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Abstract
Quality Estimation (QE) for Machine Transla-
tion has been shown to reach relatively high
accuracy in predicting sentence-level scores,
relying on pretrained contextual embeddings
and human-produced quality scores. How-
ever, the lack of explanations along with de-
cisions made by end-to-end neural models
makes the results difficult to interpret. Further-
more, word-level annotated datasets are rare
due to the prohibitive effort required to per-
form this task, while they could provide inter-
pretable signals in addition to sentence-level
QE outputs. In this paper, we propose a novel
QE architecture which tackles both the word-
level data scarcity and the interpretability lim-
itations of recent approaches. Sentence-level
and word-level components are jointly pre-
trained through an attention mechanism based
on synthetic data and a set of MT metrics em-
bedded in a common space. Our approach is
evaluated on the Eval4NLP 2021 shared task
and our submissions reach the first position in
all language pairs. The extraction of metric-
to-input attention weights show that different
metrics focus on different parts of the source
and target text, providing strong rationales in
the decision-making process of the QE model.

1 Introduction

Quality Estimation (QE) for Machine Translation
(MT) (Blatz et al., 2004; Quirk, 2004; Specia
et al., 2009) aims at providing quality scores or
labels to MT output when translation references
are not available. Sentence-level QE is usually con-
ducted using human produced direct assessments
(DA) (Graham et al., 2013) or post-edits. The lat-
ter allows to derive token-level quality indicators
such as good and bad tags (Fonseca et al., 2019;
Specia et al., 2020). Token-level QE is particu-
larly useful for applications such as source pre-
editing or focused MT post-editing, but requires
high-quality fine-grained annotated data for super-
vised learning. Furthermore, token-level quality

indicators can be seen as explanations for sentence-
level scores, whether given by humans or automat-
ically produced. However, explainability of QE
models decisions is obscured by contemporary ap-
proaches relying on large data-driven neural-based
models, making use of pretrained contextual lan-
guage models (LM) such as BERT (Devlin et al.,
2019) and XLM (Conneau and Lample, 2019), al-
beit showing steady performance increase as re-
ported in the QE shared tasks (Fonseca et al., 2019;
Specia et al., 2020). Yet, the QE layers and archi-
tectures are rarely investigated, neither for perfor-
mance nor for interpretability purposes, and the
center of attention is mainly on large pretrained
models and generating additional (synthetic) train-
ing corpora.

In this paper, we present a novel QE architec-
ture which encompasses a metric-to-input attention
mechanism allowing for several extensions of the
habitual QE approach. First, since sentence-level
QE scores are usually obtained with surface-level
MT metrics computed between translation outputs
and human produced references or post-edits such
as HTER (Snover et al., 2006), we propose to make
use of several metrics simultaneously in order to
model translation errors at various granularities, i.e.
at the character, token, and phrase levels. Second,
we design a metric embeddings model which repre-
sents metrics in their own space through a dedicated
set of learnable parameters, allowing for straightfor-
ward extensions of the number and type of metrics.
Third, by employing an attention mechanism be-
tween metric embeddings and bilingual input rep-
resentations, the metric-to-input attention weights
indicate where each metric focuses given an input
sequence, increasing the interpretability of the QE
components. We conduct a set of experiments on
the Eval4NLP 2021 shared task dataset (Fomicheva
et al., 2021) using only the training data along
with sentence-level scores officially released for
the tasks (illustrated in Figure 1). In addition, we
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Source Religioon pakub vaimu puhastamiseks teatud vahendeid .

MT Religion offers certain means of cleansing the spirit .
PE Religion offers certain means of cleansing the spirit .

Sentence-level scores: DA 0.905 – chrF 1.0 – TER 0.0 – BLEU 1.0

Source Tänu Uku kalastamiskirele pääseb Õnne 13 maja põlengust .

MT Thanks to the breath of fresh fishing , 13 houses are escaped from contempt .
PE Thanks to Uku ’s passion for fishing, the house at Õnne 13 is saved from fire.

Sentence-level scores: DA 0.132 – chrF 0.366 – TER 0.667 – BLEU 0.0

Figure 1: Samples of source sentences, automatic translations and human post-editions, along with direct assess-
ment (DA) scores, taken from the Eval4NLP 2021 shared task Estonian–English validation set representing high
and low quality translations. Additional metrics are presented, namely chrF, TER and BLEU, to illustrate variations
related to metrics granularity. Green and red colors are tokens annotated with classes 0 and 1 respectively.

produce a large synthetic corpus for QE pretraining
using publicly available resources.

The contributions of our work are the follow-
ing: (i) a novel QE architecture using metric em-
beddings and attention-based interpretable neural
components allowing for unsupervised token-level
quality indicators, (ii) an extensible framework de-
signed for unrestricted sentence-level QE scores or
labels where new metrics can be added through fine-
tuning, (iii) the reproducibility guaranteed by the
use of publicly available datasets, tools, and mod-
els, and (iv) word and sentence-level QE results on
par or outperforming top-ranked approaches based
on the official Eval4NLP 2021 shared task results.

The remainder of this paper is organized as fol-
lows. In Section 2, we introduce some background
in QE based on contextual language model, fol-
lowed in Section 3 with the detailed implementa-
tion of the proposed model using metric embed-
ding and attention. In Section 4, the experimental
setup is presented, including the data and tools
used, as well as the training procedure of our mod-
els. Section 5 contains the results obtained in our
experiments along with their analysis and interpre-
tation. A comparison of our method and results
with previous work is made in Section 6. Finally,
we conclude and suggest future research directions
in Section 7.

2 Background

Current state-of-the-art QE approaches are com-
monly based on sentence encoders taking as input
source–translation pairs (Ranasinghe et al., 2020a;
Wang et al., 2020; Rubino, 2020). Encoders are
usually contextual LMs pretrained on large amount
of multilingual data. Existing QE implementations
commonly rely on additional layers added on top of

a pretrained LM, which enables multi-task learning
for word and sentence-level QE.

Pretraining of contextual LMs is done by opti-
mizing a prediction function given input sequences
of tokens containing randomly masked tokens, or
tokens randomly replaced by other tokens sam-
pled from the vocabulary. Formally, given an
input sequence Z of n tokens z1:n, correspond-
ing word (or subword) embeddings x1:n with di-
mension d (x1:n ∈ Rn×d) are learned, and out-
put contextual embeddings hl1:n ∈ Rn×d are com-
puted at each layer l ∈ [1, L] ⊂ N of a Trans-
former encoder (Vaswani et al., 2017). Usually
based on the output of the last encoder layer,
the model optimizes the following loss function:
`(s, t) = −Er∼[1,n] logP (zr |z̄r ), where zr are ran-
domly sampled tokens from z to be masked or
replaced and z̄r are the remaining tokens from z
with r ∈ [1, n] ⊂ N. To perform QE, QE-specific
layers are commonly added on top of pretrained
contextual LMs, being fed with contextual token
embeddings from the topmost (i.e., L-th) layer of
the LM.

For sentence-level QE the specific component
is a regression head formalized by ys = σ(φ(hL1:n)·
W s + bs), where ys ∈ [0, 1] ⊂ R. W s and bs are
trainable parameters of the linear output layer, φ is
a pooling function, and σ is the sigmoid function.
The output ys of this QE component is a score
indicating the sentence-level translation quality.

For token-level QE a classification head is im-
plemented as yt1:n = softmax (hL1:n · W t + bt),
where yt1:n ∈ Rn×|C| with C the set of word-level
QE classes, W t and bt are trainable parameters
of the linear output layer. The output yt1:n of this
QE component is a vector of labels indicating the
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translation quality of corresponding input tokens.
Source tokens are annotated according to the accu-
racy of their translation, while annotations of target
tokens also take into account their position in the
target sequence.

Multiple losses are then computed, one for the
sentence-level and one for each word-level outputs
(source and target tokens), based on gold labels
to train (or finetune) the contextual LM and the
QE model in an end-to-end fashion using back-
propagation (Kim et al., 2017; Lee, 2020; Rubino
and Sumita, 2020). Commonly used losses are
cross-entropy and mean-squared error for classifi-
cation and regression respectively.

However, this approach has limitations While
the token-level QE implementation makes use of
each input token representation in context thanks
to the pretrained LM, the sentence-level QE com-
ponents relies only on the pooled representation
of the input sequence. This approach drastically
limits the amount of information flowing through
the sentence-level specific set of layers and may
force the network to focus more on cues and data
artifacts which correlate with QE scores, instead of
encoding translation-related features from source
and target inputs (Sun et al., 2020). These findings
corroborate with the empirical observation made
by Kepler et al. (2019), where the authors obtained
the best word-level QE results using BERT and
ignoring target language features when predicting
source quality labels and vice-versa. Additionally,
most recent QE approaches do not allow for the
interpretability of sentence-level QE predictions
at test time and leads to the current state of QE
as a set of black-box components. Furthermore,
token-level error annotations is costly to produce.

3 Metric Embedding and Attention

Motivated by the limitations to contextual LM
based QE, we propose a novel architecture em-
ploying metric embeddings and attention, which is
computed between the contextual embeddings and
the embedded QE criteria of the supervised learn-
ing task, namely MT automatic metrics or direct
assessment scores provided by human annotators.

The metric embedding matrix E ∈ Rg×d, ran-
domly initialized at the beginning of training, is
added on top of the pretrained LM to model met-
rics in their own space, with a predefined set of
sentence-level metrics M = {m1, . . . ,mg}. Each

metric is initially represented as a one-hot vector,
noted mj ∈ Rg with j ∈ [1, g] ⊂ N. Its cor-
responding embedding is retrieved with mj · E,
forming the query used in the attention mechanism
(eqn. 1):

Qi,j = (mj · E) ·WQ
i (1)

where i ∈ [1, u] ⊂ N is the head index from a
predefined number of heads, Qi,j ∈ Rd is the met-
ric embedding corresponding to the one-hot vector
mj , W

Q
i ∈ Rd×(d/u) is a matrix of learnable pa-

rameters projecting the metric embedding into the
dimensionality of the attention head (d/u). Note
that we present the query computation for a single
metric but our implementation allows several met-
rics to be packed into a single query, sharing the
parameter matrix WQ

i (biases are omitted for the
sake of simplicity).

Keys and values which are the two other com-
ponents of the attention mechanism, noted Ki and
Vi respectively, are computed based on the output
of the topmost layer of the pretrained LM, which
is first fed into a position-wise feed-forward layer
following (eqn. 2):

ff 1:n = ReLU (hL1:n ·W s,D1) ·W s,D2

Ki = ff 1:n ·WK
i , Vi = ff 1:n ·W V

i (2)

where WK
i and W V

i ∈ Rd×(d/u) are the parame-
ter matrices for the keys and values respectively,
W s,D1 ∈ Rd×b and W s,D2 ∈ Rb×d are parameter
matrices of the linear layers with dimensionality b
and a ReLU activation function in between, lead-
ing to ff 1:n ∈ Rn×d.

Metrics to tokens attention weights aim to rep-
resent the focus made by a given metric on spe-
cific parts of the input sequences. These attention
weights are computed between the embedding of a
metric and the contextually encoded input tokens
(eqn. 3):

αi,j,1:n = σ

(
Qi,jK

T
i√

d/u

)
(3)

where σ is the sigmoid function. Note that the
common way to compute attention weights, as pre-
sented in Vaswani et al. (2017), relies on softmax
which is based on the exponential function, well-
suited for tasks such as machine translation as it
results in few alignments between tokens involved
in the attention mechanism. However, in the case of
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unsupervised sequence labeling such as token-level
QE without annotated data, zero to many tokens
may influence sentence-level scores given a metric.
Thus, to allow more flexibility in the distribution of
attention weights over input tokens and following
the approach presented in (Rei and Søgaard, 2018),
we replaced softmax by sigmoid .

Sentence-level scores are obtained for each met-
ric with the weighted sum of value vectors for each
attention head (eqn. 4):

attni,j =
∑

αi,j,1:nVi, (4)

where attni,j ∈ R(d/u), before concatenating the
output of each head and projecting the result back
in the dimensionality of the model (eqn. 5):

ys
′

j = (attn1,j ⊕ . . .⊕ attnu,j) ·WO (5)

with WO ∈ Rd×d. Finally, we project ys
′

j from the
model dimensionality to a single score through a
metric specific linear layer: ysj = ys

′
j ·W s

j with
W s

j ∈ Rd×1 and ysj ∈ [0, 1] ⊂ R.

Token-level QE scores are computed by using
the attention weights (see eqn. 3) followed by
three transformations: attention heads combination
through a linear transformation, concatenation of
token embeddings and combined attention heads,
combination of metrics through a final linear trans-
formation (eqn. 6):

yt
′
j,1:n = αj,1:n ·W t,H

yt1:n = (yt
′
1:n ⊕ hL1:n) ·W t,O (6)

where αj,1:n = (α1,j,1:n ⊕ . . . ⊕ αu,j,1:n), yt
′
1:n =

(yt
′
1,1:n ⊕ . . .⊕ yt

′
g,1:n), W t,H ∈ Ru×1 and W t,O ∈

R(d+g)×1 are parameter matrices of linear layers,
leading to yt ∈ [0, 1] ⊂ R for each token in the
input sequence z1:n.

The learning process allows for supervised or
unsupervised token-level QE. Note that all learn-
able parameters for the sentence-level QE com-
ponents except W s

j are shared between metrics,
including the metric embeddings matrix E. We
believe that such an approach enables to capture
translation errors at different granularities accord-
ing to the specificity of each metric, e.g., characters,
tokens and phrases, while keeping a reasonable
total amount of learnable parameters. The loss
functions for sentence-level QE are mean-squared

sentencelevel
scores

⊕

{ y1
s , ... , yg

s
}

∑ αi , j , 1 :nV i

XLMR

α i , j ,1 :n

Z={ z1,... , zn }

contextual
embeddings

pretrained LM

input sequence M={m1 ,... ,mg}

E
metric
embeddings

onehot
metrics

Qi , j
K i

   tokenlevel
   scores { y1

t , ... , yn
t
}

⊕

V i

h1 :n
L

Figure 2: Architecture of the metric embeddings and
attention mechanism. Shaded elements, curved arrows
and ⊕ are parameters of the model, i and j are the at-
tention head and the metric indexes respectively.

error while the losses for token-level QE are cross-
entropy. The final loss is obtained by linearly com-
bining all losses computed for each output of the
model. The general architecture of our QE model
is illustrated in Figure 2.

Supervised learning is conducted by computing
losses according to each output of the model and
their corresponding gold labels from the training
data. Thus, for the sentence-level QE layers, we
compute one loss per metric (Mean Squared Er-
ror), while for the token-level QE layers, if token-
level annotations are available, two losses allow to
optimize the model for source and target tokens
separately (Cross-entropy).

Unsupervised learning is conducted when
token-level annotations are not available, which
is one of the objectives in the constrained task of
Eval4NLP 2021. In this case, only sentence-level
losses are used to optimize the parameter of the
model through backpropagation. Following the
guidelines of the shared task, we do not use the
direct assessment annotations made by humans at
the word-level.

4 Experimental Setup

This section presents our experimental setup, in-
cluding the pretrained models, the datasets and
the training procedure. All pretrained models and



150

scripts used in our experiments are based on Py-
Torch (Paszke et al., 2019) and all computations are
conducted on NVIDIA V100 GPUs with CUDA
v10.2.

4.1 Pretrained Models

Two types of pretrained models were necessary to
conduct our experiments: contextual embedding
LMs to encode bilingual input sequences and MT
models to produce synthetic data required for QE
pretraining.

Contextual embedding LMs used in our experi-
ments are based on a pretrained XLM-R check-
point, namely xlm-roberta-large from the Hug-
gingFace Transformers library (Wolf et al., 2020).
This model, initially introduced in (Conneau et al.,
2020), was pretrained on 2.5TB of filtered Com-
monCrawl data, covering 100 languages with a
vocabulary of 250k BPE tokens (Sennrich et al.,
2016), 1, 024 embedding and hidden-state dimen-
sions, 4, 096-dimensional feed-forward layers and
16 attention heads.

MT models used in our experiments are
transformer-based neural MT (NMT) mod-
els. For two language pairs and transla-
tion directions of the Eval4NLP 2021 shared
task, namely Estonian→English (ET–EN) and
Romanian→English (RO–EN), we used pre-
trained NMT models made available by the
WMT’20 QE shared task organizers (Specia et al.,
2020).1 For German→Chinese (DE–ZH) and
Russian→German (RU–DE), the two zero-shot
pairs of the shared task, we used the mBART50
model (Liu et al., 2020; Tang et al., 2020).2 All
NMT models are based on the fairseq library (Ott
et al., 2019).

4.2 Datasets

Two datasets were used in our experiments: a syn-
thetic dataset for QE pretraining, and the shared
task dataset consisting of training, validation and
test sets. Details of the latter dataset are presented
in Table 1 while we give more information about
the synthetic data in this section.

1Models available at https://github.com/
facebookresearch/mlqe/blob/master/nmt_
models/README-models.md

2Model available at https://github.com/
pytorch/fairseq/tree/master/examples/
multilingual

Lang. Sent. Tokens Types

Tr
ai

n ET–EN 7.0k 98.1k / 136.6k 28.9k / 14.6k
RO–EN 7.0k 120.2k / 123.3k 23.5k / 15.2k

V
al

id ET–EN 1.0k 14.4k / 20.1k 6.9k / 4.7k
RO–EN 1.0k 17.3k / 17.7k 6.4k / 4.8k

Te
st

ET–EN 1.0k 14.0k / 19.6k 6.9k / 4.7k
RO–EN 1.0k 17.4k / 17.8k 6.3k / 4.8k
DE–ZH 1.4k 24.9k / 52.8k 8.4k / 2.2k
RU–DE 1.2k 25.4k / 28.8k 10.2k / 7.5k

Table 1: Official training, validation and test data re-
leased for the Eval4NLP 2021 shared task. DE–ZH
and RU–DE are zero-shot language pairs thus have nei-
ther training nor validation corpora. Tokens and types
columns contain source / MT counts, k stands for thou-
sands, Chinese tokens and types are characters.

Lang. Sent. Tokens Types

ET–EN 24.9M 322.5M / 411.0M 4.8M / 2.8M
RO–EN 42.1M 600.5M / 601.2M 4.0M / 3.6M
DE–ZH 19.8M 422.8M / 708.1M 4.5M / 3.3k
RU–DE 19.5M 256.9M / 262.7M 4.4M / 4.4M

Table 2: Synthetic data produced for QE pretraining.
Tokens and types columns contain source / MT counts,
M stands for millions and k for thousands, Chinese to-
kens and types are characters.

Synthetic data generation was based on gath-
ered parallel corpora translated by the NMT sys-
tems presented in Section 4.1. The translated sen-
tences were compared to the target side of the paral-
lel corpora to produce sentence-level scores based
on chrF (Popović, 2016), TER (Snover et al., 2006)
and BLEU (Papineni et al., 2002) metrics. Addi-
tionally, only for the synthetic data, we produced
token-level scores following the usual procedure to
determine post-editing effort (Specia et al., 2020).3

For this step, word alignments were required to
obtain source-side token-level quality indicators.
We used the same parallel corpora to produce syn-
thetic data and to train word alignments based on
the IBM 2 model (Brown et al., 1993) and trained
using fast_align (Dyer et al., 2013). Details about
the synthetic data are presented in Table 2.4

The special case of DE–ZH resulting from pre-
liminary experiments, we noticed for this language
pair that the translation quality of the synthetic
data was low compared to the three other language
pairs. We assumed that it was due to two issues:

3Scripts and procedure available at https://github.
com/deep-spin/qe-corpus-builder

4Parallel corpora were collected from the WMT news trans-
lation task (Tiedemann, 2016) and OPUS (Tiedemann, 2016).

https://github.com/facebookresearch/mlqe/blob/master/nmt_models/README-models.md
https://github.com/facebookresearch/mlqe/blob/master/nmt_models/README-models.md
https://github.com/facebookresearch/mlqe/blob/master/nmt_models/README-models.md
https://github.com/pytorch/fairseq/tree/master/examples/multilingual
https://github.com/pytorch/fairseq/tree/master/examples/multilingual
https://github.com/pytorch/fairseq/tree/master/examples/multilingual
https://github.com/deep-spin/qe-corpus-builder
https://github.com/deep-spin/qe-corpus-builder
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the quality of the DE–ZH parallel corpora and the
performance of the NMT model. To tackle the
first issue, we generated our own DE–ZH parallel
corpora by pivot-based (back-) translation, start-
ing from a monolingual Chinese corpus composed
of CommonCrawl and NewsCrawl 2018 to 2020,
translating it into English using an in-house NMT
model trained with Marian (Junczys-Dowmunt
et al., 2018) on the WMT’21 QE ZH–EN paral-
lel corpus, then translating the English output into
German using the EN–DE NMT model released by
the WMT’20 QE shared task organizers, resulting
in a synthetic DE–ZH parallel corpus. To tackle
the second issue, we finetuned mBART50 using
NewsCommentary and MultiUN DE–ZH retrieved
from OPUS, as these two corpora appeared to be
the cleanest among the available ones.

4.3 Training Procedure

We detail in this section the training procedures
employed for QE pretraining on the synthetic data
and finetuning on the officially released training
data.

QE pretraining was conducted per language
pair starting from the XLM-R checkpoint presented
in Section 4.1 using two different random seeds and
learning rates. Additionally, four QE pretraining
were conducted on the concatenation of all syn-
thetic data using four different random seeds and
two learning rates. Training was ran for two epochs
for the language specific models and for a single
epoch for the remaining ones. We restricted the
length of training samples to a minimum of 5 and
a maximum of 128 subword tokens for the bilin-
gual models and a maximum of 96 subword tokens
for the multilingual ones. Training was conducted
with batches of 128 source and target sequences
with the AdamW optimizer (Loshchilov and Hut-
ter, 2019) (parameters β1 = 0.9, β2 = 0.999 and
ε = 1× 10−6). A linear learning rate warmup was
employed during the first 50k updates to reach a
maximum value of 5×10−6 or 2×10−6 depending
on the model and random seed, which remained
without decay until the end of the first epoch. The
dropout rates were set to 0.1 for both the embed-
dings and the transformer blocks (feed-forward and
attention layers), the model dimensionality and em-
bedding size was 1, 024, feed-forward layers had a
dimensionality of 4, 096 and the numbers of atten-
tion heads were set to 16 for the language model
and 8 for the metric attention block.

Finetuning was conducted using the officially re-
leased data presented in Table 1 during 20 epochs,
monitoring the performance of each model using
the validation set. No length restriction was applied
on these corpora. In addition to the three auto-
matic metrics used during QE pretraining, namely
chrF, TER and BLEU, the direct assessment scores
provided by the shared task organizers were used
by simply adding an entry in the metric embed-
dings matrix. A few hyperparameters, namely the
batch size, learning rate, as well as embedding
and Transformer dropout rates, were optimized in
a grid-search manner. The best resulting models
according to token-level source and target perfor-
mances based on the official metrics (Area Under
the Curve, AUC, and Average Precision, AP) were
kept for ensembling and predicting scores on the
validation and test sets.

5 Results and Analysis

We present in Table 3 the results obtained on the
Eval4NLP 2021 shared task as reported by the
organizers, including our baselines and final sub-
missions along with the three baselines proposed
by the organizers, namely random scores, Tran-
sQuest (Ranasinghe et al., 2020b) combined with
LIME (Ribeiro et al., 2016) (noted Official baseline
1), and XMoverScore (Zhao et al., 2020) combined
with SHAP (Lundberg and Lee, 2017) (noted Of-
ficial baseline 2). Our baselines are composed of
ensembles of two finetuned language-specific QE
pretrained models while our final submissions are
composed of ensembles of eight finetuned models
for each of token-level tasks (source and target)
and eight models for sentence-level tasks. The
eight token-level models are, for each random seed,
the best language-specific finetuned models accord-
ing to source or target AUC and AP, and the best
multilingual models according to source or target
AUC. The eight sentence-level models are the best
direct assessment Pearson’s ρ for both bilingual
and multilingual models, as well as the best direct
assessment RMSE for the bilingual model.

Results show that our baselines and final sub-
missions largely outperform the organizer’s base-
lines on the four language pairs, while our final
submissions reach higher source and target token-
level performances compared to our baselines. Ex-
cept for the DE–ZH pair, our final submissions are
outperforming our baselines on the sentence-level
Pearson’s ρ evaluation. Because the main objec-
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Source Token Target Token Sentence
Lang. Model AUC AP top-K R AUC AP top-K R Pearson’s ρ

ET–EN

Random baseline 0.488 0.338 0.193 0.496 0.358 0.247 -0.029
Official baseline 1 0.545 0.440 0.309 0.624 0.536 0.426 0.772
Official baseline 2 0.535 0.370 0.231 0.616 0.441 0.339 0.494

Our baseline 0.926 0.848 0.761 0.887 0.808 0.714 0.793
Our submission 0.932 0.852 0.771 0.896 0.824 0.734 0.845

RO–EN

Random baseline 0.501 0.281 0.149 0.515 0.312 0.188 0.017
Official baseline 1 0.478 0.351 0.243 0.635 0.523 0.415 0.899
Official baseline 2 0.535 0.293 0.148 0.667 0.536 0.437 0.695

Our baseline 0.937 0.826 0.727 0.942 0.860 0.770 0.855
Our submission 0.947 0.851 0.752 0.946 0.869 0.778 0.918

DE–ZH

Random baseline 0.499 0.300 0.172 0.495 0.293 0.172 0.000
Official baseline 1 0.486 0.317 0.196 0.461 0.271 0.145 0.335
Official baseline 2 0.474 0.288 0.158 0.545 0.333 0.220 0.176

Our submission 0.847 0.645 0.509 0.849 0.679 0.571 0.286

RU–DE

Random baseline 0.506 0.340 0.238 0.494 0.309 0.217 -0.017
Official baseline 1 0.535 0.427 0.320 0.403 0.263 0.165 0.498
Official baseline 2 0.522 0.356 0.261 0.523 0.329 0.227 0.252

Our submission 0.922 0.804 0.709 0.927 0.829 0.736 0.679

Table 3: Official test results of the Eval4NLP 2021 shared task, according to three metrics for source and target
token-level QE (AUC, AP and Recall at top-K), and one metric for sentence-level QE (Pearson’s ρ).

tives of the shared task was token-level evaluation,
we did not focus on improving the sentence-level
scores. We assume that further improvements are
achievable on this aspect of QE. Additionally, due
to the lack of validation sets for the zero-shot lan-
guage pairs, we could not try to improve over a
baseline and thus only provided a unique and final
submission. Note that we did not use the official
word-level training data at all, neither during pre-
training nor during finetuning of our models. Only
the provided validation set was used for monitoring
purposes.

In order to evaluate the impact of QE pretrain-
ing and finetuning, as well as the difference in
performance between ensemble and single models
trained using language pair specific (bilingual) and
multilingual datasets, we present an ablation study
conducted on the word-level QE in Table 4 for the
two non zero-shot language pairs. The results ob-
tained without ensemble models are the average
of results from individual models. The ablation
study shows that individual models (- Ensemble)
are outperformed by the ensemble (Submission),
while removing language pair specific training data
(- Bilingual) has limited impact on performances
for ET–EN, which motivates the use of multilingual
pretrained models and ensembling. Comparing re-
moving finetuning and QE pretraining, the latter
leads to the largest performance drop while the for-

Source Token Target Token
Lang. Model AUC AP AUC AP

E
T–

E
N

Submission 0.876 0.781 0.904 0.843
- Ensemble 0.869 0.773 0.898 0.831
- Bilingual 0.869 0.771 0.898 0.831

- Finetuning 0.856 0.752 0.875 0.791
- Pretraining 0.633 0.515 0.631 0.513

R
O

–E
N

Submission 0.928 0.860 0.950 0.891
- Ensemble 0.918 0.843 0.941 0.873
- Bilingual 0.916 0.839 0.937 0.866

- Finetuning 0.903 0.815 0.925 0.835
- Pretraining 0.582 0.350 0.573 0.417

Table 4: Results of the ablation study on non zero-shot
pairs obtained on the validation set for token-level QE.

mer has a relatively limited impact. This indicates
that large amount of synthetic data combined with
our approach performs well even without using any
of the provided manually annotated data for the
shared task.

As an explanation of sentence-level scores pre-
dicted by our model, we propose to extract the
attention weights computed between the metric
embeddings and the contextually encoded input
sequences. A few samples extracted from the val-
idation set are presented in Figure 3. We can see
on these examples that individual metrics do not
correlate with human annotations. However, the
multimetric approach, which relies on heads and
metrics combination through linear layers, provides
a potential error identification method.
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Figure 3: Attention weights computed between individual metric embeddings, namely DA, TER, chrF and BLEU,
along with the multimetric approach (see eqn. 6) and the human annotations (noted gold). Samples extracted from
the ET–EN and RO–EN validation sets (top and bottom respectively).

6 Previous Work

Since the shift of most NLP tasks towards using
large pretrained contextual LMs as basis for task-
specific finetuning, the research community work-
ing on QE for MT moved from a classic two-step
process of feature engineering followed by machine
learning (Blatz et al., 2004; Quirk, 2004; Specia
et al., 2009) to an end-to-end training neural-based
paradigm. First attempts in this direction were
conducted by Kim et al. (2017) with the predictor-
estimator, which inspired further work in using vari-
ous types of encoders (Wang et al., 2020), enriching
the model with features extracted from NMT mod-
els (Moura et al., 2020; Fomicheva et al., 2020a) or
modifying the pretraining objective of contextual
LMs for QE adaptation (Rubino and Sumita, 2020).

More recently, due to the costly nature of data
acquisition for supervised learning of QE models,
unsupervised approaches were proposed by relying
mostly on signals given by NMT systems when
translating source sentences (Fomicheva et al.,
2020b), the so-called glass-box features. Alter-
natively, when the NMT systems which produced
data to perform QE on are not available (i.e. black-
box setting), relying on large amount of synthetic
data for contextual LM continued training prior to
finetuning appears to be an effective way to approx-
imate human judgments of translation quality (Lee,
2020; Tuan et al., 2021).

7 Conclusion

This paper presented a novel QE architecture for
unsupervised token-level quality prediction pro-
viding sentence-level explainable decisions from
the model. We implemented a metric embeddings
and attention mechanism on top of a widely used
pretrained contextual LM, allowing to add metrics
during finetuning and enabling high performance
QE both at the levels of token and sentence. This
extensible framework was shown to produce re-
sults on par or outperforming state-of-the-art QE
approaches without relying on human-produced
token-level annotations, which could be approxi-
mated with the use of relatively cost-effective syn-
thetic data and automatic metrics. Our pivot-based
translation approach also tackled a recurrent issue
in MT when parallel data are scarce and final re-
sults for zero-shot language pairs validated this
method.
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