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Abstract

The lexical substitution task aims at generat-
ing a list of suitable replacements for a tar-
get word in context, ideally keeping the mean-
ing of the modified text unchanged. While
its usage has increased in recent years, the
paucity of annotated data prevents the finetun-
ing of neural models on the task, hindering
the full fruition of recently introduced power-
ful architectures such as language models. Fur-
thermore, lexical substitution is usually evalu-
ated in a framework that is strictly bound to
a limited vocabulary, making it impossible to
credit appropriate, but out-of-vocabulary, sub-
stitutes. To assess these issues, we propose
GENESIS (Generating Substitutes in contexts),
the first generative approach to lexical substi-
tution. Thanks to a seq2seq model, we gen-
erate substitutes for a word according to the
context it appears in, attaining state-of-the-
art results on different benchmarks. More-
over, our approach allows silver data to be
produced for further improving the perfor-
mances of lexical substitution systems. Along
with an extensive analysis of GENESIS results,
we also present a human evaluation of the
generated substitutes in order to assess their
quality. We release the fine-tuned models,
the generated datasets and the code to repro-
duce the experiments at https://github.
com/SapienzaNLP/genesis.

1 Introduction

The lexical substitution task (McCarthy and Nav-
igli, 2009) requires a system to provide adequate
replacements for a target word in a given context.
Through the years, two lexical substitution vari-
ants have been proposed, i.e., candidates ranking
and substitutes prediction (Melamud et al., 2015).
While the former aims at ranking a list of prede-
fined candidate substitutes for a word in a given
context, the latter is more challenging, requiring

a system to output a sorted list of replacements
without any predefined substitutes inventory. Al-
though it is not explicitly required by either of the
two tasks, a good substitution system is expected
to capture the semantics of its input and implic-
itly perform a soft disambiguation. For example,
denoting bright as target word in the context sen-
tence "She is a bright student", we expect a good
substitution system to provide a set of substitutes
closer to {intelligent, clever, smart} than to {lumi-
nous, clear, light}. Thanks to this implicit disam-
biguation capability, lexical substitution has shown
its usefulness in several scenarios, such as word
sense induction (Başkaya et al., 2013; Amrami and
Goldberg, 2018; Arefyev et al., 2019), data aug-
mentation (Jia et al., 2019; Arefyev et al., 2020),
word sense disambiguation (Hou et al., 2020) and
semantic role labeling (Bingel et al., 2018).

However, despite having been employed in nu-
merous downstream tasks, the lexical substitution
task still presents unresolved issues that need to be
addressed. First, the shortage of large-scale corpora
annotated with the expected substitutes hinders the
use of supervised techniques, including powerful
Transformer-based language models, thus leaving
the task in a possibly sub-optimal setting. Sec-
ond, the evaluation metrics provided for the task
are bound to the test vocabulary, hence they fail to
capture the quality of substitutes outside the vocab-
ulary; moreover, the vocabulary is usually small
and often biased by the particular linguistic style
and background of the annotators who developed
the datasets.1

In this paper, we focus on substitutes prediction
and address the above problems by proposing GEN-
ESIS, a generative approach to lexical substitution.
We find that not only is this novel approach effec-

1The benchmarks for lexical substitution were released
more than ten years ago.

https://github.com/SapienzaNLP/genesis
https://github.com/SapienzaNLP/genesis
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tive when tested on the lexical substitution task, but
also that it can be applied to generate substitutes
from raw text, enabling the effortless construction
of large-scale silver data. Moreover, we conduct an
annotation task to analyze the results of our model
and to validate out-of-vocabulary generations.

Our contribution is threefold:

• A novel generative approach to lexical substi-
tution that outperforms the state of the art.

• An automated method to produce high-quality
silver data for lexical substitution.

• An annotation task to evaluate out-of-
vocabulary generations.

2 Related Work

Through the years, several approaches have been
developed to tackle the lexical substitution tasks,
but, to the best of our knowledge, ours is the first at-
tempt to apply a generative approach to it. In what
follows, we first review the principal approaches
and resources for the lexical substitution tasks, and
then provide a brief overview of generative meth-
ods across different fields.

Lexical Substitution Approaches Since its pre-
sentation by McCarthy and Navigli (2007), a vari-
ety of different approaches have been explored to
produce the substitutes that better fit the context.
Earlier methods made use of external knowledge
bases such as WordNet (Miller, 1995) to extract
possible substitutes and construct delexicalized fea-
tures (Szarvas et al., 2013), or they employed word
embeddings to represent both the target and the
substitutes in their context and rank them through
ad-hoc metrics (Melamud et al., 2015, 2016). How-
ever, the recent spread of pre-trained language mod-
els has deeply reshaped approaches to lexical sub-
stitution, standardizing the use of contextualized
word representations to provide a context-aware
distribution over the output vocabulary. The first
work in this direction was that of Garí Soler et al.
(2019), where ELMo (Peters et al., 2018) embed-
dings are used to rank substitutes according to their
cosine similarity to the target. In Zhou et al. (2019),
instead, the input context is represented through a
BERT model (Devlin et al., 2019). The authors
partially mask the target word in its context, in or-
der to obtain a representation that includes a faded
target information; this representation is then used
to obtain a probability distribution over the BERT

output vocabulary that is not biased towards the
target. Finally, the top scoring substitutes are re-
ranked with a measure of similarity that takes into
account both the cosine similarity and the relative
attention scores between the target and the substi-
tute. In a similar vein, Arefyev et al. (2020) pro-
posed an extensive comparison of how several pre-
trained language models perform on the task, also
injecting information about the target from word
embeddings or rephrasing the input with dynamic
patterns. Their best performing method produces
an XLNet (Yang et al., 2019) contextualized em-
bedding of the target word combined with static
frequency information about proximity between
target and substitute. This combined representation
is then used to obtain a ranking of substitutes from
the XLNet vocabulary that is further refined with
postprocessing.

Despite the improvement in performances that
large language models brought to the task, these
methods work in a potentially sub-optimal setting,
since they are used as feature extractors and are not
finetuned, due to the paucity of large-scale anno-
tated data (Garí Soler et al., 2019).

Lexical Substitution Resources The first
dataset released was the Lexical Substitution
Task (LST), proposed as test set for the task
by McCarthy and Navigli (2007). It contains
2010 sentences with a single target word per
sentence, including around 200 distinct targets.
Each instance is associated with several substitutes
that were chosen by five native English speaker
annotators. The small coverage of LST led to
the creation of the Turk bootstrap Word Sense
Inventory (Biemann, 2012, TWSI), a first attempt
to collect a large-scale dataset. The author de-
ployed Amazon Mechanical Turk to annotate 25K
sentences from Wikipedia, which, however, only
cover noun targets. To overcome this shortcoming,
Kremer et al. (2014) proposed Concept In Context
(CoInCo), a dataset of 2474 sentences covering
3874 distinct targets with diverse part-of-speech
tags. Each sentence has one or more targets, for a
total of 15k instances annotated through Amazon
Mechanical Turk.

Generative Approaches Generative pre-trained
language models such as GPT (Radford et al.,
2018) have shown to be highly effective in Nat-
ural Language Generation, catching the attention
of the research community. Indeed, pre-trained
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models such as BART (Lewis et al., 2020) suit a
wide range of NLP applications. Thanks to the
flexibility of seq2seq learning, these models can
be easily adapted to different tasks, including se-
quence and token classification or sequence gener-
ation, inter alia. Interestingly, generative models
have also been employed in tasks that are not usu-
ally formulated as sequence-to-sequence learning;
for example, there have been effective applications
of seq2seq architectures to definition modeling
(Bevilacqua et al., 2020), cross-lingual Abstract
Meaning Representation (Blloshmi et al., 2020),
end-to-end Semantic Role Labeling (Blloshmi
et al., 2021) and Semantic Parsing (Procopio et al.,
2021; Bevilacqua et al., 2021a).

Inspired by these successful applications of gen-
erative approaches we here propose applying, for
the first time, a generative seq2seq model to the
lexical substitution task. Differently from previous
approaches in the field, we finetune a pre-trained
model to produce substitutes starting from a word
in its context. Moreover, our method can be used
to generate silver data for the lexical substitution
task, reducing the lack of annotated data.

3 GENESIS

The task of substitutes prediction requires finding
replacements for a target word in a context that
ideally do not modify the overall meaning of that
context. More formally, given a target word wt

occurring in a context sentence x = w1, . . . , wn, a
substitution system has to assemble a ranked list
s of possible replacements for wt according to its
context x. Consider as an example the context

The roses are bright. (1)

where the target wt = bright appears. As output
of our system, we expect a generated list of substi-
tutes, such as s = [vivid, luminous, shining].

We tackle the lexical substitution task with a
two-stage process: first, we use a seq2seq model
that takes as input both the context and the target,
and generates several possible lists of substitutes
(substitutes generation, Section 3.1); second, we
process the substitutes collected with the first step
to obtain the final, ranked list (substitutes ranking,
Section 3.2). The whole process is described in Fig-
ure 1. Throughout the paper, we will consider each
target word wt to be univocally associated with its
part-of-speech (POS) tag. To improve readability
we discard POS tags from the notation.

3.1 Substitutes Generation
We assume to have a seq2seq model M that, given
a context x where a target word wt occurs, is able
to generate a sequence of substitutes s by modeling
the probability

P (s|x;wt) =

|s|∏
i=1

P (si|s0:i−1;x;wt)

where s0 is a special start token. In order to struc-
ture both the target and the context as a single in-
put sequence for M , we identify the target in its
context by surrounding it with two special tokens.
Formally, for a target word wt in x we define the
input mwt,x as:

mwt,x = w1w2 . . . <t>wt</t> . . . wn.

Thus, example (1) is structured as:

The roses are <t>bright</t>.

The expected output s, instead, is a comma-
separated sequence s = s1, . . . , sq where each
word si is a possible substitute for wt in x. At train-
ing time, we provide the model with a sequence
of gold substitutes ŝ = ŝ1, . . . , ŝk also structured
as a comma-separated list. Thus, we can train M
by minimizing the cross-entropy loss between the
gold and the generated sequences. At inference
time, for each input sequence mwt,x we actually
produce several substitute sequences s1, . . . , sb ob-
tained with beam-search decoding (Figure 1(a)).

3.2 Substitutes Ranking
Once the model has produced a set of substitute
sequences, we collect the unique substitutes and
rank them according to the context.

Collection and Filtering First, we create the
set W of words2 that occur across the sequences
s1, . . . , sb. W could contain inappropriate substi-
tutes, such as the target itself or words that are
closely related to the target but have a different
part of speech (Figure 1(b)). To provide a cleaned
list of substitutes, for each target word we define
a possible output vocabulary and remove from W
all the words that are not part of it, including the
target itself (Figure 1(b), bold)). We denote this
reduced set as Wclean. The building of the output
vocabulary is detailed in Section 4.

2For ease of reading, we do not specify the target wt and
context x as subscripts.
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Figure 1: A schematic representation of GENESIS. The input is fed to a seq2seq model that produces several
sequences of substitutes (a); the substitutes are collected and filtered according to an output vocabulary (b). We
create a new sentence for each substitute by using it as replacement for the target in the original context (c); finally,
we use the contextualized representations of the substitutes to rank them by similarity with the target (d).

Contextualization We denote with j the index
of the target word wt in context x, and the contex-
tualized representation of wt in x as:

vx,j = NLM(x)[j] (2)

whereNLM(x) is the representation of x obtained
through an arbitrary neural language model. Then,
for each valid substitute wc ∈Wclean, we obtain a
modified context xwc by replacing the target word
wt with wc (Figure 1(c)). Now we can obtain a
contextualized representation of each substitute as:

vxwc ,j = NLM(xwc)[j]. (3)

Ranking To produce the final ranking of the
substitutes (Figure 1(d)) we compute the co-
sine similarity of the target word vector with
respect to that of each substitute, i.e., cos-
sim(vx,j ,vxwc ,j) ∀wc ∈ Wclean, and order the
substitutes by their descending cosine similarity
with the target.

4 Vocabulary Definition

One of the challenges in the lexical substitution
task is the lack of a predefined substitute inventory,
i.e., for each target word we lack a reference list
of possible replacements. Importantly, with GEN-
ESIS we can produce approximately any word in
the English vocabulary as substitute, although stan-
dard evaluation benchmarks consider valid only
the words in the test vocabulary. To reach a suit-
able trade-off between the generative power of the
model and the necessity of a fair evaluation, we

define an output vocabulary that the model has to
stick to, i.e., we discard any generated word that is
not contained in it (Section 3.2).

To build our vocabulary, we take advantage of
WordNet 3.0, a widely-used lexicographic resource
structured as a graph. Each WordNet node is a
synset, i.e., a set of different lexicalizations with
the same meaning and POS, while edges represent
semantic relations between synsets, such as hy-
ponymy and hypernymy. For example, one of the
synsets for the adjective bright is {bright, brilliant,
vivid}, that is connected through the similar-to se-
mantic relation to the synset {colorful, colourful}.
For each target wt we compute a set of synsetsDwt

that defines the output vocabulary. We initialize
Dwt as the set of synsets Swt where wt appears.3

Then, for each swt ∈ Swt we expand Dwt by col-
lecting all the neighbors N(swt) of swt ; finally, for
each neighbor n that is connected to swt through
a hyponymy, hypernymy, similar-to or see-also re-
lation, we add all the neighbors of n to Dwt . We
define as possible substitutes for wt the union of
all the lexicalizations appearing in Dwt .
This procedure, visualized in Figure 2, builds a
vocabulary that covers all the senses enumerated
in WordNet for a given target, defining a reduced
range of available substitutions that is still chal-
lenging for the task. To provide a quantification
of the coverage of the output vocabulary, we re-
port that, when computed for the LST targets, it
includes 25 842 distinct substitute words, while the

3We recall from Section 3 that each target is univocally
tied to its POS tag.
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Figure 2: A visual example of how the vocabulary is
constructed. We consider sw, one of the two synsets
where the noun wine appears (purple oval). First, we
consider all its neighbors (orange ovals), then for each
neighbor n of sw connected through hypernymy, hy-
ponymy, similar-to and see-also relations (double or-
ange oval), we include all the neighbors of n (green
ovals). The neighbors of synsets connected through dif-
ferent relations to sw are discarded (grey ovals).

original test set has 3154 possible substitutes. Their
intersection covers 2013 words.

5 Dataset Generation

GENESIS is able to generate substitutes starting
from a word in its context. Thus, starting from a
source dataset C of target words in context, we can
exploit GENESIS to produce ranked lists of sub-
stitutes and, associating the generated substitutes
with the targets, obtain silver datasets for the lexi-
cal substitution task. To this end, first, we finetune
GENESIS on a gold dataset for the lexical substi-
tution task; then, we give as input to the finetuned
model the corpus C, generating as output a list of
replacements for each input instance. The input
instances, associated with the generated substitutes,
constitute the silver corpus. To ensure the quality
of the generated substitutes, we apply a similar-
ity threshold λ on the ranking step of GENESIS

(cf. Section 3), keeping only the substitutes whose
similarity to the target is higher than λ. As source
dataset C we exploit SemCor (Miller et al., 1993),
a manually annotated corpus where instances are
sense-tagged according to the WordNet sense in-
ventory4. While it is typically used as a training
corpus for English Word Sense Disambiguation
(WSD), as we show, its manually-curated sense dis-
tribution is also beneficial for lexical substitution.
Indeed, having a frequency of target words that

4We use the version released at http://nlp.
uniroma1.it/wsdeval/training-data, with
sense annotations that leverage WordNet 3.0.

follows a sense distribution involves the generation
of substitutes for different senses of the same word,
helping lexical substitution systems finetuned on
the silver dataset to generalize more effectively.

6 Experimental Setup

In this section, we specify the setting used to tackle
the lexical substitution task.

Model We use BART (Lewis et al., 2020) as
seq2seq model, trained through the RAdam op-
timiser (lr 10−5); we train it for a maximum of 100
epochs, with early stopping and patience set to 2
epochs. The input is fed to the model in batches of
up to 600 tokens. To obtain the contextualized rep-
resentations in Equations (2) and (3) we use the av-
erage of the last four5 hidden layers of BERT large
cased. Both BART and BERT are used through the
HuggingFace (Wolf et al., 2020) implementations.

Datasets We finetune BART on the concatena-
tion of CoInCo and TWSI. Indeed, the former is
originally distributed without training split, with
only test and dev sets released; the latter, instead,
contains only nouns, so it is not suitable for train-
ing alone. Thus, we concatenate the two datasets
and produce new train and dev splits by randomly
reserving 30% of the target contexts for the dev
set CT D and the remaining 70% as training split
CT T . As test set we use LST, the dataset originally
released for the SemEval-2007 task. As regards the
generated datasets, we denote with GENSEMCORn

the dataset obtained by generating substitutes for a
sample of n contexts randomly drawn from Sem-
Cor. Starting from the size of CT T , i.e., 37k sen-
tences, we generate four different samples by dou-
bling the dataset size each time, with each sample
including all the sentences in the previous one, i.e
GENSEMCOR37k ⊂ GENSEMCOR74k and so on.
The final dataset, that includes all the SemCor sen-
tences for which at least one substitute has been
generated, is identified by GENSEMCOR. We high-
light that, when training on GENSEMCOR datasets,
we use only silver data, without concatenating gold
corpora. The properties of the gold and generated
datasets are summarised in Table 1.

Evaluation Metrics We evaluate the perfor-
mance of our model using the metrics originally
proposed for the task (McCarthy and Navigli,

5These layers better capture the semantics than the last
layer only, as shown in Devlin et al. (2019) and Loureiro and
Jorge (2019), inter alia.

http://nlp.uniroma1.it/wsdeval/training-data
http://nlp.uniroma1.it/wsdeval/training-data
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Dataset targets contexts avg substitutes

CT T 4,301 37,172 6.6
CT D 297 3,095 6.8
LST 205 2,003 4.0

GENSEMCOR37k 9,423 37,000 4.2
GENSEMCOR74k 12,726 67,231 3.4
GENSEMCOR148k 17,714 137,497 3.4
GENSEMCOR 22,435 220,237 4.2

Table 1: The number of targets, context sentences and
average substitutes per instance in the gold (first block)
and in the generated (second block) datasets.

2009), i.e., best and out-of-ten (oot), together with
their mode variations. The best metric allows a sys-
tem to produce as many substitutes as are consid-
ered useful, by dividing the credit for each correct
guess by the number of produced guesses. The best
substitute should ideally be provided first. For each
test instance, we provide the scorer only with the
first substitute from the ranking detailed in Section
3.2. The oot metric evaluates up to ten candidates
that have all the same relevance for the target, with-
out dividing the credit of each correct guess by
the number of produced guesses. In this case, we
provide the scorer with the first ten substitutes as
ranked by GENESIS. The mode variations of the
best and oot metrics evaluate only the subset of
the test set where a mode exist, i.e., where a ma-
jority of the annotators selected a single substitute
as the best replacement. The formalization of the
metrics employed is detailed in the supplementary
materials, Section A. In addition to the standard
metrics, we follow Arefyev et al. (2019) and also
report p@1, p@3 and r@10.

Fallback Strategy When evaluating a system on
the oot metrics, there is no advantage in providing
less than ten substitutes. For this reason, whenever
the procedure described in Section 3 results in less
than ten substitutes, we apply a two-stage fallback
strategy. First, we include in the substitutes all
those words generated that were discarded when
cutting on the output vocabulary. Second, if the
list still has less than ten candidates, we extract the
substitutes from the vocabulary that are not pro-
duced by the model, rank them according to their
cosine similarity with the target (cf. Section 3.2)
and extend the sequence produced until it reaches
ten substitutes.

6.1 Parameter Selection
GENESIS has several features that can be person-
alized, from the model configuration to the gener-
ation parameters. With the aim of obtaining the
best-performing setting for the lexical substitution
task, we conduct an extensive tuning of GENESIS

configuration, testing how each parameter affects
the results on the dev dataset (CT D). Here we
briefly describe the best-performing settings, while
we report the results for each variation of the pa-
rameters in the supplementary material (Sections
B, C).

Model Parameters We experiment with differ-
ent values of dropout, encoder layer dropout and
decoder layer dropout. We investigate how the
variation of each parameter influences the perfor-
mances by exploring values in the range [0, 0.6].
When training on the CT T dataset, the best per-
forming setup uses dropout = 0.5, encoder layer
dropout = 0.2 and decoder layer dropout = 0.6. This
setting is used to perform all the experiments on
the CT T dataset and to generate the datasets from
SemCor. Then, a new selection of parameters is
made on the GENSEMCOR37k dataset, resulting in
a new configuration with dropout = 0.1, encoder
layer dropout = 0.6 and decoder layer dropout =
0.2. This configuration is used for the experiments
on the GENSEMCOR datasets.

Generation Parameters Several decoding
strategies are available for seq2seq models. We
experiment with beam sizes and check whether
the use of sampling is beneficial for the task. The
optimal configuration has beam size 50 and no
sampling.

Dataset Generation Parameters The generated
substitutes are filtered through the similarity thresh-
old λ. We tune it experimenting with the values
in [0.5, 0.7, 0.8], with the best performing dataset
obtained with 0.7.

7 Experiments

Once all the parameters have been tuned, we train
GENESIS on CT T , cut the substitutes generated ac-
cording to the output vocabulary, apply the fallback
strategy and test on the LST dataset.

Baseline Using a predefined vocabulary limits
the possible outputs of our model; therefore, to
assess whether the performances of GENESIS are
mainly influenced by the restricted vocabulary, we
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Dataset Approach best best-mode oot oot-mode p@1 p@3 r@10

- Zhou et al. (2019) 20.3 34.2 55.4 68.4 51.1 - -
- Arefyev et al. (2020) - - - - 49.5 34.9 47.2

- vocabulary baseline 0.5 0.6 45.0 60.5 1.2 23.9 39.2

CT T GENESIS – 19.2 ± 0.6 31.1 ± 1.5 45.7 ± 3.7 60.0 ± 4.6 47.9 ± 1.1 33.7 ± 1.2 40.7 ± 3.4
CT T GENESIS – 20.6 ± 0.8 33.2 ± 1.7 39.5 ± 2.9 52.3 ± 4.0 49.2 ± 1.9 38.6 ± 1.3 32.4 ± 2.9
CT T GENESIS 20.6 ± 0.8 33.2 ± 1.7 50.0 ± 2.4 65.1 ± 2.4 49.2 ± 1.9 38.6 ± 1.3 44.7 ± 2.2

GENSEMCOR37k GENESIS 21.3 ± 0.3 34.5 ± 0.7 50.8 ± 1.1 65.7 ± 1.6 50.5 ± 0.8 39.0 ± 0.6 45.6 ± 1.0
GENSEMCOR74k GENESIS 21.6 ± 0.3 35.0 ± 0.7 52.4 ± 0.4 67.5 ± 0.6 51.9 ± 0.5 39.8 ± 0.3 47.1 ± 0.5
GENSEMCOR148k GENESIS 21.3 ± 0.2 34.1 ± 0.5 52.7 ± 0.4 67.0 ± 0.5 52.1 ± 0.7 39.6 ± 0.5 47.6 ± 0.5
GENSEMCOR GENESIS 21.2 ± 0.3 34.1 ± 0.3 52.2 ± 0.4 66.4 ± 0.5 51.2 ± 0.7 39.7 ± 0.5 47.2 ± 0.5

Table 2: Results on the lexical substitution task of GENESIS trained on the CT T dataset (third block) and on
GENSEMCOR (fourth block). We compare GENESIS with the two latest approaches to the task (first block) and to
a baseline (second block). – and – indicate that the output vocabulary cut and fallback strategy are discarded,
respectively. For all the metrics, the higher the better.

devise a baseline that for each target word ranks
by cosine similarity all the substitutes contained in
the vocabulary built for the target, deploying the
contextualization detailed in Section 3.

Comparison Systems We choose as comparison
systems the two most recent approaches to the task,
i.e., the BERT-based system proposed by Zhou
et al. (2019) and the best-performing solution pre-
sented by Arefyev et al. (2020), i.e., an XLNet-
based model enhanced with the injection of spe-
cific embedding information about the target word.
These two models achieve the currently highest
reported results on the task. In these approaches
the language models are used in a feature-based ap-
proach, i.e., they are not finetuned for the task. As
already noted by Arefyev et al. (2020), both models
output a probability distribution over a BPE-based
vocabulary, making it tricky to reconstruct words
at inference time. GENESIS, instead, overcomes
this limit by relying on the decoding strategy of the
generative model.

8 Results

We report our results in Table 2. The baseline (sec-
ond block) performs poorly when it comes to pre-
dicting the most appropriate substitute (best, p@1,
p@3), while it is quite strong in evaluating the top
ten substitutes (oot, r@10). This is somehow to
be expected: the average number of substitutes in
the test set is four (cf. Table 1), hence, there is a
good chance that the ten substitutes in WordNet
that are closest to the target include the gold ones.
As regards the results obtained with GENESIS, in
each configuration we report the average of five
runs with their standard deviation.

First, we inspect the performances of GENESIS

without output vocabulary and without fallback
strategy (GENESIS – ). The generative ap-
proach alone is noisy, showing performances that
are lower than the state of the art in any metric.
Indeed, when adding the cut on the output vocabu-
lary (GENESIS – ), the scores increase on best,
best-mode, p@1 and p@3, reaching performances
that are higher than the previous state of the art on
best and p@3. At the same time, though, reduc-
ing the substitutes to the output vocabulary leads
to the production of less than ten substitutes, thus
decreasing the recall scores, as shown by the drop
on r@10 and oot. This is further confirmed by the
improvement on the oot and r@10 metrics given
by the use of the fallback strategy (GENESIS), i.e.,
when using the complete system and always provid-
ing ten substitutes. In the fourth block of the table
we present the results obtained when finetuning
BART over the generated datasets. We start with
GENSEMCOR37k, that is comparable in size with
CT T . In this case, the silver dataset performs better
than the gold one, with results that are better than
the state of the art on p@3, best and best-mode,
besides being way more stable, as shown by the re-
duced variance across the metrics. We believe this
improved behavior is due to the wider variety of
targets (and consequently substitutes) to be found
in the generated datasets (cf. Table 1), which helps
the model to generalize more effectively. Increas-
ing the size of the sample considered to 148k helps
improve the results, achieving state-of-the-art per-
formances on five metrics out of seven6. With 148k
sentences the system seems to reach a stable point,

6Both Arefyev et al. (2020) and we ourselves failed in
reproducing the results reported in Zhou et al. (2019).
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and keeping on adding sentences does not bring
any additional useful information to the model.

9 Qualitative Evaluation

Our quantitative analysis shows that the substitutes
produced by GENESIS are good enough to out-
perform the previous approaches to the task. The
evaluation setting, though, is inherently limited to a
fixed vocabulary7. Hence, we devise an annotation
task to assess the quality of generated substitutes,
investigating whether GENESIS is able to generate
substitutes that, even when not appearing in the
gold standard, are judged good replacements by
human annotators.

Annotation Task We set up a test where an anno-
tator is provided with a target word in context and a
set of substitutes that are equally distributed among
the gold and the generated ones. The annotator is
required to select, if there are any, all the substitutes
that are not suitable replacements for the target in
the given context. We select three annotators with
certified proficiency in English and previous experi-
ence in linguistic annotation tasks and present them
with a sample of 322 test instances drawn from the
LST dataset8. The annotators are asked to select
the inappropriate substitutes from an anonymized
shuffled set of three gold and three generated substi-
tutes, obtained with GENESIS trained on CT T . For
all the instances, the gold substitutes do not appear
in the generated ones and vice versa. The annota-
tion guidelines are reported in the supplementary
material (Section D).

Inter-Annotator Agreement Since each annota-
tor may select more than one substitute, we mea-
sure the inter-annotator agreement (IAA) using
Kraemer’s κ coefficient (Kraemer, 1980), an exten-
sion of the better known Cohen’s κ (Cohen, 1960)
that allows multiple answers to be provided by an-
notators. We follow Landis and Koch (1977) to
interpret κ values in the range (0.4, 0.6] as moder-
ate agreement, values in (0.6, 0.8] as substantial
agreement and those in (0.8, 1.0) as almost perfect
agreement. Annotations are usually considered reli-
able if their IAA agreement is equal or higher than

7We recall from Section 4 that the vocabulary of LST has
slightly more than 3000 words.

8The sample size is significant with respect to the source
dataset with confidence level of 95% and a margin error
of ± 5. The annotation interface was developed through
Label Studio https://github.com/heartexlabs/
label-studio#try-out-label-studio.

0.67 (Eugenio and Glass, 2004).

Results As expected, the percentage of bad sub-
stitutes is higher in the generated dataset than in the
manually produced gold, with 21% of the generated
replacements considered inappropriate, versus the
13% discarded from the gold dataset, with an inter-
annotator agreement of 0.71. The high percentage
of accepted substitutes among the generated ones
reflects the good quality of the replacements pro-
vided by GENESIS, confirming the validity of the
approach. The results on the gold set, instead, raise
some questions on its completeness and on the va-
lidity of an evaluation setting entirely dependent
on such a restricted vocabulary. Indeed, more than
10% of gold substitutes are considered inappropri-
ate by the annotators, and 40% of the discarded
substitutes are gold. Moreover, we recall that, for
each instance given to the annotators, the gold and
the generated substitutes are disjoint, thus meaning
that all the generated substitutes accepted by the
annotators (79% of the ones proposed) are miss-
ing from the gold but still considered as suitable
replacements.

To give a deeper insight into the incompleteness
of the gold dataset, in Table 3 we provide an exam-
ple of substitutes generated by GENESIS compared
with the gold ones. GENESIS is able to provide a
richer variety of appropriate substitutes compared
to the gold, which lacks several valid substitutes.
GENESIS shows its effectiveness in particular when
the target is an adjective (e.g. tremendous, bright);
with nouns and verbs, it still manages to provide
additional good substitutes in comparison to the
gold (e.g. rest, skip), but it shows shorter genera-
tions, leading to less substitutes. On the adverbs,
instead, it sometimes fails to capture the semantics
of the target, producing replacements that are not
appropriate for the context (e.g. late) or that do not
fit syntactically in the sentence (e.g earlier).

10 Conclusions

In this paper we presented GENESIS, the first gener-
ative approach to lexical substitution. The method
is simple but versatile: by finetuning a seq2seq
model and post-processing its output we are able
to generate appropriate substitutes for target words
in contexts. Testing GENESIS on the lexical sub-
stitution task, we show performances that surpass
the state of the art on several measures. At the
same time, our approach can be used to produce
large-scale silver data, which, when used as train-

https://github.com/heartexlabs/label-studio#try-out-label-studio
https://github.com/heartexlabs/label-studio#try-out-label-studio
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Context Gold Substitutes Generated Substitutes

I think this idea has tremen-
dous promise.

great, wonderful, enormous,
terrific, huge, vast

huge, great, big, abundant, ma-
jor, enormous, terrific, wonder-
ful, excellent, ample, plentiful

A little bit of rest and relaxation
is waiting for Michelle after the
college national finals rodeo.

respite, repose, quiet, leisure,
inactivity, sleep

recuperation, repose, reprieve,
respite, relaxation, break

Well worth buying, well worth
reading, but skip the bits you
find irrelevant - another type of
blended learning!

miss out, disregard, jump over,
miss, avoid, jump, ignore, leave

ditch, disregard, dismiss, omit,
neglect, leave

Use market tools to address
environmental issues, such as
eliminating subsidies for indus-
tries that severely harm the en-
vironment, like coal.

badly, gravely, seriously,
dramatically

extremely, highly, significantly,
hugely, greatly, really,
extensively, tremendously,
exceptionally

Very late in the movie, he fi-
nally does marry Scarlett.

far, on, near, end, near the
end of, well into, latterly, last
minute

very, soon, further, too, extra

If you wish to collect your robes
earlier you should contact the
above number to arrange collec-
tion.

beforehand, sooner, prior to
that, by then, before

previously, before

He was bright and independent
and proud.

intelligent, clever sharp, enthusiastic, intelligent,
talented

Let your child pick one bug to
glue on the lid.

insect fly, insectoid, critter, insect,
creature

Table 3: An excerpt of the GENESIS output for LST sentences when training on GENSEMCOR74k, compared with
gold substitutes. The generated substitutes reported do not include those added through the fallback strategy.

ing corpora for GENESIS, lead to outperformance
over the state of the art on five out of seven metrics.
Moreover, large-scale datasets could possibly be
deployed to finetune lighter models for the task.
Finally, we conduct an annotation task to evaluate
the quality of generated substitutes, which results
in recognizing 79% of the proposed replacements
as good substitutes and also highlights some weak-
nesses of the current evaluation setting, in that it
is strictly bound to an incomplete output vocabu-
lary. As future work, we plan to extend GENESIS

to other languages for which the lexical substitu-
tion task has been proposed, such as Italian (Toral,
2009) and German (Miller et al., 2015). Moreover,
we will investigate how the substitutes produced
can be deployed in lexical-semantic tasks such as

WSD (Bevilacqua et al., 2021b) or Lexical Simpli-
fication (Paetzold and Specia, 2017).
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A Metrics

We measured the performances on the task with the
standard metrics for lexical substitution, i.e., best
and oot.

Preliminaries We define T as the set of test in-
stances and H as the set of annotators for the test
set. Then, A is the set of instances in T for which
the system provides at least one substitute. For
the item i ∈ A we identify the set of substitutes
provided by the system as ai, while hi represents
the set of responses for the item i provided by an-
notator h ∈ H . Finally, for each i we compute
the multiset union Hi for all hi for each annotator;
each unique type res in Hi will have an associated
frequency freqres for the number of times it ap-
pears in Hi. For example, let us consider an item
for happy and assume the annotators had supplied
answers as follows:

annotator id responses
1 glad, merry
2 glad
3 cheerful, glad
4 merry
5 jovial

then Hi would be [glad glad glad merry merry
cheerful jovial]. The res with associated frequen-
cies would be glad 3, merry 2, cheerful 1, jovial
1.

As regards the mode variations, we define as the
mode mi the most frequent response for instance
i ∈ T , if it exists. The sets where this mode ex-
ists are TM and AM , respectively, for the gold
substitutes and the system ones.

best and best-mode Defining Pb and Rb as best
precision and best recall respectively, we formulate
best as

best = 2 ∗ PbRb

Pb +Rb
(4)

where

Pb =
1

|A|
∑

ai:i∈A

∑
res∈ai

freqres

|Hi| ∗ |ai|
(5)

Rb =
1

|T |
∑

ai:i∈T

∑
res∈ai

freqres

|Hi| ∗ |ai|
(6)

As regards the mode variation, we modify preci-
sion and recall as

Pb =
1

|AM |
∑

bgi∈AM

1 if bg = mi (7)

Rb =
1

|TM |
∑

bgi∈TM

1 if bg = mi (8)

respectively, where bg is the best guess in the list
of substitutes provided by the system. Then, best-
mode is computed as in Equation 4.

oot and oot-mode In this case, we define Po and
Ro as oot precision and oot recall, respectively.
Then we compute oot as

oot = 2 ∗ PoRo

Po +Ro
(9)

where

Po =
1

|A|
∑

ai:i∈A

∑
res∈ai

freqres

|Hi|
(10)

Ro =
1

|T |
∑

ai:i∈T

∑
res∈ai

freqres

|Hi|
(11)

while in the mode variation precision and recall are
slightly modified as

Po =
1

|AM |
∑

ai:i∈AM

1 if any guess ∈ ai = mi

(12)

Ro =
1

|TM |
∑

ai:i∈TM

1 if any guess ∈ ai = mi

(13)
respectively. Once again, oot-mode can be com-
puted by following Equation 9.

B Parameter Selection

As regards the model parameters, we explored how
dropout, encoder layer dropout and decoder layer
dropout affect the performances of the model. We
found two different groups of better performing pa-
rameters when training on CT T and on GENSEM-
COR37k. In both cases, the variation of the results
was measured on the CT D set. To maintain a feasi-
ble number of experiments, we set one parameter
at a time, setting the dropout first, then the en-
coder layer dropout and finally the decoder layer
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Figure 4: The results on the dev set for each tested
value of dropout. The chosen value is 0.5.

Figure 5: The results on the dev set for the encoder
layer dropout, when keeping dropout fixed at 0.5. The
chosen value is 0.2.

dropout. In Figures 4, 5 and 6 there are the results
of each experiment for the tuning of parameters
for the models trained on CT T , while Figures 7,
8 and 9 report the performances when training on
GENSEMCOR37k. Often there is no single value
for which the model performs uniformly better on
all the metrics. In these cases, we tried to select
the values that maximised more than one metric, or
those that provided a higher improvement.

C Generation Parameters

We compared the results obtained on CT D after
finetuning GENESIS on CT T , without any kind
of filtering on the output vocabulary and without
fallback strategy, in order to evaluate how each
decoding parameter directly affects the generation
quality. As evaluation metrics, we considered only
the metrics that affect the whole dataset, i.e., we
excluded the mode variations from our analysis.
As generation parameters we experimented with
beam size and top-k sampling. We compared the
results for k = 5, 10 with those obtained without
sampling, i.e., always picking the most probable

Figure 6: The results on the dev set for the decoder
layer dropout, when keeping dropout and encoder layer
dropout fixed at 0.5 and 0.2 respectively. The chosen
value is 0.6.

Figure 7: The results on the dev set for each tested
value of dropout. The chosen value is 0.1.

Figure 8: The results on the dev set for the encoder
layer dropout, when keeping dropout fixed at 0.1. The
chosen value is 0.6.
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Figure 9: The results on the dev set for the decoder
layer dropout, when keeping dropout and encoder layer
dropout fixed at 0.1 and 0.6 respectively. The chosen
value is 0.2.

one. In all the three cases, we used beam size 5
and postprocessed the generations of each beam
as described in Section 3. We can see in Figure
10 that sampling increases the variety of the gener-
ated sequences, and consequently the precision’s
scores, while sticking to the most probable candi-
date results in a higher recall and oot score, as we
can see in the graph. Considering that there is no
configuration that achieves the best results on all
the metrics, and the increase in memory and time
requirements to keep track of the k higher ranked
words, we decided not to use sampling at decoding
time. As regards beam size, we compared the re-
sults obtained when using 5, 15, 25 or 50 beams,
described in Figure 11. As expected, generating
more sequences results in a higher variety of words
generated, thus leading to higher oot and r@10.
At the same time, a broader generation may imply
"dirtier" substitutes, with words that are close to the
target but are not appropriate replacements, slightly
decreasing best and p@k scores.

D Annotators Guidelines

For the annotation task, we provided each anno-
tator with a set of instances comprising a context
with a single target word (in bold) and six possible
substitutes.

Consider as a running example the instance:

I bought this dress last year.

1) buy; 2) sold; 3) acquire; 4) get; 5) purchasing; 6)
grease one’s palm.

The annotator had to select all the inappropriate
substitutes, sticking to the following guidelines:

Figure 10: The results on the dev set when not using
sampling (left) and when using it with top-5 (center)
and top-10 (right) most probable elements in the output
distribution.

Figure 11: The variation of performances according to
each beam size.

1. A substitute is wrong if it is an inflection of
the target (1).

2. A substitute is wrong if its replacement modi-
fies the meaning of the sentence (2, 6).

3. A substitute is wrong it its replacement in
the context results in a wrong structure of the
sentence (6).

4. A substitute is wrong if it has an inflected
form that is different from that of the target
(5).

5. A substitute is correct if it is in its base form
and not in the same inflection as that of the
target (3, 4).


