbl, Pon-
tus Stenetorp, and Sebastian Riedel. 2018. Ucl ma-
chine reading group: Four factor framework for fact
finding (hexaf). In Proceedings of the First Work-
shop on Fact Extraction and VERification (FEVER),
pages 97–102, Brussels, Belgium.

Wanjun Zhong, Jingjing Xu, Duyu Tang, Zenan Xu,
Nan Duan, Ming Zhou, Jiahai Wang, and Jian Yin.
2020. Reasoning over semantic-level graph for fact
checking. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6170–6180, Online.

Jie Zhou, Xu Han, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. 2019.
GEAR: Graph-based evidence aggregating and rea-
soning for fact verification. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 892–901, Florence, Italy.


