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Abstract

As part of the FEVEROUS shared task, we de-
veloped a robust and finely tuned architecture
to handle the joint retrieval and entailment on
text data as well as structured data like tables.
We proposed two training schemes to tackle
the hurdles inherent to multi-hop multi-modal
datasets. The first one allows having a robust
retrieval of full evidence sets, while the sec-
ond one enables entailment to take full advan-
tage of noisy evidence inputs. In addition, our
work has revealed important insights and po-
tential avenue of research for future improve-
ment on this kind of dataset. In preliminary
evaluation on the FEVEROUS shared task test
set, our system achieves 0.271 FEVEROUS
score, with 0.4258 evidence recall and 0.5607
entailment accuracy.

1 Introduction

In the past year, concerns about the spread of mis-
information have risen dramatically. Around 54%
of people claim that they have seen fake news on
COVID-19 in a week (Reuters Institute for the
Study of Journalism) resulting in a global lack
of trust in our political institutions and the me-
dia. Considering the amount of data there is on
the Internet, the need for a trustworthy, efficient,
automated fact-checking tool is undeniable.

Research has made great stride in automating
fact verification, driven for instance by the suc-
cessive FEVER datasets and challenges (Thorne
et al., 2018a) (Thorne et al., 2018b), for which
new techniques have been developed for both re-
trieval (Xiong et al., 2021) and entailment (Liu
et al., 2019b). The retrieval part has been han-
dled through hard sample mining and an adjusted
embedding based model training. This allows
very fast inference, leveraging approximate near-
est neighbors searches on large dimension embed-
dings. Given the dataset size, this is necessary to
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achieve fast enough running times. On the entail-
ment end, one of the state-of-the-art approaches is
called KGAT (Liu et al., 2019b). This method lever-
ages graph structure over the evidences to allow for
both more accurate entailment as well as provide
interpretability to the result. However, this method
was designed for text, and is therefore not suitable
for out of the box handling of structured data. This
is where our interest can go towards methods like
TAPAS (Eisenschlos et al., 2020), which is suitable
for structured data. It was developed for Tabfact
(Chen et al., 2019), on which it exhibits excellent
performance.

However, while the previous FEVER challenges
(Thorne et al., 2018a) (Thorne et al., 2018b),
and other well-known reference datasets like Hot-
potQA (Yang et al., 2018) only focused on text,
the FEVEROUS dataset introduced multi-modality
through added structured data. This brings the
dataset closer to real-world data and the task closer
to fact verification in a practical setting. Many dif-
ficulties inherently arise from the diverse nature
of the data, and we want to shed some light on
both the data and how to reason on it. Our method
achieved the top result on the FEVEROUS shared
task and gave us insights on how to progress further
by exploring the nature of the data and where our
pipeline fails.

We also developed the Reinforced Adaptive Re-
trieval Embedding (RARE) and Noisy Entailment
through Adapted Training (NEAT) methods to ad-
dress certain hurdles inside the training itself.

In this paper, we aim to share both the insights
we gained on the FEVEROUS dataset (Aly et al.,
2021) during the workshop competition, as well as
how we designed the top scoring pipeline of the
competition. We will first present the dataset, what
we learned from it, as well as the issues we encoun-
tered while designing an algorithm for it and how
we devised our approach. In the second section, we
will explain how our pipeline works and the tweaks
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we made to the classical pipeline defined by the
baseline method (Aly et al., 2021). Following, we
will present the unique training methods that were
used to ensure both stable predictions as well as
state-of-the-art performance in both retrieval and
entailment.

In short, our contributions with this paper are the
following:

• Top scoring pipeline on the FEVEROUS
shared task

• New training paradigms for fact verification
for both retrieval (RARE) and entailment
(NEAT) methods

• Insights on why previous state-of-the-art ap-
proaches fails on this kind of data, how we
fixed part of the issues and the proposed
paradigm shift proposal for further research.

2 Dataset Insights

The dataset has been designed to introduce multi-
modality (Aly et al., 2021). This has been done by
adding structured data, i.e. text data which has an
underlying structure to support it, like tables and
lists. As we say one of these clues is not like the
others, and we will explain what make cells so un-
like sentences, as well the particularities involving
the label annotation philosophy.

The difficulty with those is that their entries are
not self-contained. Indeed, the value of a cell in
a table depends on other values of the table. For
instance, in Table 1, while the values of certain cells
might be the same, they differ in terms of context,
as one cell value of 0.5 is a number of carrots per
day in one case and a number of children per year
in the other case.

In order to understand the value of a given cell,
you might need to access values of headers and
other values of the same row/column. This makes
the retrieval particularly hard as it might miss the
value or the header which are needed for the full
set to be retrieved. In addition, linearising the table
might not be enough, as the header to retrieve might
be on a different row altogether. This could also
cause oversampling of a certain row or column.
This issue of context can be solved more easily for
entailment as you can keep the extra information
present of all headers available. Indeed, we can
reconstruct the full table from the retrieved cells
for entailment, as long as the model for entailment

allows dealing with the full table size. As it was
the case with the TAPAS (Eisenschlos et al., 2020)
method we used for entailment, one important part
might be to find the right position embedding space
to encode that structure.

Another peculiar aspect of the data that proved
hard to tackle was the handling of refuting evi-
dence sets. We have found that often refuting relies
on small details which have been changed. The
issue with this is that training for retrieval will
most of the time converge towards trying to get
as much information out of the selected evidence
as possible. It will therefore not rank the small
information overlap of the evidence refuting as
high as needed for the evidence retrieval and as a
consequence not get the full accurate result. An
iterative approach to build up supporting, refuting
and non relevant evidence sets might prove suc-
cessful to address this. As described in Figure 1,
we would build a set of supporting evidence up
until we verify everything, find a refuting evidence
or reach a termination heuristic, and then re-rank
evidences properly based on their entailment useful-
ness. This paradigm would fit the way the dataset
has been annotated. The main drawback to this is
the need to entangle the entailment and retrieval in
one model that may not scale with data as easily as
the embedding-based retrieval models that rely on
cosine similarity.

Same goes for Not Enough Information (NEI)
examples, where the piece of information missing
might be very small. Hence making the difference
between "support" and "NEI" is hard for classical
approaches. An example of this can be found in
Appendix A where the claim is not completely cov-
ered by supporting evidences and therefore does
not count as supported. In the setup of Figure 1,
NEI labels would appear naturally from not verify-
ing the full claim.

Finally, it is noteworthy to point out that the doc-
ument retrieval is relying heavily on name entities,
which makes BM25 quite good at it. An easy way
to improve it would be to disambiguate the nick-
names, abbreviations and the likes to make it more
able to find certain pages.

3 Our Pipeline

As depicted in Figure 2, for the full pipeline, we
first perform document retrieval, then passage re-
trieval and finally entailment. On a single GPU
machine described in appendix B, inference takes
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Figure 1: Example of an iterative retrieval and entail-
ment process. Ideally we would take the candidates
from retrieval, eliminate the non-supporting passages,
and retrieve again, à la Multi-hop Dense Retriever
(Xiong et al., 2021).

Organisation Carrots/day Children/year
Hogwarts 0.5 0.98

Phoenix Order 0.98 0.5

Table 1: Table example. It displays an example of table
that might be hard to make sense of without columns
and rows contexts.

less than 10 seconds per sample, which translates
to under 20 hours for the full dev and test sets.

For each claim to verify, we first retrieve doc-
uments using BM25 and filter the tables of those
documents to only keep the most relevant ones
according to BM25. From these documents we
can extract sentence and cell passages, on which,
in turn, we run our passage retriever to get the
most relevant passages. Using input normalisation
techniques, we feed this to the ensemble entailer
model which predicts the entailment class. This
full pipeline achieves a significant improvement
of 53% improvement over the FEVEROUS base-
line (Aly et al., 2021). We will detail in the next
subsections each sub-part of the pipeline with its
respective performance.

Figure 2: Full pipeline diagram of our solution to
the FEVEROUS Shared Task. The mentioned SQL
database is the one available on the FEVEROUS
dataset page

3.1 Document retrieval

For document retrieval, we use BM25 by indexing
the documents. We tested indexing with (i) the page
title only, (ii) the page and the beginning of the doc-
ument and (iii) indexing the page title concatenated
with all the passages of the document, and the lat-
ter performed best with Mean Average Precision
(MAP) at depth (here the number of top retrieved
documents) 3 of 81.8% (Table 2). Here the MAP
is computed for full sets of evidence present rather
than just one piece of evidence. For just one evi-
dence, the MAP@3 is around 92%. We intention-
ally decided to stop at three documents retrieved,
as taking more documents was counterproductive
for the passage selection for which dropped signif-
icantly when using five or more pages instead of

https://fever.ai/dataset/feverous.html
https://fever.ai/dataset/feverous.html
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three.
Additionally, we also filter the tables by taking

the seven best tables according to BM25 as well.
Here we take all tables present in the retrieved
documents, and we index the linearised and con-
catenated tables as strings for BM25. Thereby,
eliminate a lot of potential cell candidates and im-
proved cell MAP of cells by 10% afterwards. Grid
search showed us that seven tables proved to be
the ideal number in our pipeline, as we achieved
around 92% MAP@7 for the retrieved tables (see
Table 2).

3.2 Passage retrieval

After the documents have been retrieved, we de-
rive relevant passages therein using the following
pipeline: the embedding-based retrieval, the BM25
re-filtering, and finally a re-ranking step. We ap-
ply the following processes on cells and sentences
independently.

Embedding-based retrieval
One main challenge we face when we retrieve the
top k documents is scaling to large documents. A
simple approach to get the top passages consists of
using BM25 here also. However, the drawback of
this approach would be that we lose the multi-hop
aspect of the dataset. Also, we want to catch the
passages with semantics similar to the query, while
BM25 would only find term matches. We pro-
pose training a Multi-hop Dense Retriever (MDR)
(Xiong et al., 2021).

The page passages contain in some cases, words
in different languages. To tackle this, we decided to
use a language-agnostic embedding model LaBSE
(Feng et al., 2020) that has proven to be efficient
in this kind of tasks. After training the model, the
passages from the documents retrieved at last step
are scored with cosine similarity in an iterative
manner as suggested in the MDR paper and then
ranked by their relevance. We then keep only the
best passages with top k value adjusted based on
the passage type.

BM25 re-filtering
While analysing the results of our embedding-
based retrieval model, we found out that it is not
robust to the presence of named entities in passages.
In this case, it struggles to put the right pieces of
evidence on top, as it tends to choose the ones that
are close in terms of semantics and context. To
tackle this problem, we run BM25 on top of the

retrieved passages. That way, we keep the relevant
semantics, and only push to the top those that ac-
tually contain the right named entities. Using this
strategy, we succeeded to achieve improvements of
around 11% on MAP@50 on sentences, and 22%
on MAP@200 on cells. This effectively re-ranks
the filtered passages from the embedding-based re-
trieval. We provide an example where it helped in
Appendix C.

Re-ranking
Finally, we re-rank the remaining passages and
only keep the top five sentences and top 25 cells.
In order to do this, we trained a RoBERTa (Liu
et al., 2019a) model with the same training data
as the passage retrieval embedding model. We
will give more details in Section 4. The model is
trained to output a score between 0 and 1, given
a pair input consisting of the query and the pas-
sage claim we want to re-rank, with 0 being non-
matching and 1 being matching. This allowed a
significantly more robust MAP on the train and dev
set, even though it only gives a minor boost in per-
formance for the MAP after re-ranking evaluation.
Indeed, we barely gain anything in terms of cell
ranking, and around 1% for sentence ranking but
that ends up giving an almost absolute 3% boost
to the combined MAP (for which we evaluate if
the full set containing the cells and sentences is
retrieved), which is around 7.5% relative improve-
ment. The re-ranking is, however, not being trained
in a multi-hop manner, which might explain why
it does not show a more significant performance
increase. We decided against using a multi-hop
approach for computational budgeting reasons, as
it would have required us to evaluate the network
on n!

(n−k)! pairs instead of just n, with n the number
of pieces of evidence retrieved at the last step.

Step MAP @ depth depth
Document retrieval 0.818 3

Table retrieval 0.92 7
Sentence retrieval 0.715 50
Sentence retrieval 0.543 5

Cell retrieval 0.555 200
Cell retrieval 0.341 25

Total retrieved 0.376 30
Sentence re-ranked 0.566 5

Cell re-ranked 0.342 25
Total re-ranked 0.404 30

Table 2: Table of retrieval results on the dev set.
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3.3 Entailment

For entailment on retrieved pieces of evidence, we
propose using an Multi-Layer Perceptron (MLP)
ensemble to combine two models: TAPAS Max and
TAPAS Joint. The name TAPAS Max is derived
from the use of the max pooling layer described in
Section 3.3.1, whereas TAPAS Joint is derived from
the way we join the two modalities, as explained in
Section 3.3.2. Both models use a TAPAS (Herzig
et al., 2020; Eisenschlos et al., 2020) backbone
pre-trained on TabFact (Chen et al., 2019). While
the two models share the same backbone architec-
ture, the ways they process sentences and cells are
significantly different. The following subsections
explain how each model encodes the pieces of evi-
dence and then aggregates the information.

3.3.1 TAPAS Max

Given a claim, retrieved evidences include sen-
tences, cells and headers. TAPAS Max prepro-
cesses the sentences as tables with the document ti-
tle and the sentence. For cells and headers, TAPAS
Max recreates the table from the Wiki database and
crops them to only the retrieved rows and columns.
Table evidences are afterwards encoded in paral-
lel via the TAPAS backbone. Since the number of
pieces of table evidence is not known a priori for
each claim, TAPAS Max aggregates the encoded
tables in latent space as a fixed-size feature vector
using a Max Pooling Layer. Finally, a classification
head assigns the claim label "SUPPORTS", "RE-
FUTES" or "NEI" based on the aggregated feature
vector.

3.3.2 TAPAS Joint

The idea of TAPAS Joint is to aggregate all pieces
of evidence in a single joint table in advance. For
sentences, TAPAS Joint also considers each sen-
tence as a table of document title and the sentence
itself. For cells and headers, TAPAS Joint groups
pieces of evidence by the table and truncates them
to the right rows and columns. Afterwards, table
evidences are outer-joined as a single joint table.
Experiments have shown that table joining is order-
sensitive, i.e., sentence, tables... are preferred to
stand before other tables. Once having a single
joint table, for each claim, encoding and classifica-
tion parts are similar to the TAPAS Max without
the Max Pooling aggregation.

3.4 Entailment Ensemble Model
As stated above, after training, we ensemble the
scores of the TAPAS Max and the TAPAS Joint.
We experimented with two strategies:

• Max confidence: we choose the label corre-
sponding to the maximum score.

• MLP ensemble: we train a MLP model on the
dev set to aggregate the scores.

The tables 3, 4 below show the performance of
each model alone on dev 3 and test 4 sets, and the
performance of the ensembled ones on the same
datasets. We reach the best performance on label
accuracy and FEVEROUS score using the MLP
(hidden layer size of 32, and a ReLU activation
function) ensemble.

Model Accuracy FEVEROUS score
TAPAS Max 56.23 % 0.2461
TAPAS Joint 58.02 % 0.2560

Max confidence 58.82 % 0.2574
MLP ensemble 65% 0.3046

Table 3: Entailment models performance on dev set:
label accuracy & FEVEROUS score (Accuracy is com-
puted only on the claims for which we find the right
evidences with the same retrieval output).

Model Accuracy FEVEROUS score
TAPAS Joint 53.24 % 0.2267

Max confidence 55.04 % 0.2344
MLP ensemble 63.64 % 0.2710

Table 4: Entailment models performance on test set:
label accuracy & FEVEROUS score (Accuracy is com-
puted only on the claims for which we find the right
evidences with the same retrieval output)

4 Training methodology

In this section, we will give additional detail on our
training methodology and how it helped us achieve
state-of-the-art performance on the FEVEROUS
dataset.

4.1 Passage retrieval
For passage retrieval, we propose a novel approach
we call Reinforced Adaptive Retrieval Embed-
ding paradigm (RARE). Building upon the training
scheme of MDR (Xiong et al., 2021), we not only
use BM25 to retrieve mi ∈ N passages, as we did
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in (Bouziane et al., 2020), we then compute em-
beddings based on an earlier copy of the model
and re-rank the negative samples based on their
embedding cosine similarities to the embedding of
the query, and we keep the top mf ≤ mi,mf ∈ N
for negative sampling (Figure 3). Here mf stands
for m filtered and mi for m initial. It has to be
noted that this re-ranking is not done during the
first epoch, but is rather only done using the frozen
weights of the latest epoch, starting from the sec-
ond epoch. This is a direct analogue of what is
called re-targeting in the reinforcement learning
setting that has been used numerous times (Mnih
et al., 2013).

Using this training scheme allows getting better
hard negatives for the learning process as it helps
the algorithm to naturally correct itself where it
is wrong, and doing so in a manner that will not
overfit on handcrafted hard samples. Ideally, we
would want to re-index the complete database and
directly perform retrieval on it using cosine similar-
ity search. Unfortunately in the case of the FEVER-
OUS dataset, the amount of data to re-index with
embeddings was too large to be tractable, hence
why we had to do it the proposed way. Using a
large threshold for BM25 increases the probability
of having high recall of both the samples it should
retrieve, as well as the samples on which it would
make mistakes on.

As proven efficient in reinforcement learning
(Mnih et al., 2013), updating the sampling weights
only once per epoch becomes very important in or-
der to avoid undesired local minima. This principle
of training is also used for re-ranking, where it, alas,
has less effectiveness improving performance. This
extended training scheme is one of the key contri-
butions that were needed to achieve state-of-the-art
performance on the FEVEROUS dataset.

4.2 Entailment

NEAT

For the entailment, the main challenge is to use mul-
tiple inputs (cells and sentences) to predict the true
label. Furthermore, this model should be robust to
noisy inputs, because the retrieved passages in the
pipeline can potentially contain irrelevant pieces of
evidence for the query, which can make it harder
for the model to perform well. To account for this,
we propose Noisy Entailment through Adapted
Training (NEAT). This method consists in training
TAPAS Max and TAPAS Joint with a large TAPAS

Figure 3: RARE training scheme. We sample with
BM25, then use the frozen model to get better hard
negatives that we use for our training loop to train the
embedding creation of the algorithm, which we use to
update current weights Mc. Once per epoch, we copy
those weights to frozen weights Ms in order to use
them for sampling.

(Herzig et al., 2020) backbone on gold passages
sets as well as the results of the passage retriever.
This leads to the input containing both the rele-
vant pieces of evidences and irrelevant passages
together. This joint optimisation allowed us to gain
crucial points when evaluating the models on the
gold dev set and on the noisy one.

Model Gold dev Noisy dev Test
TAPAS Max 80 % 51 % 49.31 %
TAPAS Joint 84 % 58 % 53.24 %

Table 5: Entailment models accuracy on dev (gold and
noisy) and test set.

As depicted in Table 5, TAPAS joint outperforms
TAPAS Max on both the dev and test sets. When
looking at the error analysis, we found out that
TAPAS Max struggles to deal with noisy inputs.
On one hand, the more noisy evidences we add to
the gold sets, the more performance decreases. On
the other hand, TAPAS Joint seemed to generalise
well on both gold and noisy dev sets. For the test
set, we can see that the performances of the two
models are not that far apart.
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Ensembling
While having close global accuracy, one of the
model had an easier time with NEI examples and
the other with refuting examples. From that point
on, ensembling them as described in Section 3 by
training the MLP seemed natural. We take the
scores of each model applied on dev set as an in-
put (i.e input of dimension 6) and we output the
score for each entailment class. This strategy gave
us a boost of around 6% accuracy and 4 points
FEVEROUS score on the test set.

Dealing with NEI
The NEIs (Not Enough Info) class represents only
3% of the train set, which makes it hard for the
model to learn the right patterns and focus more
on "SUPPORT" and "REFUTE" classes. Indeed,
the confusion matrix in Figure 4 shows that our
performance on NEIs is very low (1.5% precision
performance on NEI). To solve that, future works
could employ data augmentation strategies, so as
to create NEI examples to balance the dataset, and
thereby force the model to be equally good on the
three classes. The following two strategies are
examples of how samples could be generated:

• Create NEIs by concatenating the claim with
a random passage from the answering pages
that is not in the gold evidence sets.

• Create NEIs by removing one or more evi-
dences from the gold evidence sets.

Figure 4: Confusion matrix of the TAPAS Max model.
We can point out that it is very decent on the "SUP-
PORT" and "REFUTE" labels. The misclassification
of NEIs does not seem to go towards one of the other
labels in particular and it does not seem the model tries
to predict NEI too much, but when it does, it mostly is
for examples that are refuting and which do not have
much evidence to begin with.

Our models struggle to converge using these
augmentations, necessitating more investigation on
new sampling strategies or compatible models.

5 Conclusion

Overall, this multi-modal task creates a plethora
of new challenges to overcome and opens exciting
avenues of research for the future of automated fact
verification.

Our design improved on the classical retrieve-
then-entail approach by giving special treatment
to both modalities before putting them in a com-
mon multi-hop entailment model, that is necessary
for multi-hop entailment. Thereby, we reached im-
provement of the state-of-the-art for that specific
task.

Through novel and adapted training schemes,
we overcame certain challenges like maximising
the full set evidence recall, and allowing to have
entailment work with a fixed number of evidence,
discarding irrelevant pieces of evidence for its deci-
sion. This paradigm allows us to re-think the future
of entailment on this type of real-world dataset, so
as to see it as a selection mechanism too.

A direct consequence of this is the belief that
doing entailment in an interpretable way will boost
both the evidence recall and accuracy. Indeed, us-
ing the interpretation will allow deriving the pas-
sages that were useful for entailment and not those
that were matching the most in terms of informa-
tion overlap. This might prove to be the only way
to get the right evidence set even when the refuting
evidence set only deals with a small detail of the
claim.

The way the dataset is constructed gives rise to
the idea of an iterative process that starts with find-
ing evidence, then performing entailment and then
going back to retrieve more. Such an approach
would provide a more natural way of distinguish-
ing between NEI and SUPPORT labels and allow
for reasonable runtimes. Ultimately, this will be ac-
companied by both more interpretable entailment
and better scalability. This will in turn make the al-
gorithm even more useful in the real world as a tool
against misinformation and a general researching
tool for fact verification.

Finally, a model that can deal with multiple
modalities more universally and scalably is a ques-
tion left for the future, making room for new re-
search possibilities.

Those intuitions are entailed by both the insights
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we gained on this new dataset, and the fact that our
best effort with a more classic approach could not
yield human-level results on this complex problem.
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https://openreview.net/forum?id=EMHoBG0avc1
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• CPU: Intel i9 10920X with 12 cores and 24
threads, running at stock clocks.

• RAM: 64 GB of DDR4 with CAS 16 latency
running at 3000 MHz, in 4 times 16 GB con-
figuration.

C Re-filtering with BM25 example

• Claim: Raffaele Celeste Rosso, born on
September 19, 1927 in San Michele Mondovì,
was active from 1948 to 1994 under Durium
Label.

Passage id Rank retriever Rank re-filtered
cell 0 1 1 1 1
cell 0 6 1 9 2

Table 6: Re-filtering example. In this case, we see
that the cell 0 6 1 is not retrieved at the top but gets
re-ranked higher by BM25 which is more sensitive to
the exact date matching than the embedding cannot en-
tirely catch.

• cell 0 6 1: Nini Rosso Years active Nini Rosso
1948 - 1994

• cell 0 1 1: Nini Rosso Born Nini Rosso Raf-
faele Celeste Rosso (1927-09-19) September
1


