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Abstract

Automatic fact-checking is crucial for recog-
nizing misinformation spreading on the inter-
net. Most existing fact-checkers break down
the process into several subtasks, one of which
determines candidate evidence sentences that
can potentially support or refute the claim
to be verified; typically, evidence sentences
with gold-standard labels are needed for this.
In a more realistic setting, however, such
sentence-level annotations are not available.
In this paper, we tackle the natural language
inference (NLI) subtask—given a document
and a (sentence) claim, determine whether
the document supports or refutes the claim—
only using document-level annotations. Us-
ing fine-tuned BERT and multiple instance
learning, we achieve 81.9% accuracy, signif-
icantly outperforming the existing results on
the WikiFactCheck-English dataset.

1 Introduction

As the volume of information present on the inter-
net steeply increases, automatic fact-checking has
become a promising approach to identify and stop
the spread of misinformation. Active research in
this area has been supported in part by a handful
of carefully curated datasets (Thorne et al., 2018a;
Hanselowski et al., 2019; Wadden et al., 2020).

While these datasets have been playing a crucial
role in the development of the latest fact-checkers,
they do not faithfully represent the reality in cer-
tain aspects. First, these datasets come with short
evidence snippets for the claims; most existing fact-
checkers rely on such sentence-level evidence an-
notations to build the natural language inference
(NLI) component of their systems—e.g. given an
evidence sentence and a claim sentence, determine
if the claim is supported (Thorne et al., 2018b).
Second, most of the datasets consist of synthetic
claims written by annotators based on snippets of
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Field Content

id 115724
claim The hindwings are uniform grey

with a narrow marginal line.
context Eupoca sanctalis is a moth in the

Crambidae family. [...]
refuted The hindwings are uniform blue

with a broad marginal line.
url http://digitalcommons.unl.edu/[...]

Table 1: Example entry from WikiFactCheck-English.
The URL is for the evidence document cited in support
of the claim in the Wikipedia article.

evidence. Both aspects render it difficult to readily
apply the findings in real applications.

WikiFactCheck-English (Sathe et al., 2020) was
constructed to address the aforementioned con-
cerns. The dataset consists of 124k entries each
consisting of a claim1, context, and evidence doc-
ument extracted from English Wikipedia articles.
(See Table 1 for an example.) We believe that
the real claims and lengthy evidence documents
without sentence-level annotations will lead to fact-
checkers that can better handle claims in the wild.

In this paper, we tackle the NLI subtask—given
a document and a (sentence) claim, determine
whether the document supports or refutes the
claim—only using document-level annotations. We
improve on existing systems trained and tested on
the WikiFactCheck-English dataset during both
steps of the 2-step pipeline: evidence retrieval
and support verification. We find that fine-tuned
BERT with multiple instance learning (MIL)—
to use multiple candidate evidence sentences—
results in about 13% increase in accuracy over the
baseline. However, incorporating Sentence-BERT
(SBERT) (Reimers and Gurevych, 2019) to iden-
tify candidate evidence sentences during evidence

134k of these come with manually written ‘refuted’ claims.

http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1054&context=systentomologyusda
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retrieval does not lead to a noticeable improvement.

2 Related Works

Many recent works on automatic fact-checking
have attempted to employ Transformers, BERT in
particular. This was motivated by BERT having
showed promising results for many NLP tasks (De-
vlin et al., 2019). To mention a few relevant exam-
ples, Soleimani et al. (2020) tackle the shared task
from the third FEVER workshop (Christodoulopou-
los et al., 2020) by constructing a 2-step pipeline.
They use BERT in the evidence retrieval step to
rank evidence by relevance. Then, BERT is em-
ployed once more in the support verification step
to make the final prediction using the retrieved evi-
dence. We also have a 2-step pipeline, but methods
used in each step is distinct from their work.

Lee et al. (2020) take a new approach using
BERT to the otherwise traditional pipeline of fact-
checking in FEVER-like tasks. The authors treat
BERT as a knowledge base and use its masked
language modeling predictions to decide the fac-
tual correctness of the claim. While it is a novel
approach, it does not provide a promising perfor-
mance gain in practice. Also, we are working
with a dataset where the claims are extracted from
Wikipedia, but BERT uses Wikipedia as part of its
training. For these reasons, we decided that this
approach would not be suitable in our work.

Zhong et al. (2020) highlight the complexity of
the fact-checking task, where more than one sen-
tence collectively support or refute a claim. Thus,
the authors create semantic graphs and reason over
these structures using graph convolutional network
and graph attention netowrk. There report improve-
ment in performance in the FEVER task (Thorne
et al., 2018a). In our work, we assume a simple
semantic structure of evidence sentences. This
is based on an observation that when people cite
a document in support of their factual claim in
Wikipedia, the claim tends to be one of the main
points of the document. And points are typically
stated in a single sentence or span over consecutive
sentences.

The work we build off of in this paper is from
Sathe et al. (2020). The authors released a new
fact-checking dataset with only document-level an-
notations that we use in this work. Along with
it, they presented baseline systems consisting of
a two-step pipeline: evidence retrieval and sup-
port verification. In our work, we adopt the same

pipeline but make improvements to each step us-
ing BERT-based approaches. Also, unlike their
approach, we retrieve multiple sentences during
the evidence retrieval step and compute the final
aggregated prediction using multiple instance learn-
ing.

3 Method

We tackle the NLI subtask of automatic fact
checking—given a relevant document (a list of sen-
tences Ec) and a claim c, determine whether the
Ec supports or refutes c. This is done in two-steps:
(1) evidence retrieval and (2) support verification,
as shown in Figure 1. The same pipeline was used
in Sathe et al. (2020); we improve both steps us-
ing BERT-based approaches and multiple instance
learning to make use of multiple candidate evi-
dence sentences.

3.1 Evidence Retrieval

The evidence retrieval step involves retrieving can-
didate evidence sentence(s) from the evidence doc-
ument Ec that either supports or refutes the claim
c. We retrieve the top k sentences (e1, e2, ..., ek) ∈
Ec that are most similar to c. These in turn are
likely to be relevant for verifying c.

We improve on the Levenshtein distance (LD)
used in the baseline (Sathe et al., 2020), by incor-
porating SBERT (Reimers and Gurevych, 2019).
SBERT uses siamese and triplet networks to derive
sentence embeddings capturing semantic similari-
ties. Because the claims and evidence documents
in the WikiFactCheck-English dataset are drawn
from distinct sources, they are often dissimilar in
their content and style. Thus, we expect SBERT
capturing semantic similarity to be more effective
than LD capturing surface-level textual similarity.
We use a pretrained SBERT architecture fine-tuned
to STS-B (semantic textual similarity benchmark),
part of the popular NLU benchmark set ‘GLUE’
(generalized language understanding and evalua-
tion) (Wang et al., 2018).

Given the large number of sentences in Ec, we
first filter out sentences least-likely to be the evi-
dence sentence: Of the sentence in Ec that have at
least 1 word overlap with the claim, we use SBERT
with a classification layer outputting a scalar simi-
larity score to determine k most similar sentences
for k = 1, 3, 5.
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Figure 1: The 2-step pipeline to determine if evidence document Ec supports or refutes claim c. The final output
is a distribution over probabilities of Ec supporting and refuting c. The components depicted are of our best
performing system: the evidence retrieval step consists of word overlap (WO) and Sentence-BERT (SBERT); the
support verification step consists of BERT and multiple instance learning (MIL).

3.2 Support Verification
The support verification step takes a claim c
and a list of candidate evidence sentence(s)
e1, e2, ..., ek ∈ Ec from the previous step and out-
puts a distribution over two labels denoting the
relative likelihood of whether the claim is ‘sup-
ported’ or ‘refuted’ by Ec. Our approach to this
step involves two subparts: natural language infer-
ence (NLI) and attention-based aggregation. Again,
Ec may contain one or more sentences that sup-
port or refute c, but there is no sentence-level gold-
standard label for NLI for each sentence in Ec.

Thus, we use multiple instance learning
(MIL) (Angelidis and Lapata, 2018; Ilse et al.,
2018) to learn sentence-level labels in a semi-
supervised manner by aggregating over multiple
labels and computing loss at the document level.

In the following, BERT〈[CLS]...〉 de-
notes the contextualized representation of
the [CLS] token obtained after passing in
[CLS], E1, E2, . . . [SEP], C1, C2, . . . as the input to
BERT. Here, the [CLS] token is a special token
whose representation is meant to capture relevant
features of the input for classification (Devlin et al.,
2019).

We first initialize a binary (“supported” and “re-
futed”) NLI classifier using BERT〈[CLS]...〉:

y′ = ReLU (W ·BERT〈[CLS]...〉+ bW ) (1)

where y′ contains the predictions for the claim and
evidence sentence pairs.

Notice that for a claim c and top-k candidate
evidence sentences e1, e2, . . . , ek, we have k input
pairs 〈ei, c〉. For each pair, we have an NLI predic-
tion y′i. However, we only have the ground truth
label corresponding to 〈Ec, c〉. Therefore, we will
use another MLP to transform the same representa-
tion used for NLI to compute softmaxed attention

weights a over the sentences.

a′ = Sigmoid (V ·BERT〈[CLS]...〉+ bV ) (2)

a = Softmax(a′) (3)

Here, each element ai of a is the attention weight
for aggregating the predictions for 〈c, ei〉. Then our
aggregated document-level predicted label is:

y = aT y′ (4)

where y is a vector giving the probability distribu-
tion over the two labels, “supported" and “refuted".
Loss is computed using Cross Entropy loss with the
appropriate ground truth label. In the case when
k = 1, the attention weight for the single predic-
tion is by default 1, and this automatically reduces
to not using MIL.

4 Experiments

4.1 Setup
The experiments were conducted on the
WikiFactCheck-English dataset. We trained
the models using a randomly sampled set of 10k
supported claims, each with a corresponding
refuted claim, for a total of 20k examples selected
from the training set. Then, the performances
were measured on the heldout test set of about
10k supported claims, each with a corresponding
refuted claim, for a total of about 20k examples to
match the setup from Sathe et al. (2020).

We performed a hyperparameter search for learn-
ing rates between 1e−5 to 5e−4 in increments
of powers of 10; for gradient accumulation steps
between 4 and 16 in increments of 4; pretrained
BERT models among bert-base-uncased
(the ‘vanilla’ BERT) and bert-base-mnli
(vanilla BERT finetuned on the MNLI dataset from
Williams et al. (2018)).
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System System Components Performance

Evidence Retrieval k Support Verification Prec. Rec. F1 Acc.

Sathe et al. (2020) (WO +) LD 1 Logistic Regression .664 .729 .695 .680

LD + BERT
(WO +) LD 1 BERT .856 .748 .798 .811
(WO +) LD 3 BERT (with MIL) .845 .767 .804 .813
(WO +) LD 5 BERT (with MIL) .847 .767 .805 .815

SBERT + BERT
(WO +) SBERT 1 BERT .853 .746 .796 .809
(WO +) SBERT 3 BERT (with MIL) .855 .762 .806 .816
(WO +) SBERT 5 BERT (with MIL) .857 .767 .810 .819

Table 2: We take the best performing system (with respect to accuracy) by Sathe et al. (2020) as the baseline.
In that system, Levenshtein distance (LD) is used to find k=1 most similar sentence to the claim in the evidence
document, among the sentences that have at least one word overlap (WO) with the claim. Then, logistic regression
is used to make a prediction. LD + BERT improves on the baseline in the support verification step using BERT and
larger k’s—# of candidate evidence sentences—with multiple instance learning (MIL). SBERT+BERT improves
on LD+BERT by using SBERT to find k most similar sentences to the claim among those with one or more WO.

4.2 Results and Analysis

As summarized in Table 2, the best performing sys-
tem, SBERT+BERT with k = 5, achieves 81.9%
accuracy and 81.0% F1. This is a significant im-
provement over the best performing system from
Sathe et al. (2020). Most of the improvement is
attributable to the use of fine-tuned BERT during
support verification; simply replacing logistic re-
gression with BERT in the inference stage leads to
13% increase in accuracy. This is expected given
the strong performance of BERT on various NLP
tasks.

Small additional gains seem to result from us-
ing multiple candidate evidence sentences. For
k = 1, 3, 5, there is a mostly consistent upward
trend in performance across the board, though the
magnitude is small. The increase in performance
is greater between k = 1 and 3, compared that
between to 3 and 5, meaning the positive impact
may diminish as k increases. In theory, using mul-
tiple candidate evidence sentences can be helpful
in at least two ways. First, it can reduce the er-
ror propagating from evidence retrieval to support
verification. That is, it is less likely that the true
evidence sentence is not included in the top-5 most
similar sentences than in the top-1. Second, mul-
tiple sentences may collectively serve as evidence
for a given claim. In this case, each evidence sen-
tence would partially verify the claim, thus having
a single evidence sentence would not be enough.

Incorporating SBERT in evidence retrieval im-
proves the performance only when multiple evi-
dence sentences are used. And when it does help,

the difference is marginal. This suggests that iden-
tifying evidence sentences based on LD, which
quantifies the textual similarity, is comparable to
relying on SBERT, which is intended to measure
semantic similarity. We suspect that this could be
due to the characteristics of this particular dataset;
the evidence documents are previously published
documents cited in support of factual claims made
on Wikipedia articles. Often, these claims are very
similar to a sentence in the document, as there is
little incentive to rephrase the claim. This is dif-
ferent from other datasets in which annotators are
instructed to write novel claims based on evidence
sentences or snippets.

5 Conclusion and Future Work

We presented a 2-step pipeline to determine if
a document supports or refutes a claim only us-
ing document-level annotations. Fine-tuned BERT
with MIL to use multiple candidate evidence sen-
tences resulted in about 13% increase in accuracy
over the baseline. However, incorporating SBERT
in evidence retrieval did not lead to additional gains
that are noticeable.

In the future, we want to leverage the context,
as sentences in this dataset, and in the wild, are
often not self-contained. We expect the context
to be useful for disambiguating keywords in both
evidence retrieval and support verification. Note
that both the claim and evidence sentences have
contexts, and the context of an evidence sentence
is a potential evidence sentence itself. Both opens
up many possibilities to be explored.



105

Acknowledgments

We would like to thank the University of Rich-
mond and the Thomas F. and Kate Miller Jeffress
Memorial Trust, Bank of America, Trustee for their
generous support for this project. We also thank
the anonymous reviewers for their comments.

References
Stefanos Angelidis and Mirella Lapata. 2018. Multi-

ple instance learning networks for fine-grained sen-
timent analysis. Transactions of the Association for
Computational Linguistics, 6:17–31.

Pepa Atanasova, Preslav Nakov, Lluís Màrquez, Al-
berto Barrón-Cedeño, Georgi Karadzhov, Tsve-
tomila Mihaylova, Mitra Mohtarami, and James
Glass. 2019. Automatic fact-checking using context
and discourse information. Journal of Data and In-
formation Quality (JDIQ), 11(3):1–27.

Lukas Biewald. 2020. Experiment tracking with
weights and biases. Software available from
wandb.com.

Yonatan Bilu, Daniel Hershcovich, and Noam Slonim.
2015. Automatic claim negation: why, how and
when. In Proceedings of the 2nd Workshop on Ar-
gumentation Mining, pages 84–93.

Peter Bloem. 2019. Transformers from scratch.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics.

John Burger and Lisa Ferro. 2005. Generating an en-
tailment corpus from news headlines. pages 49–54.
Association for Computational Linguistics.

Christos Christodoulopoulos, James Thorne, Andreas
Vlachos, Oana Cocarascu, and Arpit Mittal, editors.
2020. Proceedings of the Third Workshop on Fact
Extraction and VERification (FEVER). Association
for Computational Linguistics, Online.

Giovanni Luca Ciampaglia, Prashant Shiralkar, Luis M
Rocha, Johan Bollen, Filippo Menczer, and
Alessandro Flammini. 2015. Computational fact
checking from knowledge networks. PloS one,
10(6):e0128193.

Ido Dagan, Bill Dolan, Bernardo Magnini, and Dan
Roth. 2010. Recognizing textual entailment: Ra-
tional, evaluation and approaches–erratum. Natural
Language Engineering, 16(1):105–105.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL-HLT (1).

Andrea Esuli and Fabrizio Sebastiani. 2006. Senti-
wordnet: A publicly available lexical resource for
opinion mining. In LREC, volume 6, pages 417–422.
Citeseer.

William Ferreira and Andreas Vlachos. 2016. Emer-
gent: a novel data-set for stance classification. pages
1163–1168.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
Allennlp: A deep semantic natural language process-
ing platform. In Proceedings of Workshop for NLP
Open Source Software (NLP-OSS), pages 1–6.

Swapnil Ghuge and Arindam Bhattacharya. 2014. Sur-
vey in textual entailment.

Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel Bowman, and Noah A
Smith. 2018. Annotation artifacts in natural lan-
guage inference data. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 107–112.

Andreas Hanselowski, Christian Stab, Claudia Schulz,
Zile Li, and Iryna Gurevych. 2019. A richly anno-
tated corpus for different tasks in automated fact-
checking. In Proceedings of the 23rd Confer-
ence on Computational Natural Language Learning
(CoNLL), pages 493–503, Hong Kong, China. Asso-
ciation for Computational Linguistics.

Andrew Hickl, John Williams, Jeremy Bensley, Kirk
Roberts, Bryan Rink, and Ying Shi. 2006. Recogniz-
ing textual entailment with lcc’s groundhog system.
volume 18.

Christopher Hidey, Tuhin Chakrabarty, Tariq Alhindi,
Siddharth Varia, Kriste Krstovski, Mona Diab, and
Smaranda Muresan. 2020. Deseption: Dual se-
quence prediction and adversarial examples for im-
proved fact-checking. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 8593–8606.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear.

M Ilse, JM Tomczak, and M Welling. 2018. Attention-
based deep multiple instance learning. Proceedings
of Machine Learning Research, 80:2127–2136.

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018.
Scitail: A textual entailment dataset from science
question answering. In Thirty-Second AAAI Confer-
ence on Artificial Intelligence.

Nayeon Lee, Belinda Z Li, Sinong Wang, Wen-tau
Yih, Hao Ma, and Madian Khabsa. 2020. Language
models as fact checkers? In Proceedings of the

https://www.wandb.com/
https://www.wandb.com/
http://peterbloem.nl/blog/transformers
https://aclanthology.org/2020.fever-1.0
https://aclanthology.org/2020.fever-1.0
https://doi.org/10.18653/v1/K19-1046
https://doi.org/10.18653/v1/K19-1046
https://doi.org/10.18653/v1/K19-1046


106

Third Workshop on Fact Extraction and VERification
(FEVER), pages 36–41.

Edward Loper and Steven Bird. 2002. NLTK: The nat-
ural language toolkit. In Proceedings of the ACL-02
Workshop on Effective tools and methodologies for
teaching natural language processing and computa-
tional linguistics, pages 63–70.

Daniel Marcu and Abdessamad Echihabi. 2002. An
unsupervised approach to recognizing discourse re-
lations. In ACL, pages 368–375.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

Ankur Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 2249–2255.

Joonsuk Park and Claire Cardie. 2012. Improving im-
plicit discourse relation recognition through feature
set optimization. In Proceedings of the 13th An-
nual Meeting of the Special Interest Group on Dis-
course and Dialogue, SIGDIAL ’12, pages 108–112,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Verónica Pérez-Rosas, Bennett Kleinberg, Alexandra
Lefevre, and Rada Mihalcea. 2018. Automatic de-
tection of fake news. In Proceedings of the 27th
International Conference on Computational Linguis-
tics, pages 3391–3401.

Bryan A Plummer, Liwei Wang, Chris M Cervantes,
Juan C Caicedo, Julia Hockenmaier, and Svetlana
Lazebnik. 2015. Flickr30k entities: Collecting
region-to-phrase correspondences for richer image-
to-sentence models. In Proceedings of the IEEE
international conference on computer vision, pages
2641–2649.

Yada Pruksachatkun, Jason Phang, Haokun Liu,
Phu Mon Htut, Xiaoyi Zhang, Richard Yuanzhe
Pang, Clara Vania, Katharina Kann, and Samuel
Bowman. 2020. Intermediate-task transfer learning
with pretrained language models: When and why
does it work? In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5231–5247.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2021. A Primer in BERTology: What We Know
About How BERT Works. Transactions of the Asso-
ciation for Computational Linguistics, 8:842–866.

Aalok Sathe, Salar Ather, Tuan Manh Le, Nathan Perry,
and Joonsuk Park. 2020. Automated fact-checking
of claims from wikipedia. In Proceedings of The
12th Language Resources and Evaluation Confer-
ence, pages 6874–6882.

Karishma Sharma, Feng Qian, He Jiang, Natali
Ruchansky, Ming Zhang, and Yan Liu. 2019. Com-
bating fake news: A survey on identification and mit-
igation techniques. ACM Transactions on Intelligent
Systems and Technology (TIST), 10(3):21.

Amir Soleimani, Christof Monz, and Marcel Worring.
2020. Bert for evidence retrieval and claim verifi-
cation. In European Conference on Information Re-
trieval, pages 359–366. Springer.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018a.
Fever: a large-scale dataset for fact extraction and
verification. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages
809–819.

James Thorne, Andreas Vlachos, Oana Cocarascu,
Christos Christodoulopoulos, and Arpit Mittal.
2018b. The fact extraction and verification (fever)
shared task. In Proceedings of the First Workshop on
Fact Extraction and VERification (FEVER), pages 1–
9.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Andreas Vlachos and Sebastian Riedel. 2014. Fact
checking: Task definition and dataset construction.
pages 18–22.

Soroush Vosoughi, Deb Roy, and Sinan Aral. 2018.
The spread of true and false news online. Science,
359(6380):1146–1151.

David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu
Wang, Madeleine van Zuylen, Arman Cohan, and
Hannaneh Hajishirzi. 2020. Fact or fiction: Verify-
ing scientific claims. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 7534–7550, On-
line. Association for Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. Glue:
A multi-task benchmark and analysis platform for
natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: An-
alyzing and Interpreting Neural Networks for NLP,
pages 353–355.

William Yang Wang. 2017. “liar, liar pants on fire”:
A new benchmark dataset for fake news detection.
In Proceedings of the 55th Annual Meeting of the

http://dl.acm.org/citation.cfm?id=2392800.2392818
http://dl.acm.org/citation.cfm?id=2392800.2392818
http://dl.acm.org/citation.cfm?id=2392800.2392818
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.18653/v1/2020.emnlp-main.609
https://doi.org/10.18653/v1/2020.emnlp-main.609


107

Association for Computational Linguistics (Volume
2: Short Papers), pages 422–426.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112–1122.

Thomas Wolf, Julien Chaumond, Lysandre Debut, Vic-
tor Sanh, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Morgan Funtowicz, Joe Davison, Sam
Shleifer, et al. 2020. Transformers: State-of-the-
art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 38–45.

Wenpeng Yin and Dan Roth. 2018. Twowingos: A two-
wing optimization strategy for evidential claim veri-
fication. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 105–114.

Wanjun Zhong, Jingjing Xu, Duyu Tang, Zenan Xu,
Nan Duan, Ming Zhou, Jiahai Wang, and Jian Yin.
2020. Reasoning over semantic-level graph for fact
checking. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6170–6180.


