
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 16–31
July 5–10, 2020. c©2020 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_003

16

How Emotionally Stable is ALBERT?
Testing Robustness with Stochastic Weight Averaging on a Sentiment

Analysis Task
Urja Khurana♥ and Eric Nalisnick♦ and Antske Fokkens♥♣

♥ CLTL, Dept. of Language, Literature & Communication, Vrije Universiteit Amsterdam
♦ Informatics Institute, University of Amsterdam

♣ Dept. of Mathematics and Computerscience, Eindhoven University of Technology
{u.khurana,antske.fokkens}@vu.nl

e.t.nalisnick@uva.nl

Abstract

Despite their success, modern language mod-
els are fragile. Even small changes in their
training pipeline can lead to unexpected re-
sults. We study this phenomenon by ex-
amining the robustness of ALBERT (Lan
et al., 2020) in combination with Stochas-
tic Weight Averaging (SWA)—a cheap way
of ensembling—on a sentiment analysis task
(SST-2). In particular, we analyze SWA’s sta-
bility via CheckList criteria (Ribeiro et al.,
2020), examining the agreement on errors
made by models differing only in their random
seed. We hypothesize that SWA is more stable
because it ensembles model snapshots taken
along the gradient descent trajectory. We quan-
tify stability by comparing the models’ mis-
takes with Fleiss’ Kappa (Fleiss, 1971) and
overlap ratio scores. We find that SWA re-
duces error rates in general; yet the models
still suffer from their own distinct biases (ac-
cording to CheckList).

1 Introduction

Current language models perform well on data that
resemble the distribution they are trained on, but
even a slight variation in the model training setup
can lead to results that diverge from what is origi-
nally reported (Fokkens et al., 2013; Sellam et al.,
2021). Furthermore, when the model relies on spu-
rious correlations for decision making, it then con-
tains biases that are not represented by real world
data. Ideally a model should be robust to data that
has (slightly) different characteristics from the data
it was trained on. Accuracy and related metrics,
despite their popularity, are usually not sufficient
to identify these frailties. This is known as un-
derspecification (D’Amour et al., 2020): different
predictors can achieve similar results on a specific
task, but exhibit diverging performance on other
tasks due to different induced biases.

Stress tests are an increasingly popular method
for exposing biases of a model. To test the linguis-

tic capabilities and robustness of models, Ribeiro
et al. (2020) introduce CheckList, an evaluation
methodology that is comparable to the aforemen-
tioned stress tests for robustness. CheckList can be
used to investigate which linguistic phenomena are
fully captured by a model and for which the model
is thus expected to be robust across datasets.

Robustness and generalization can be improved
by ensembling multiple models. Training different
models, however, is expensive. Stochastic Weight
Averaging (SWA) (Izmailov et al., 2018) is a way
of ensembling without the need to train different
models. During training, the weights of the model
at specific timepoints are averaged, avoiding the
need to keep track of several models. The idea is
that SWA explores different solutions close to a
high performing minimum.

In this paper, we study the effect of SWA on the
robustness to both a standard sentiment analysis
dataset and different CheckList capabilities. We
investigate if models varying only in their random
seeds still have different behavior on the same data
when trained using SWA. Specifically, we train
ALBERT-large (Lan et al., 2020) on SST-2 (Socher
et al., 2013), a sentiment analysis dataset, with
10 random seeds. We perform one run with SWA
turned off (termed vanilla models) and repeat the
procedure with SWA turned on (termed SWA mod-
els). We explore the robustness of the trained mod-
els using the CheckList methodology by looking at
the stability of mistakes. We quantify this stability
to measure the agreement in mistakes between the
different models and compare the resulting values
between the vanilla and SWA models.

Our main hypothesis is that using SWA leads
to more stable models. We therefore expect more
overlap across random seeds in the results on the
SST-2 evaluation data. We also expect SWA to lead
to more overlap in mistakes for CheckList items
that are captured by part of the vanilla models. We
also anticipate (minor) improvements of general



17

performance in both cases. For CheckList phenom-
ena that are already largely captured or not at all,
on the other hand, we do not expect to see major
differences between vanilla models and SWA in
terms of general performance or overlap.

We make the following contributions:

• We explore the effects of SWA on the stability
and robustness of ALBERT-large that stem
from underspecification.

• We perform the, to our knowledge, first joint
study of SWA and CheckList.

• We provide an in-depth analysis of results by
going beyond accuracy to look at overlap and
agreement between random seeds and Check-
List.

• We quantify agreement between different
models by calculating overlap ratio and Fleiss’
Kappa score on their mistakes.

We find that SWA improves on error rates in gen-
eral, but results on increased stability are mixed:
models with different random seeds still hold onto
their own distinct induced biases on linguistic in-
formation captured by part of the models in our
CheckList evaluation. There is minor improvement
in stability on the Fleiss’ Kappa score on the devel-
opment set of SST-2, but results are not conclusive.
Finally, we observe a large error rate for one of
the random seeds on both SST-2 and CheckList,
which also leads to a less strong result on increas-
ing agreement between models.

2 Related Work

To the best of our knowledge, we are the first to
combine SWA with CheckList and apply it to a
BERT-based model to understand its effect on ro-
bustness with different random seeds. The work
closest to ours has used variations of SWA for in-
vestigating the differences in interpretability on
CNNs and LSTMs among different random seeds
(Madhyastha and Jain, 2019). A similar method
to Stochastic Weight Averaging was employed by
Xu et al. (2020) with a different objective: improv-
ing the fine-tuning process of BERT. They pro-
pose to average the BERT model at each time-step
and two types of knowledge distillation to improve
fine-tuning of the model. The averaging receives
slightly better results and their variant of knowl-
edge distillation works the best. However, it is

unclear what the effect of this is on different ran-
dom seeds.

Instead of looking at a form of ensembling, Hua
et al. (2021) investigate the effect of injecting noise
in BERT as a regularizer on the stability (sensitiv-
ity to input perturbation) of the models and show
that fine-tuning performance improves. They point
out that this improves generalizability as well, by
looking at the difference in accuracy on the training
and test set. However, training and test set might
contain the same biases and hence might not reveal
generalization issues (Elangovan et al., 2021).

Varying Performance Most work until now has
focused on behavioral changes of models on train
and test data when changing an arbitrary choice of
the pipeline, such as the random seed (Zhong et al.,
2021; Sellam et al., 2021). Investigating the behav-
ior of language models with different pre-training
and fine-tuning random seeds on an instance-level,
Zhong et al. (2021) find that the fine-tuning ran-
dom seed is influential for the variation in perfor-
mance on an instance-level. This contrast in perfor-
mance is also highlighted by Sellam et al. (2021);
they release multiple BERT checkpoints with a
different weight initialization and show diverg-
ing performance between similarly trained models.
Such behavior has also been observed for out-of-
distribution samples (McCoy et al., 2020; D’Amour
et al., 2020; Amir et al., 2021), where different in-
duced biases are found when the random seed is
modified and checkpoints behave differently on un-
seen data, even when evaluation performance is
similar. (D’Amour et al., 2020; Amir et al., 2021).
Watson et al. (2021) show that outputs from ex-
plainability methods also vary when changing hy-
perparameters, e.g. the random seed.

Model Evaluation Evaluating models on a de-
velopment set might not expose certain biases or
weaknesses a model has acquired due to the possi-
bility of the same biases occurring in the training
set. Hence, scalable diagnostic methodologies are
useful to investigate a model’s capabilities (Wu
et al., 2019; Ribeiro et al., 2020; Wu et al., 2021;
Goel et al., 2021). Even though these methodolo-
gies all focus on evaluation, the approach can vary
between the methods. Wu et al. (2021) tackle evalu-
ation from a counterfactual point of view. Wu et al.
(2019) not only examine counterfactuals but also
grouping queries to ensure that error analysis is
scaled to all instances. Likewise, Goel et al. (2021)



18

exploit such subpopulation grouping, in addition to
adversarial attacks, perturbations, and evaluation
sets. It is possible to be unaware of certain subpop-
ulations for which the model is weak, and therefore
d’Eon et al. (2021) introduce a method that looks
for such weak groups. Ribeiro et al. (2020) provide
a methodology to analyze robustness toward basic
capabilities and operationalize this with different
test types (e.g. invariance to specific perturbations,
basic capabilities). There are also more task spe-
cific efforts for evaluation, such as perturbations
for robustness in task-oriented dialog (Liu et al.,
2021) and evaluation of bias in a sentiment analysis
setting (Asyrofi et al., 2021).

3 Method

To examine Stochastic Weight Averaging’s effect
on model stability due to underspecification, we
finetune a pretrained ALBERT-large version 2 on
the SST-2 dataset. We train two types of models 10
times:1

• Vanilla model: Model finetuned with the hy-
perparameter values from Lan et al. (2020)

• SWA model: Model finetuned for the first few
epochs with the hyperparameter values from
Lan et al. (2020) and then switching to a SWA
training schedule

For all models, we keep the training protocol the
same except for the random seed. We train 10
models with a different random seed per model
type. This gives us 20 different models: 10 vanilla
models and 10 SWA models.2 We then investigate
the robustness of each model on CheckList tests
and compare the performance of vanilla models
with SWA models.

Due to underspecification, the vanilla models
are expected to have deviating performances on the
tests across different random seeds, while the SWA
models are expected to dampen this effect. We
make a distinction between the following scenarios
and what we expect:

1We provide all code at https://github.com/
cltl/robustness-albert

2The experiments originally contained five random
seeds, of which Random Seed 0 had exceptionally poor
performance of 90.83 accuracy on the development set.
This was far from the reported validation accuracy
of 94.9 (https://github.com/google-research/
albert#albert). For the camera-ready version, we
trained an additional five seeds, which confirmed that the
anomalous one is indeed an outlier.

1. Linguistic information captured by all of
the models: We expect all of the models, re-
gardless of the random seed, to be able to
perform well on basic capabilities. Hence, we
do not expect SWA to make much improve-
ment, as there should not be a different behav-
ior across random seeds. Stability will stay
consistent here.

2. Linguistic information captured by a part
of the models: This type of linguistic infor-
mation is only captured by a part of the mod-
els due to their own induced biases. Hence,
we expect that not all vanilla models behave
similarly on such instances. With the introduc-
tion of SWA, more stability thus more overlap
between mistakes is expected.

3. Linguistic information captured by none
of the models: Some information cannot be
captured by the model at all or it is unlikely
that the model will be able to handle such
information properly. In such cases, we do
not expect SWA models to have an increase
in performance, though that cannot be ruled
out since it is possible that the weight space
averaged by SWA is able to capture it. For
the former, we do expect a large overlap of
mistakes with SWA models since such infor-
mation is not captured by any of the models.

3.1 Stochastic Weight Averaging

Stochastic Weight Averaging (SWA) is a cheap ap-
proach to create ensembles by averaging over differ-
ent snapshots over the SGD trajectory, in contrast
to the widely used approach of training different
models (Izmailov et al., 2018). In essence, SWA en-
sembles in weight space instead of the usual model
space. Due to the ensembling nature of correlated
members from the same trajectory, we expect better
generalization; a reduction in error rate and more
stability in mistakes on unseen data.

We employ a strategy where the SWA models are
trained in the same manner as the vanilla models for
the first two epochs. This cut-off epoch is chosen
empirically, by observing that the vanilla models
start converging around 2-3 epochs. We make use
of the Adam optimizer instead of the SGD opti-
mizer since the former optimizer is used for the
training of ALBERT. From the third epoch, the
learning rate drops to a constant learning rate and
at every end of the epoch, the model weights are

https://github.com/cltl/robustness-albert
https://github.com/cltl/robustness-albert
https://github.com/google-research/albert#albert
https://github.com/google-research/albert#albert


19

averaged with the running average weights. With a
high constant learning rate, the model is able to ex-
plore other solutions that are close to the local min-
imum that was found after two epochs and close
to convergence. The respective constant learning
rates of each random seed can be found in Table 1.
The values for the learning rates are found empir-
ically on the development set with the following
candidate learning rates: {6e-06, 7.5e-06}.3

SWA Learning Rate

Random Seed 0 6e-06
Random Seed 1 7.5e-06
Random Seed 2 6e-06
Random Seed 3 6e-06
Random Seed 4 7.5e-06
Random Seed 5 6e-06
Random Seed 6 6e-06
Random Seed 7 6e-06
Random Seed 8 6e-06
Random Seed 9 7.5e-06

Table 1: The constant SWA learning rates for each ran-
dom seed.

3.2 SST-2 Dataset

We use the binary version of the Stanford Sentiment
Treebank dataset4 (Socher et al., 2013), which con-
sists of human-annotated sentences from movie re-
views originating from rottentomatoes.com
for a sentiment classification task. This version of
the dataset is also included in the GLUE task (Wang
et al., 2018). We use this dataset since sentiment
analysis is an interesting task to study underspecifi-
cation as it is a more subjective task, making rigor-
ous, multifaceted evaluation even more important.
The training set consists of 67349 phrases, while
the validation and test dataset consist of 872 and
1821 sentences respectively. We use the training
and validation set for the training procedure, while
the test set is used for the generation of specific
CheckList items.

3We looked at the learning rates in examples from the orig-
inal paper at https://github.com/timgaripov/
swa#examples where some SWA learning rates are half of
the original learning rate and explored close candidate learning
rates. From previous initial experiments learning rate 5e− 06
did not work and was thus left out in these sets of experiments.

4https://nlp.stanford.edu/sentiment/
index.html

3.3 Checklist Evaluation

CheckList is a methodology to test basic and lin-
guistic capabilities of a model, similar to behav-
ioral testing in software engineering (Ribeiro et al.,
2020). They make a distinction between three types
of tests:
Minimum Functionality Test (MFT): Small ex-
amples to test for basic capabilities. We test if each
instance has the specified label.
Invariance Test (INV): Tests that apply perturba-
tions to the input and expect the prediction to stay
consistent, regardless of the correctness of the pre-
diction. The original input together with its pertur-
bations is seen as one test case.
Directional Expectation Tests (DIR): Tests
where the output is expected to change in a specific
way, when the input is modified: the confidence is
expected to change in a specific direction. Similar
to INV tests, the original input with modifications
is seen as a test case.

In this paper, we consider different MFTs, INVs,
and DIRs tests for sentiment analysis. We check
for basic capabilities and robustness. Each trained
model is evaluated on our CheckList set up and
their performances are compared. We expect that
vanilla models make more mistakes than SWA mod-
els and qualitatively make less overlapping mis-
takes due to each model having their own different
induced biases. On the other hand, SWA models
are expected to have more overlapping mistakes,
due to its ensembling and explorative nature in the
weight space.

We created 18 CheckList capability tests by
adapting tests from the CheckList GitHub repos-
itory5 to the use-case in this paper. For reasons
of space, we refer to individual capability tests
with transparent names followed by the test size,
only using short explanations when the name by
itself is not sufficiently clear. For tests that perturb
the input and are not created from scratch, we use
the test set from SST-2. Each original input can
be augmented more than once, depending on the
capability. These tests are followed by two num-
bers when introduced: the number of original items
and total items with perturbations included. A full
overview of the CheckList capabilities and their
sizes can be found in Table 7 in Appendix D.

5https://github.com/marcotcr/
checklist/blob/master/notebooks/
Sentiment.ipynb

rottentomatoes.com
https://github.com/timgaripov/swa#examples
https://github.com/timgaripov/swa#examples
https://nlp.stanford.edu/sentiment/index.html
https://nlp.stanford.edu/sentiment/index.html
https://github.com/marcotcr/checklist/blob/master/notebooks/Sentiment.ipynb
https://github.com/marcotcr/checklist/blob/master/notebooks/Sentiment.ipynb
https://github.com/marcotcr/checklist/blob/master/notebooks/Sentiment.ipynb


20

4 Results

This section presents the outcome of our exper-
iments. We first provide results on the original
dataset and then the results on CheckList items.
Lastly we examine how stable vanilla and SWA
models are by looking at the label agreement be-
tween models trained from different seeds.

4.1 Stochastic Weight Averaging

As mentioned in the previous section, we origi-
nally ran our experiments on five random seeds and
added five additional seeds after observing that one
seed performed lower than all others. When we
compare the accuracy of the vanilla models with
the SWA models on the validation set of SST-2 in
Table 2, it is evident that most of the SWA mod-
els perform slightly better than the vanilla models.
The only exceptions are Random Seed 0, 7, and 8.
Upon running our experiments on five additional
seeds, Random Seed 0 remains the only seed that
has an accuracy around 0.90, confirming that it
is an outlier. The SWA versions of the other two
random seeds might not outperform their vanilla
counterparts but achieve a close accuracy.

Due to the outlying behavior of Random Seed 0,
we leave its results out of the rest of the analysis,
to avoid noise from this model influencing the anal-
ysis. We present the complete results with Random
Seed 0 included in Appendix C.

Vanilla SWA

Random Seed 0 0.9083 0.8991
Random Seed 1 0.9507 0.9541
Random Seed 2 0.9450 0.9495
Random Seed 3 0.9507 0.9541
Random Seed 4 0.9450 0.9461

Random Seed 5 0.9495 0.9507
Random Seed 6 0.9450 0.9472
Random Seed 7 0.9438 0.9392
Random Seed 8 0.9461 0.9450
Random Seed 9 0.9415 0.9461

Table 2: Accuracy on the validation set of SST-2 for the
vanilla and SWA models of the different random seeds.

4.2 CheckList Evaluation

4.2.1 Vanilla Model Results
Error Rates We show the failure rate for each
capability per vanilla model in Figure 1a. For

the Movie Sentiments (n=58), Single Positive
Words (n=22), Single Negative Words (n=14), and
Sentiment-laden Words in Context (n=1350) capa-
bilities there are no mistakes made by any of the
vanilla models. On Add Positive Phrases (n=500,
m=5500), only Random Seed 8 makes mistakes
with a very small error rate. Similarly, on Movie
Industries Sentiments (n=1200) only Random Seed
8 and Random Seed 2 make mistakes, again with
very small error rates that would not be visible on
the plot. Hence for clarity, these capabilities are
left out of the plot.

There is not much variation in the error rate for
most of the capabilities. The most variation in per-
formance among the random seeds can be observed
for the capability that tests negations of positive
sentences, with a neutral sentiment in the middle of
the sentence: Negation of Positive, neutral words in
the middle (D) (n=500). Interestingly, it is evident
that particular random seeds can deal with negation
better than others: Random Seed 1, 4, and 5. These
random seeds have the lowest error rate for both
Negation of Positive Sentences (C) (n=1350) and
Negation of Positive, neutral words in the middle.

Overlap Ratios A similar error rate, however,
does not mean that the errors occur for the same
instances. Hence, we analyze the overlap of errors
of the vanilla models per capability. We calcu-
late an overlap ratio by dividing the intersection
of the failures of two random seeds by the union
of those same failures. In contrast to the error
rates, the overlap ratios are on an instance-level
instead of case-level. There is no overlap of errors
between the models for the capability Add Posi-
tive Phrases. The capability with the highest over-
lap ratio is Movie Genre Specific Sentiments (A)
(n=736), which checks for sentiments that are fit-
ting or not for specific genres: e.g. a scared feeling
after watching a horror movie. This indicates that
most of the models make similar mistakes for this
capability. When looking at the mistakes, all the
models misclassify sentences about horror movies
being terrifying, scary, frightening or calming, a
comedy movie being serious and a drama movie be-
ing funny instead of serious. In general, most of the
vanilla models have a low overlap ratio, with the
only exceptions being Negation of Positive, neutral
words in the middle (D) and Temporal Sentiment
Change (B) (n=2152). The latter capability con-
tains sentences where the sentiment changes over
time. These two contain certain random seeds that



21

A B C D E F G H I J K L
0

10

20

30

40

50
Er
ro
r R

at
e

A - Movie Genre Specific Sentiments
B - Temporal Sentiment Change
C - Negation of Positive Sentences
D - Negation of Positive, neutral words in the middle
E - Change Names
F - Negative Names - Positive Instances
G - Positive Names - Negative Instances
H - Negative Names - Negative Instances
I - Positive Names - Positive Instances
J - Change Movie Industries
K - Change Neutral Words
L - Add Negative Phrases

Error Rates of Capabilities per Model
Random Seed 9
Random Seed 8
Random Seed 7
Random Seed 6
Random Seed 5
Random Seed 4
Random Seed 3
Random Seed 2
Random Seed 1

(a) Error rates of each vanilla random seed for each CheckList capability.

A B C D E F G H I J K L
0

10

20

30

40

50

Er
ro

r R
at

e

Error Rates of Capabilities per Model
Random Seed 9 SWA
Random Seed 8 SWA
Random Seed 7 SWA
Random Seed 6 SWA
Random Seed 5 SWA
Random Seed 4 SWA
Random Seed 3 SWA
Random Seed 2 SWA
Random Seed 1 SWA

(b) Error rates of each SWA random seed for each CheckList capability.

Figure 1: Comparison of error rates per capability of vanilla and SWA models.

achieve a higher overlap ratio, as we can see in the
spread of the box for these capabilities.

4.2.2 SWA Model Results
Error Rates Error rates for the SWA models per
capability can be found in Figure 1b. In general, we
can observe a (slight) reduction in error rate with
SWA models compared to vanilla models. On Add
Positive Phrases, only Random Seed 5 and Random
Seed 6 have a slight increase in error rate. The lat-
ter is also the only one to make a mistake on Movie
Industries Sentiments6. The largest drop can be
seen for Negation of Positive, neutral words in the
middle (D), where the diverging performance seen

6These error rates are too low (0.2% - 0.35%) to be visible
in the plot, hence left out.

for the vanilla models has been reduced for most
random seeds, except for Random Seed 7 and Ran-
dom Seed 9, whose error rates increase significantly.
Similar behavior can be observed for Negation of
Positive Sentences (C), where only the SWA ver-
sions of Random Seed 7 and 9 have an increase
in error rate. This suggests that the SWA solution
for these two random seeds is worse in handling
negation than their corresponding vanilla versions.
For other capabilities, the error rate mostly reduces
slightly or stays the same. The only exceptions are
Positive Names - Negative Instances (G) (n=123,
m=1353) and Negative Names - Negative Instances
(H) (n=123, m=1353), where Negative Names are
names that tend to occur in negative reviews in the
training data, similarly for positive names, and we



22

A B C D E F G H I J K L
0

5

10

15

20

25

30
Er

ro
r R

at
e

Error Rate per Capability: Vanilla vs. SWA
Vanilla
SWA

(a) Comparison of variation in error rates between vanilla (red boxes) and SWA models (blue boxes), showcased per
CheckList capability. Outliers are indicated with a circle.

A B C D E F G H I J K L

0.0

0.2

0.4

0.6

0.8

Ov
er
la
p 
Ra

tio

Overlap Ratio of Errors per Capability: Vanilla vs. SWA
Vanilla
SWA

(b) Comparison of variation in overlap ratios between vanilla (red boxes) and SWA models (blue boxes), showcased per
CheckList capability. Outliers are indicated with a circle.

Figure 2: Comparing the variation of error rates and overlap ratios per capability for vanilla and SWA models.
Legend for the x-axis can be found in Figure 1

insert these names in negative instances of the test
set. More details are provided in Appendix D.

Overlap Ratios The overlap ratio for most capa-
bilities remains low. Notably, the spread of overlap
ratio for Movie Genre Specific Sentiments (A) in-
creases from the vanilla models. All of the models
still struggle with understanding that horror movies
being terrifying, scary or frightening is positive,
and calming is negative. This is in line with the
expectations of SWA not improving (much) on
capabilities that are not captured by any of the
models. We find increase in overlap for Change
Names (E) (n=147, m=1617), Negative Names -

Negative Instances (H), and Change Neutral Words
(K) (n=500, m=3846), in accordance with our ex-
pectation of SWA bringing more stability. There is
a different trend, against expectations, for Add Neg-
ative Phrases (L), Negation of Positive Sentences
(C), and Temporal Sentiment Change (B), where
the large variation of overlap of vanilla models is
reduced significantly. For the rest of the capabili-
ties, the overlap ratio appears to stay somewhat the
same.

Overall, there are three different outcomes when
comparing stability with SWA to vanilla models:
(1) Good performance of vanilla models stays con-



23

sistent for the SWA models. (2) Large variations
in error rates with vanilla models are reduced with
SWA, but the overlap of mistakes does not increase
and might decrease for some cases. (3) Overlap ra-
tio with SWA does not necessarily increase, when
error rates of the vanilla models are somewhat sim-
ilar and remain the same for the SWA models. As
such, we do not find evidence to confirm our hy-
pothesis based on overlap between the outcomes
on CheckList items.

4.3 Fleiss’ Kappa

To further investigate the stability of SWA models,
we measure the inter-model agreement on the mis-
classifications with the use of Fleiss’ Kappa (Fleiss,
1971). This measure is used for inter-annotator
agreement which can be related to the nine ran-
dom seeds. In our case the annotators and the
predictions being their annotations, used for both
the vanilla and SWA models. Negative values or
values close to zero are considered to indicate a
rather low agreement, while the higher the value,
the more agreement there is.

Vanilla SWA Difference

With Random
Seed 0

0.205964 0.247299 0.041335

Without Ran-
dom Seed 0

0.226725 0.360317 0.133592

With Random
Seed 0

0.3984 0.4381 0.03967

Without Ran-
dom Seed 0

0.3881 0.4106 0.0225

Table 3: Fleiss’ Kappa values of the vanilla and SWA
models on the agreement on the misclassifications on
the development set. The upper block is with the first
five random seeds and the lower is with all 10.

The results on the development set in Table 3
illustrate a significant increase in agreement for
SWA models, when considering the initial four ran-
dom seeds, without outlier Random Seed 0. While
the agreement is still on the lower side, hinting at
the presence of induced biases, the increase indi-
cates more agreement on errors between the models
and lesser distinct mistakes. We hence look at the
Fleiss’ Kappa values with the additional five ran-
dom seeds incorporated. The Fleiss’ Kappa agree-
ment increases significantly in general for both the
vanilla and SWA models. We now only observe a
small increase in agreement when applying SWA

compared to the vanilla models.

Vanilla SWA Difference

Negation of Positive
Sentences

0.029640 0.020448 -0.009192

Negation of Positive,
neutral words in the
middle

0.107637 0.142219 0.034582

Movie Genre Specific
Sentiments

0.581853 0.660138 0.078285

Temporal Sentiment
Change

0.248653 0.290926 0.042273

Change Names -0.091694 -0.084096 0.007598
Negative Names - Pos-
itive Instances

0.006975 0.006021 -0.000954

Positive Names - Nega-
tive Instances

-0.069162 -0.076226 -0.007064

Negative Names - Neg-
ative Instances

-0.082486 -0.069141 0.013346

Positive Names - Posi-
tive Instances

0.012704 0.035196 0.022492

Change Movie Indus-
tries

-0.072503 -0.052239 0.020264

Change Neutral Words 0.087306 0.135759 0.048453

Add Negative Phrases -0.031328 -0.062053 -0.030724

Table 4: Fleiss’ Kappa values of the vanilla and SWA
models on the agreement on CheckList mistakes per
capability. The first part of the table shows the MFT
capabilities, the second part are the INV capabilities,
and the third part are the DIR capabilities.

We calculate the Kappa measure on the predic-
tions of all the random seeds on the CheckList
items as well. For the tests that measure basic ca-
pabilities (MFTs), we look at the agreement on
predictions of errors. With tests that perturb an
input (INVs), the instances that flip the output pre-
diction are considered as a failure, so we check for
model agreement on flipping for an instance. Simi-
larly, for capabilities that test a directional change
in confidence (DIRs), instances that go against the
expected direction are considered failures and we
compare model agreement on if they change in the
same direction.

The Kappa values for the CheckList mistakes in
Table 4 stay mostly unchanged with slight increases
or decreases in agreement. This is in accordance
with the results observed for the development set
mistakes: it appears that SWA does not provide the
stability across random seeds and still suffers from
its own induced biases. Generally, the agreement is
on the lower side. The Kappa values for Movie In-
dustries Sentiments and Add Positive Phrases were
0.0 for both vanilla and SWA models and hence
left out of the table. For Movie Genre Specific Sen-
timents we see a large agreement and the biggest



24

increase in agreement with SWA. This corresponds
to the high overlap ratio for the same capability.

While SWA globally cuts down on error rate, it
appears that this does not necessarily translate to
improvement in stability: there is still disagreement
in the labels assigned by individual models. Even
with SWA, the models appear to make different
errors on CheckList as confirmed by the low Kappa
values and overlap ratio. For some capabilities the
spread of the overlap ratio is on the higher side,
indicating that some random seed models are closer
to each other in terms of decision making, but this
does not hold for all.

5 Discussion

This research illustrates the potential impact of ran-
dom seeds. First, our original sample of 5 seeds
contained an outlier that performed far worse than
the other seeds (as well as the original study). Sec-
ond, while initial results on the SST-2 develop-
ment set were promising when looking at the 4
random seeds that showed normal behavior, these
results did not hold when adding 5 additional ran-
dom seeds. This highlights the necessity for proper
analysis and the fragility of deep language models.
Possibly, the initial random seeds were closer to
each other in the weight space and hence SWA ap-
peared to increase the agreement significantly. The
additional random seeds could lie farther away, thus
subsiding the increased agreement. In the future,
more comprehensive research on the proximity and
behavior of different random seeds could therefore
be useful.

Even though CheckList provides an easy way
to investigate the capabilities of a model, automa-
tizing some tests can be hard. There can be situ-
ations in which labels indicated for a specific ca-
pability might not hold for a certain test case. For
instance, negating a negative sentence might not
always lead to a positive sentence, it can also be
neutral. Similarly, we applied negations on some
instances from the test set but the label is not re-
quired to flip, depending on the placement of the
negation. Therefore, we leave out the results in
our conclusions as the labels did not always make
sense upon investigation. In some instances, it is
also unclear what the resulting label should be. We
have added the results for these specific capabili-
ties in Appendix B for completeness. For further
experiments, we would like to manually generate
some CheckList capabilities to ensure validity of

the labels. This will also enable us to focus on the
creation of more subjective tests, cases that are less
black-and-white than the tests conducted in this
research. We can then gain more insights into the
fragility of models when it comes to border cases.

6 Conclusion

We combine SWA with the CheckList methodology
to explore the effects of SWA on the robustness of
a BERT-based model (ALBERT-large) on different
random seeds and apply it to a sentiment analysis
task. To understand how SWA affects the stabil-
ity amongst different random seeds, we analyze
in-depth the results and mistakes made on the de-
velopment set and CheckList test items and provide
error rates, overlap ratios, and Fleiss’ Kappa agree-
ment values. While SWA is able to reduce the error
rate in general amongst most of the random seeds,
on the CheckList tests, there are still some capabil-
ities that models make their own distinct mistakes
on with SWA incorporated. The stability on the
development set also improves only slightly. In the
future, we would like to create more hand-crafted
CheckList capabilities for further rigorous study.
Furthermore, it could be useful to thoroughly in-
vestigate the impact of adjacency of random seeds
on their error agreement.

Acknowledgements

This research was (partially) funded by the Hybrid
Intelligence Center, a 10-year programme funded
by the Dutch Ministry of Education, Culture and
Science through the Netherlands Organisation for
Scientific Research.

References

Silvio Amir, Jan-Willem van de Meent, and Byron Wal-
lace. 2021. On the impact of random seeds on the
fairness of clinical classifiers. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 3808–3823, On-
line. Association for Computational Linguistics.

Muhammad Hilmi Asyrofi, Imam Nur Bani Yusuf,
Hong Jin Kang, Ferdian Thung, Zhou Yang, and
David Lo. 2021. Biasfinder: Metamorphic test gen-
eration to uncover bias for sentiment analysis sys-
tems. arXiv preprint arXiv:2102.01859.

Alexander D’Amour, Katherine Heller, Dan Moldovan,
Ben Adlam, Babak Alipanahi, Alex Beutel,

https://doi.org/10.18653/v1/2021.naacl-main.299
https://doi.org/10.18653/v1/2021.naacl-main.299


25

Christina Chen, Jonathan Deaton, Jacob Eisen-
stein, Matthew D Hoffman, et al. 2020. Un-
derspecification presents challenges for credibil-
ity in modern machine learning. arXiv preprint
arXiv:2011.03395.

Greg d’Eon, Jason d’Eon, James R. Wright, and Kevin
Leyton-Brown. 2021. The spotlight: A general
method for discovering systematic errors in deep
learning models.

Aparna Elangovan, Jiayuan He, and Karin Verspoor.
2021. Memorization vs. generalization : Quantify-
ing data leakage in NLP performance evaluation. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 1325–1335, Online.
Association for Computational Linguistics.

Joseph L Fleiss. 1971. Measuring nominal scale agree-
ment among many raters. Psychological bulletin,
76(5):378.

Antske Fokkens, Marieke van Erp, Marten Postma, Ted
Pedersen, Piek Vossen, and Nuno Freire. 2013. Off-
spring from reproduction problems: What replica-
tion failure teaches us. In Proceedings of the 51st
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
1691–1701, Sofia, Bulgaria. Association for Compu-
tational Linguistics.

Karan Goel, Nazneen Fatema Rajani, Jesse Vig,
Zachary Taschdjian, Mohit Bansal, and Christopher
Ré. 2021. Robustness gym: Unifying the NLP eval-
uation landscape. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies: Demonstrations, pages 42–55,
Online. Association for Computational Linguistics.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy:
Industrial-strength Natural Language Processing in
Python.

Hang Hua, Xingjian Li, Dejing Dou, Chengzhong Xu,
and Jiebo Luo. 2021. Noise stability regularization
for improving BERT fine-tuning. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 3229–3241,
Online. Association for Computational Linguistics.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov,
Dmitry Vetrov, and Andrew Gordon Wilson. 2018.
Averaging weights leads to wider optima and bet-
ter generalization. In 34th Conference on Uncer-
tainty in Artificial Intelligence 2018, UAI 2018, 34th
Conference on Uncertainty in Artificial Intelligence
2018, UAI 2018, pages 876–885. Association For
Uncertainty in Artificial Intelligence (AUAI).

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.

2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Jiexi Liu, Ryuichi Takanobu, Jiaxin Wen, Dazhen Wan,
Hongguang Li, Weiran Nie, Cheng Li, Wei Peng,
and Minlie Huang. 2021. Robustness testing of lan-
guage understanding in task-oriented dialog. In Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 2467–
2480, Online. Association for Computational Lin-
guistics.

Pranava Madhyastha and Rishabh Jain. 2019. On
model stability as a function of random seed. In Pro-
ceedings of the 23rd Conference on Computational
Natural Language Learning (CoNLL), pages 929–
939, Hong Kong, China. Association for Computa-
tional Linguistics.

R. Thomas McCoy, Junghyun Min, and Tal Linzen.
2020. BERTs of a feather do not generalize to-
gether: Large variability in generalization across
models with similar test set performance. In Pro-
ceedings of the Third BlackboxNLP Workshop on An-
alyzing and Interpreting Neural Networks for NLP,
pages 217–227, Online. Association for Computa-
tional Linguistics.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902–
4912, Online. Association for Computational Lin-
guistics.

Thibault Sellam, Steve Yadlowsky, Jason Wei, Naomi
Saphra, Alexander D’Amour, Tal Linzen, Jasmijn
Bastings, Iulia Turc, Jacob Eisenstein, Dipanjan
Das, et al. 2021. The multiberts: Bert repro-
ductions for robustness analysis. arXiv preprint
arXiv:2106.16163.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

http://arxiv.org/abs/2107.00758
http://arxiv.org/abs/2107.00758
http://arxiv.org/abs/2107.00758
https://aclanthology.org/2021.eacl-main.113
https://aclanthology.org/2021.eacl-main.113
https://aclanthology.org/P13-1166
https://aclanthology.org/P13-1166
https://aclanthology.org/P13-1166
https://doi.org/10.18653/v1/2021.naacl-demos.6
https://doi.org/10.18653/v1/2021.naacl-demos.6
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.18653/v1/2021.naacl-main.258
https://doi.org/10.18653/v1/2021.naacl-main.258
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.18653/v1/2021.acl-long.192
https://doi.org/10.18653/v1/2021.acl-long.192
https://doi.org/10.18653/v1/K19-1087
https://doi.org/10.18653/v1/K19-1087
https://doi.org/10.18653/v1/2020.blackboxnlp-1.21
https://doi.org/10.18653/v1/2020.blackboxnlp-1.21
https://doi.org/10.18653/v1/2020.blackboxnlp-1.21
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446


26

Matthew Watson, Bashar Awwad Shiekh Hasan, and
Noura Al Moubayed. 2021. Agree to disagree:
When deep learning models with identical architec-
tures produce distinct explanations. arXiv preprint
arXiv:2105.06791.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, et al. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv
preprint arXiv:1910.03771.

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer,
and Daniel Weld. 2019. Errudite: Scalable, repro-
ducible, and testable error analysis. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 747–763, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer,
and Daniel S Weld. 2021. Polyjuice: Generating
counterfactuals for explaining, evaluating, and im-
proving models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics.

Yige Xu, Xipeng Qiu, Ligao Zhou, and Xuanjing
Huang. 2020. Improving bert fine-tuning via
self-ensemble and self-distillation. arXiv preprint
arXiv:2002.10345.

Ruiqi Zhong, Dhruba Ghosh, Dan Klein, and Jacob
Steinhardt. 2021. Are larger pretrained language
models uniformly better? comparing performance
at the instance level. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 3813–3827, Online. Association for Computa-
tional Linguistics.

A Technical Details

For model training, we make use of the Hugging-
Face (Wolf et al., 2019) pipeline and train the mod-
els on a single GeForce RTX 2080 Ti. We use the
same hyperparameter settings as reported by Lan
et al. (2020). The visualization of the learning rate
schedules can be seen in Figure 3.

0 5000 10000 15000 20000
Training Ste s

0.0

0.2

0.4

0.6

0.8

1.0

Le
ar
ni
ng
 R
at
e

1e−5 Learning Rate Schedules: Vanilla vs. SWA

SWA Schedule, lr = 7.5e-06
SWA Schedule, lr = 6e-06
Vanilla Model Schedule

Figure 3: All the different learning rate schedules start
identically with 1256 warmup steps to 1e-5. For the
vanilla models (the green line) the learning rate anneals
linearly to 0 till the 20935th step. This is in accor-
dance with the hyperparameters reported in Lan et al.
(2020). For the SWA models, after the second epoch,
the learning rate drops to one of the specified learning
rates (blue or orange lines) and stays constant.

As the HuggingFace pipeline does not provide
the labels for the test set of SST-2, we match the
phrases of the test set in HuggingFace with the
phrases in the SST-2 dataset from the dictionary.txt
file, downloaded from GLUE,7 to get their phrase
IDs. Then we use those IDs to extract the labels
from sentiment_labels.txt. Every label above 0.6 is
mapped to positive and equal to or lower than 0.4
is mapped to negative, as mentioned in the instruc-
tions of the README.md file. Some sentences are
matched manually as they differ only in British vs.
American English spelling.

B Results of Excluded Capabilities

For completeness, we also show the results for
capabilities excluded from our analysis. For Add
Negations and Negation of Negative Sentences we
generated automatic test cases but the labels were
not always correct upon investigation. Hence, we
left these two capabilities out of the analysis.

In Table 5 we show the Fleiss’ Kappa values, the
error rates per capability for the vanilla and SWA
models can be found in Figure 4a and Figure 4b,
respectively. The variation in error rates and over-
lap ratios between vanilla and SWA models can be
found in the Figures 5a and 5b respectively. All
the results are with the five initial random seeds,
Random Seed 0 included.

7https://gluebenchmark.com/tasks

https://doi.org/10.18653/v1/P19-1073
https://doi.org/10.18653/v1/P19-1073
https://doi.org/10.18653/v1/2021.findings-acl.334
https://doi.org/10.18653/v1/2021.findings-acl.334
https://doi.org/10.18653/v1/2021.findings-acl.334
https://gluebenchmark.com/tasks


27

Add Negations Negation of Negative Sentences
0

10

20

30

40

50

60

Er
ro
r R

at
e

Error Rates of Capabilities per Model
Random Seed 4
Random Seed 3
Random Seed 2
Random Seed 1
Random Seed 0

(a) Error rates of each vanilla random seed for the excluded
capabilities.

Add Negations Negation of Negative Sentences
0

10

20

30

40

50

60

Er
ro
r R

at
e

Error Rates of Capabilities per Model
Random Seed 4 SWA
Random Seed 3 SWA
Random Seed 2 SWA
Random Seed 1 SWA
Random Seed 0 SWA

(b) Error rates of each SWA random seed for the excluded
capabilities.

Figure 4: Comparison of error rates of vanilla and SWA
models for the excluded capabilities.

Vanilla SWA Difference

Add Negations 0.475553 0.470416 -0.005136
Negation of Nega-
tive Sentences

-0.025882 -0.066728 -0.040845

Table 5: Fleiss’ Kappa values of the excluded capabili-
ties.

C CheckList Results with Random Seed
0

We present our results on CheckList with Random
Seed 0 as well for transparency. We again present
the Fleiss’ Kappa values for the CheckList capabil-
ities in Table 6. The error rates of each capability
per vanilla and SWA models can be found in Fig-
ures 6a and 6b. We also plot the variation in error
rates (Figure 7a) and overlap ratios (Figure 7b).

Add Negations Negation of Negative Sentences
0

10

20

30

40

50

60

Er
ro

r R
at

e

Error Rate per Capability: Vanilla vs. SWA
Vanilla
SWA

(a) Comparison of variation in error rates between vanilla
(red boxes) and SWA models (blue boxes), for the excluded
capabilities.

Add Negations Negation of Negative Sentences
0.0

0.2

0.4

0.6

0.8

Ov
er
la
p 
Ra

tio

Overlap Ratio of Errors per Capability: Vanilla vs. SWA
Vanilla
SWA

(b) Comparison of variation in overlap ratios between
vanilla (red boxes) and SWA models (blue boxes), for the
excluded capabilities.

Figure 5: Comparing the variation of error rates and
overlap ratios for the excluded capabilities.

D CheckList Capabilities

In Table 7 we describe each CheckList capability
that we test for. For perturbing capabilities such
as Negative names, Positive instances and its other
variants, we extract names from the SST-2 training
set with Spacy (Honnibal et al., 2020). Due to
false positives, we manually remove names that
do not refer to a person, such as movie names and
historical figures. Per name, we calculate the mean
of labels of the instances it occurs in. This way, we
can select positive and negative names to perturb
test set instances with.

As reviews were predominantly about Holly-
wood, we also perturbed instances talking specifi-
cally about it. We compile a list of around 10 other
movie industries,8 based on how many movies are
produced9 and revenue.

8https://en.wikipedia.org/wiki/List_
of_Hollywood-inspired_nicknames

9https://en.wikipedia.org/wiki/Film_
industry#Statistics

https://en.wikipedia.org/wiki/List_of_Hollywood-inspired_nicknames
https://en.wikipedia.org/wiki/List_of_Hollywood-inspired_nicknames
https://en.wikipedia.org/wiki/Film_industry#Statistics
https://en.wikipedia.org/wiki/Film_industry#Statistics


28

Ad
d 
Ne

ga
tiv
e 
Ph
ra
se
s

Ne
ga
tio
n 
of
 Po

sit
ive

 S
en
te
nc
es

Ne
ga
tio
n 
of
 Po

sit
ive

, n
eu
tra

l w
or
ds
 in
 th
e 
m
id
dl
e

Mo
vie

 G
en
re
 S
pe
cif
ic 
Se
nt
im
en
ts

Ch
an
ge
 N
am

es
Ne

ga
tiv
e 
Na

m
es
 - 
Po
sit
ive

 In
st
an
ce
s

Po
sit
ive

 N
am

es
 - 
Ne

ga
tiv
e 
In
st
an
ce
s

Ne
ga
tiv
e 
Na

m
es
 - 
Ne

ga
tiv
e 
In
st
an
ce
s

Po
sit
ive

 N
am

es
 - 
Po
sit
ive

 In
st
an
ce
s

Ch
an
ge
 M
ov
ie 
In
du
st
rie
s

Ch
an
ge
 N
eu
tra

l W
or
ds

Te
m
po
ra
l S
en
tim

en
t C

ha
ng
e

0

20

40

60

80
Er
ro
r R

at
e

Error Rates of Capabilities per Model
Random Seed 9
Random Seed 8
Random Seed 7
Random Seed 6
Random Seed 5
Random Seed 4
Random Seed 3
Random Seed 2
Random Seed 1
Random Seed 0

(a) Error rates of each vanilla random seed for each CheckList capability.

Ad
d 
Ne

ga
tiv
e 
Ph
ra
se
s

Ne
ga
tio
n 
of
 Po

sit
ive

 S
en
te
nc
es

Ne
ga
tio
n 
of
 Po

sit
ive

, n
eu
tra

l w
or
ds
 in
 th
e 
m
id
dl
e

Mo
vie

 G
en
re
 S
pe
cif
ic 
Se
nt
im
en
ts

Ch
an
ge
 N
am

es
Ne

ga
tiv
e 
Na

m
es
 - 
Po
sit
ive

 In
st
an
ce
s

Po
sit
ive

 N
am

es
 - 
Ne

ga
tiv
e 
In
st
an
ce
s

Ne
ga
tiv
e 
Na

m
es
 - 
Ne

ga
tiv
e 
In
st
an
ce
s

Po
sit
ive

 N
am

es
 - 
Po
sit
ive

 In
st
an
ce
s

Ch
an
ge
 M
ov
ie 
In
du
st
rie
s

Ch
an
ge
 N
eu
tra

l W
or
ds

Te
m
po
ra
l S
en
tim

en
t C

ha
ng
e

0

20

40

60

80

Er
ro
r R

at
e

Error Rates of Capabilities per Model
Random Seed 9 SWA
Random Seed 8 SWA
Random Seed 7 SWA
Random Seed 6 SWA
Random Seed 5 SWA
Random Seed 4 SWA
Random Seed 3 SWA
Random Seed 2 SWA
Random Seed 1 SWA
Random Seed 0 SWA

(b) Error rates of each SWA random seed for each CheckList capability.

Figure 6: Comparison of error rates per capability of vanilla and SWA models with all the 10 random seeds.



29

Ad
d 

Ne
ga

tiv
e 

Ph
ra

se
s

Ne
ga

tio
n 

of
 Po

sit
ive

 S
en

te
nc

es
Ne

ga
tio

n 
of

 Po
sit

ive
, n

eu
tra

l w
or

ds
 in

 th
e 

m
id

dl
e

Mo
vie

 G
en

re
 S

pe
cif

ic 
Se

nt
im

en
ts

Ch
an

ge
 N

am
es

Ne
ga

tiv
e 

Na
m

es
 - 

Po
sit

ive
 In

st
an

ce
s

Po
sit

ive
 N

am
es

 - 
Ne

ga
tiv

e 
In

st
an

ce
s

Ne
ga

tiv
e 

Na
m

es
 - 

Ne
ga

tiv
e 

In
st

an
ce

s
Po

sit
ive

 N
am

es
 - 

Po
sit

ive
 In

st
an

ce
s

Ch
an

ge
 M

ov
ie 

In
du

st
rie

s
Ch

an
ge

 N
eu

tra
l W

or
ds

Te
m

po
ra

l S
en

tim
en

t C
ha

ng
e

0

20

40

60

80
Er

ro
r R

at
e

Error Rate per Capability: Vanilla vs. SWA
Vanilla
SWA

(a) Comparison of variation in error rates between vanilla (red boxes) and SWA models (blue boxes), showcased
per CheckList capability. Outliers are indicated with a circle.

Ad
d 

Ne
ga

tiv
e 

Ph
ra

se
s

Ne
ga

tio
n 

of
 Po

sit
ive

 S
en

te
nc

es
Ne

ga
tio

n 
of

 Po
sit

ive
, n

eu
tra

l w
or

ds
 in

 th
e 

m
id

dl
e

Mo
vie

 G
en

re
 S

pe
cif

ic 
Se

nt
im

en
ts

Ch
an

ge
 N

am
es

Ne
ga

tiv
e 

Na
m

es
 - 

Po
sit

ive
 In

st
an

ce
s

Po
sit

ive
 N

am
es

 - 
Ne

ga
tiv

e 
In

st
an

ce
s

Ne
ga

tiv
e 

Na
m

es
 - 

Ne
ga

tiv
e 

In
st

an
ce

s
Po

sit
ive

 N
am

es
 - 

Po
sit

ive
 In

st
an

ce
s

Ch
an

ge
 M

ov
ie 

In
du

st
rie

s
Ch

an
ge

 N
eu

tra
l W

or
ds

Te
m

po
ra

l S
en

tim
en

t C
ha

ng
e

0.0

0.2

0.4

0.6

0.8

Ov
er

la
p 

Ra
tio

Overlap Ratio of Errors per Capability: Vanilla vs. SWA
Vanilla
SWA

(b) Comparison of variation in overlap ratios between vanilla (red boxes) and SWA models (blue boxes),
showcased per CheckList capability. Outliers are indicated with a circle.

Figure 7: Comparing the variation of error rates and overlap ratios per capability for vanilla and SWA models,
including results from Random Seed 0.



30

Vanilla SWA Difference

Negation of Positive Sentences 0.048956 0.031777 -0.017179
Negation of Positive, neutral words in the middle 0.132425 0.150507 0.018082

Movie Genre Specific Sentiments 0.583256 0.590209 0.006952
Sentiment-laden Words in Context 0.000000 0.000000 0.000000

Temporal Sentiment Change 0.335020 0.428743 0.093723
Movie Industries Sentiments -0.048387 -0.036866 0.011521

Change Names -0.046527 -0.074413 -0.027887
Negative Names - Positive Instances -0.007656 -0.007270 0.000386
Positive Names - Negative Instances -0.044586 -0.067630 -0.023044
Negative Names - Negative Instances -0.046272 -0.061678 -0.015406
Positive Names - Positive Instances 0.001146 0.017189 0.016043

Change Movie Industries -0.041426 -0.042046 -0.000620
Change Neutral Words 0.072667 0.124769 0.052101

Add Positive Phrases -0.058824 -0.043796 0.015028
Add Negative Phrases -0.051318 -0.021295 0.030023

Table 6: Fleiss’ Kappa values of the vanilla and SWA models on the misclassifications on the CheckList tests
separately, all the 10 random seeds, including outlier Random Seed 0. The first part of the table shows the MFT
capabilities, the second part are the INV capabilities, and the third part are the DIR capabilities.



31

Capability Test Type #Examples Description Original Check-
List Name

Single Positive Words MFT 22 Positive words that should be predicted posi-
tive (e.g. beautiful, brilliant, enjoyed).

Single Negative Words MFT 14 Negative words that should be predicted nega-
tive (e.g. hate, disliked, dreaded).

Sentiment-laden Words in
Context

MFT 1350 Sentences that contain positive or negative
words about movie-related sentiments (e.g. "I
despise that director").

Temporal Sentiment
Change

MFT 2152 Sentences that contain a change in sentiment
over time regarding movies. Expectations are
that depending on the final sentiment, the pre-
dictions are positive or negative.

used to, but now

Negation of Positive Sen-
tences

MFT 1350 Sentences with a negation of a positive senti-
ment. Predictions should be negative.

Simple negations:
negative

Negation of Positive, neu-
tral words in the middle

MFT 500 Negation of a positive sentence, with a neutral
sentiment in the middle. Should be negative.

Simple negations:
not negative

Movie Genre Specific Sen-
timents

MFT 736 Sentences with sentiments that are specific for
a movie genre, such as horror movies being
scary (positive). Based on the sentiment, pre-
diction should be negative or positive.

Movie Sentiments MFT 58 Simple sentences about movies. Based on the
sentiment, could be predicted as negative or
positive.

Movie Industries Senti-
ments

MFT 1200 Sentences that talk about movie industries in a
positive and negative way and the predictions
should be accordingly.

Change Neutral Words INV 500 / 3846 Neutral words are changed with BERT, such as
"that", "this", "of", etc. Expect the prediction
to stay the same.

change neutral
words with BERT

Change Names INV 147 / 1617 Changes the name in a review. Expectation is
that the prediction stays the same.

Negative names - Positive
instances

INV 157 / 1727 Change names in positive reviews with names
from training set that were only in negative
reviews. Expectation is that predictions stay
the same.

Polarizing Negative
Names - Positive In-
stances

Positive names - Negative
instances

INV 123 / 1353 Change names in negative reviews with names
from training set that were only in positive
reviews. Expectation is that predictions stay
the same.

Polarizing Positive
names - Negative
instances

Negative names - Negative
instances

INV 123 / 1353 Change names in negative reviews with names
from training set that were only in negative
reviews. Expectation is that predictions stay
the same.

Polarizing Negative
names - Negative
instances

Positive names - Positive
instances

INV 157 / 1727 Change names in positive reviews with names
from training set that were only in positive
reviews. Expectation is that predictions stay
the same.

Polarizing Positive
names - Positive in-
stances

Change Movie Industries INV 18 / 252 Changes a movie industry (Hollywood) to an-
other one in movie reviews. After changing,
the prediction should stay the same.

Add Positive Phrases DIR 500 / 5500 Add a positive phrase to a review, expecting
the prediction confidence for positive to go up.

Add Negative Phrases DIR 500 / 5000 Add a negative phrase to a review, expecting
the prediction confidence for negative to go
up.

Table 7: Overview of all the CheckList capabilities, with the test type, amount of examples, and a description of
the capability provided. For clarity, we also provide the name of the capabilities originally used in the code, if they
are not the same.


