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Abstract

When training neural models, it is common to
combine multiple loss terms. The balancing of
these terms requires considerable human effort
and is computationally demanding. Moreover,
the optimal trade-off between the loss terms
can change as training progresses, e.g., for ad-
versarial terms. In this work, we generalize the
Adam optimization algorithm to handle multi-
ple loss terms. The guiding principle is that
for every layer, the gradient magnitude of the
terms should be balanced. To this end, the
Multi-Term Adam (MTAdam) computes the
derivative of each loss term separately, infers
the first and second moments per parameter
and loss term, and calculates a first moment for
the magnitude per layer of the gradients aris-
ing from each loss. This magnitude is used to
continuously balance the gradients across all
layers, in a manner that both varies from one
layer to the next and dynamically changes over
time. Our results show that training with the
new method leads to fast recovery from sub-
optimal initial loss weighting and to training
outcomes that match or improve conventional
training with the prescribed hyperparameters
of each method.

1 Introduction

In both supervised and unsupervised learning,
adding loss terms often leads to improved perfor-
mance. However, as more loss terms are added, the
space of possible balancing weights increases expo-
nentially, and more resources need to be allocated
to identify good configurations that would justify
the added terms. Another common challenge is that
at different stages of the training process, the opti-
mal balance may change (Mescheder et al., 2017).
It is, therefore, necessary to have the balancing
terms update dynamically during training, which
further increases the hyperparameter space.

In this work, we introduce Multi-Term
Adam (MTAdam), an optimization algorithm for

multi-term loss functions. MTAdam extends
Adam (Kingma and Ba, 2014) and allows an ef-
fective training of an unweighted multi-term loss
objective. Thus, MTAdam can streamline the com-
putationally demanding task of hyperparameter
search, which is required for effectively weight-
ing multi-term loss objectives.

At every training iteration, a dynamic weight is
assigned to each of the loss terms, based on the
magnitude of the gradient that each term entails.
The weights are assigned in a way that balances be-
tween these gradients and equates their magnitude.

This, however, would be an ineffective balancing
method, without two crucial components: (i) the
balancing needs to occur independently for each
layer of the neural network and separately over
the losses, since the relative contributions of the
losses vary, depending on the layer, and (ii) the
update step needs to take into account the maxi-
mal variance among all losses, to support sufficient
explorations in places of the parameter space, in
which one of the losses becomes more sensitive.

The main focus of our experiments is in the do-
mains of natural language understanding and con-
ditional adversarial image generation, in which
the leading methods often utilize multiple loss
terms. Our results show that MTAdam is able to re-
cover from suboptimal starting points, in which the
weight parameters are set inappropriately, while
Adam and other baseline methods cannot.

2 Related Work

SGD with momentum (Nesterov) (Rumelhart et al.,
1986) is an optimization algorithm that extends
SGD, suggesting to update the network’s parame-
ters by a moving average of the gradients, rather
than the gradients at each step. Root Mean Square
Propagation (RMSProp) (Tieleman and Hinton,
2012) extends SGD, dividing the learning rate dur-
ing the backward step, by the moving average of the
second moment of the gradients of each parameter.
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Adam (Kingma and Ba, 2014) combines both prin-
ciples and employs the first and second moments of
the gradients of each learned parameter and applies
them during the backward step. Adam has become
a dominant optimizer, that is applied across many
applications, and, in particular, it is the de-facto
standard in the field of adversarial training. It is
known for improving convergence to work well
with the default values of its own hyperparameters.

Multiple methods have been suggested for select-
ing hyperparameters (Srinivas et al., 2009; Wang
et al., 2016; Bergstra et al., 2011; Feurer et al.,
2014). Hyperband (Li et al., 2017) performs hy-
perparameter search as an infinite-armed bandit
problem utilizing a predefined amount of resources,
while searching for the best configuration of hyper-
parameters that maximizes the given success crite-
rion. It can provide an order-of-magnitude speedup
compared to Bayesian optimization (Bergstra et al.,
2011; Snoek et al., 2012; Hutter et al., 2011).

In our experiments, we employ multiple meth-
ods from natural language understanding and the
field of image generation. The methods vary in
the type of supervision employed or the task being
solved: (i) BERT (Devlin et al., 2019) is a pre-
trained transformer-based (Vaswani et al., 2017)
language model, that applies fine-tuning on vari-
ous language understanding tasks using supervi-
sion. (ii) RecoBERT (Malkiel et al., 2020a) is
a text-similarity model that fine-tunes BERT on
a given catalog, by jointly optimizing a standard
masked language modeling, along with a unique
title-description model. (iii) pix2pix (Isola et al.,
2017) generates an image in domain B based on an
input image in domain A, after observing match-
ing pairs during training. (iv) CycleGAN (Zhu
et al., 2017) performs the same task, while training
in an unsupervised manner on unmatched images
from the two domains. (v) SRGAN (Ledig et al.,
2017a) generates high-resolution images from low-
resolution ones and is trained in a supervised way.

3 Motivation: Multi-loss Dynamics

To examine the challenges that arise when not scal-
ing the losses correctly, we consider a simple re-
gression problem that involves the L1 or the L2
loss. Specifically, we fit two coefficients to learn
the polynomial f(x) = ax + bx2. To this end,
we randomly sample batches of x ∈ R from a
normal distribution, and train a network to min-
imize the loss, i.e, the network performs a dot

Figure 1: Learning the coefficients of f(x) = ax +
bx2, minimizing L1, L2, or L1 where the gradients are
scaled with the magnitudes of the L2 gradients (training
step vs. loss).

product between (x, x2) and the vector of parame-
ters W ∈ R2, and the objective compares between
(x, x2)W and f(x): for L1 |(x, x2)W − f(x)| and
for L2 ‖(x, x2)W − f(x)‖22.

We track and analyze the loss and its gradients
on the two parameters. We run three Adam ex-
periments with the values a = 1.52, b = −0.29
(picked at random, results are very similar for other
values). Each time we train the model with a differ-
ent objective: L1, L2, and L1 where the gradients
are scaled with the magnitudes of the L2 gradients.
The latter utilizes the L1 loss and scales the gra-
dient magnitudes of the coefficients to match the
magnitudes created by the L2 loss, i.e. we apply

( ∂L1∂W1
, ∂L1∂W2

) := ( ∂L1∂W1
, ∂L1∂W2

)
‖( ∂L2
∂W1

, ∂L2
∂W2

)‖2
‖( ∂L1
∂W1

, ∂L1
∂W2

)‖2
during

the backward propagation step.
As shown in Fig. 1 (log scale), the L2 loss con-

verges to a lower loss than L1, since the latter os-
cillates around 10−2. The underlying reason is that
the gradients’ magnitude of the two coefficients
w.r.t. the L2 loss constantly decreases during train-
ing, while the gradients’ magnitude w.r.t. the L1
remains unchanged (see appendix for a plot). Let
t := (x, x2)W − f(x), the gradient of |t| w.r.t. t
are ∂

∂t |t| = 1 if t > 0 and ∂
∂t |t| = −1 if t < 0.

In contrast, the L2 gradients decrease with model
improvements, since ∂

∂t t
2 = 2t.

Fig. 1 also shows that when scaled by the L2 gra-
dient magnitude, the L1 training converges to the
optimal solution. We, therefore, observe that the
gradient magnitude of a loss that converges well,
can scale the gradients of a loss which converges to
a larger error. This observation implies that instead
of finding a training schedule for a new loss, we
can rely on an existing loss for scaling.

We further explore this in a scenario with mul-
tiple loss terms. It is often the case that new loss
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(a) (b)

Figure 2: We train a superresolution image mapping technique using two out of three loss terms: MSE, GAN, and
perceptual loss. (a) the GAN loss is well-balanced and we obtain effective training when combining it with the
MSE loss (blue curve). However, the weight of the perceptual loss was naively set to 1, which is two orders of
magnitude larger than the optimal value for combining it with the MSE loss. This leads to poor SSIM (Wang et al.,
2004) scores (black curve). However, when scaling the perceptual loss gradients by the magnitude of the gradients
of the GAN loss, the perceptual loss supports the MSE loss (red curve). (b) same, where the roles of the perceptual
loss and the GAN loss are reversed. Similar FID (Heusel et al., 2017) graphs can be found in the appendix.

terms are added during training. However, one
would like to avoid tuning each one separately. As
a computationally efficient sample, we consider
supervised image superresolution using two out of
the three loss terms of Ledig et al. (2017b): MSE,
a GAN which verifies that the result is in the target
domain, and a perceptual loss. We consider the
case in which either the GAN loss or the percep-
tual loss are weighted equally, in comparison to
the MSE (a weight that is larger by two orders of
magnitude than the optimal) and observe, in Fig. 2
that this leads to suboptimal results. However, us-
ing the gradient magnitude of a balanced term fixes
this and allows the method to train well. Thus, this
motivating experiment demonstrates that we can
balance a loss term by using the gradient magni-
tude of another term. Experiments with the three
terms together are shown in Sec. 5.

4 Method

The Adam algorithm optimized one stochastic ob-
jective function ft(θ) over the set of parameters
θ, where t is an index of the current mini-batch of
samples. In contrast, MTAdam optimizes a set of
such terms f1t (θ), . . . , f

I
t (θ). While Adam’s task is

to minimize the expected value Et[ft(θ)] w.r.t. the
parameters θ, MTAdam minimizes a weighted av-
erage of the I terms. The weights of these mixtures
are all positive, but otherwise unknown. The guid-
ing principle for the determination of the weights
at each iteration t is that the moving average of
the magnitude of the gradient of each term is equal
across terms. This magnitude is evaluated and bal-

anced at every layer of the network.
In Adam, two moments are continuously up-

dated, using a moving average scheme: mt is the
first moment of the gradient∇θft and vt is the sec-
ond moment. Both are vectors of the same size of
θ. The moving averages are computed using the
mixing coefficients β1 and β2 for the two moments.

MTAdam records such moments for each term
i = 1...I separately. In addition, it uses a mixing
coefficient β3 in order to maintain the moving av-
erage of the gradient magnitude per each layer `,
which is denoted by nil,t.

Adam borrows from the SGD with momentum
method (Nesterov) and updates the vector of pa-
rameters based on the weighted first moment of the
gradient. In MTAdam, the first moment is com-
puted based on a weighted gradient, in which the
parameters of each layer ` for every term i are
weighted such that their magnitude is normalized
by the factor ni`,t. This way, across all layers, and
at every time point, the I terms contribute equally
to the gradient step.

The Adam algorithm is depicted in the left side
of Alg. 1 and MTAdam on the right. In line 1,
MTAdam initializes I pairs of first and second mo-
ment vectors. This is similar to Adam, except for
initializing a pair of moments for each loss term.
In line 2, and different from Adam, MTAdam ini-
tializes I first moments for the magnitude of the
gradients, per layer. In line 3, both MTAdam and
Adam iterate over the stochastic mini-batches, per-
forming T training steps.

In line 4, MTAdam iterates over the loss terms.
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Algorithm 1: Adam (left) and Multi-term Adam (right). All operations are element-wise.

Input: α: step size, {β1, β2}: decay rates to calculate the
1st and 2nd moments, θ0: initial weights, ft(θ): stochastic
objective.
Output: θt: resulting parameters

1 m0, v0 ← 0, 0

2

3 while t = {1, · · · , T} do
4

5 g ← ∇θft(θt−1)

6

7

8

9 mt ← β1 ·mt−1 + (1− β1) · g
10 vt ← β2 · vt−1 + (1− β2) · g2
11 m̂t ← mt/

(
1− βt1

)
12 v̂t ← vt/

(
1− βt2

)
13

14 θt ← θt−1 − α · m̂t/(
√
v̂t + ε)

15

16 return θT

Input: In addition to Adam’s parameters: β3: decay rate for the
gradient’s norm first moment, f1

t (θ)...fIt (θ): stochastic
loss term functions.

Output: θt: resulting parameters
1 for i = {1, · · · , I} do mi

0, v
i
0 ← 0, 0

2 for l in 1...L do ni`,0 ← 1
3 while t = {1, · · · , T} do
4 for i = {1, · · · , I} do
5 gi := (gi1, ...g

i
L)← ∇θf it (θt−1)

6 for ` in 1...L do
7 ni`,t ← β3 · ni`,t−1 + (1− β3) · ‖gi`‖2
8 gi` ← n1

`,t · gi`/(ni`,t)
9 mi

t ← β1 ·mi
t−1 + (1− β1) · gi

10 vit ← β2 · vit−1 + (1− β2) · (gi)
2

11 m̂i
t ← mi

t/
(
1− βt1

)
12 v̂it ← vit/

(
1− βt2

)
13 for i = {1, · · · , I} do

14 θt−1 ← θt−1 − α · m̂i
t/(

√
max(v̂1t ...v̂

I
t ) + ε)

15 θt ← θt−1

16 return θT

For each term, MTAdam calculates its gradients
over each one of the layers (line 5), analogously
to the way Adam computes the (single) gradients
vector∇θft(θt−1). In lines 6-8, MTAdam iterates
over the layers, updates the moving average of the
magnitude for each layer and loss , and normalizes
the gradients of the current layer and loss term, by

multiplying with
n1
`,t

ni`,t
. This multiplication normal-

izes the magnitude of the current gradients of layer
` and loss term i using the moving average ni`. This
normalization leads to all gradient magnitudes to
be similar to that of the first loss term. This assigns
a unique role to the first term, as the primary loss
to which all other losses are compared. By linking
the magnitude to that of a concrete loss, and not
to a static value (e.g., normalizing to have a unit
norm), we maintain the relationship between the
training progression and the learning rate.

While line 5 has an analog in Adam, in MTAdam,
the computation of the gradients of each specific
loss term i w.r.t θ is done per layer. For a layer
index `, the gradient is denoted by gi`. We denoted
by gi the concatenation of all per-layer gradients.
Lines 6-8 do not have an Adam analog.

The normalization iterates over the loss terms,
and for each gradient, the first moment of the mag-
nitude of the gradient is updated. The gradient
magnitude is then normalized by that of the first
loss term.

Then, in lines 9-12, MTAdam updates the first

and second moments for each parameter and each
loss term and computes their bias correction. This
is similar to Adam, except that the moments are
calculated separately for each loss term. In lines
13-15, MTAdam iterates over the loss terms and
calculates the steps from each term. The steps are
summed over θt−1, and the result is assigned θt.

In Adam, the update size is normalized by the
second moment. In MTAdam, we divided by the
maximal second moment among all loss terms.
This division allows MTAdam to make smaller gra-
dient steps, when a lower certainty is introduced
by at least one of the loss terms. The motivation
for this is that even if one of the losses is in a high-
sensitivity region, where small updates create rapid
changes to this term, then the step, regardless of
the term which led to it, should be small. The im-
portance of this maximization is demonstrated in
the ablation study in Sec. 5.5.

Memory and Run Time Analysis Adam uti-
lizes a pair of 1st and 2nd moments for each
learned parameter. Given a network with ‖θ‖
learned parameters, it has a memory complexity
of O(|θ|). MTAdam utilizes I different pairs of
1st and 2nd moments for each parameter and also
I first moments magnitude for each layer. These
two extensions bring the memory complexity to
O(I|θ| + IL) ∼ O(I|θ|). The run time complex-
ity of Adam per each training step is linear in the
number of parameters O(θ). In MTAdam, the run
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Suboptimal weighting Optimal

SGD-Momentum RMSProp Adam MTAdam Adam

85.4 ± 1.2 87.2 ± 1.0 88.8 ± 0.8 97.9 ± 0.1 98.3 ± 0.1

Table 1: Mean accuracy ± SD on MNIST (100 runs).

time complexity also depends on the number of
loss terms O(Iθ). The dependence on the number
of layers L in Alg. 1 can be absorbed in θ.

5 Experiments

We compare the results of MTAdam with five base-
lines: (1-3) Adam, RMSProp, and SGD with mo-
mentum, applied with suboptimal weightings. (4)
Hyperband (Li et al., 2017) applied to perform a
hyperparameter search for the weighting parame-
ters (lambdas). (5) Adam optimizer applied with
the prescribed weighting.

We note that baseline (4) benefits from running
training multiple times and that baseline (5) em-
ploys the weights proposed for each method after a
development process that is likely to have included
a hyper-parameter search, in which multiple runs
were evaluated by the developers of each method.
For each optimization method, we employ the de-
fault parameters in pytorch. For all Adam and
MTAdam experiments, β1 = 0.9 and β2 = 0.999.
For MTAdam β3 = 0.9.

5.1 MNIST classification

In order to turn MNIST into a suboptimal combina-
tion of multiple terms experiment, we compute the
loss for each of the digits separately, creating ten
losses, each weighted by a random weight from a
uniform distribution between 1 and 1000. The test
set is unweighted, which causes classes associated
with lower weights to suffer from underfitting.

The official of the PyTorch MNIST example is
used: two convolutional layers, followed by two
fully connected layers. The experiment is repeated
100 times, and for the sake of saving computations,
hyperband is not tested. The results in Tab. 1, show
a clear advantage for MTAdam over the other sub-
optimal alternatives.

5.2 BERT Experiments

To demonstrate the effectiveness of MTAdam to
recover from non-optimal weighting when applied
to Transformers (Vaswani et al., 2017), we fine-
tune BERT (Devlin et al., 2019) with a sub-optimal

combination of terms. BERT is commonly ap-
plied with AdamW (Loshchilov and Hutter, 2017),
which employs an L2 regularization on the net-
work weights. Thus, the BERT objective can be
formulated as a dual-loss objective consisting of a
standard classification loss and an L2 regulariza-
tion: LBERT = λ1Lbce + λ2Lreg, where Lbce is
the binary cross-entropy loss and Lreg is the L2
regularization loss. The approximately optimal λ1
and λ2 weights proposed by BERT (Devlin et al.,
2019) are 1 and 0.01, respectively.

In our experiments, we fine-tune BERT with
MTAdam, minimizing the above objective, where
the regularization is applied with equal weighting,
setting λ2 = 1. We compare MTAdam with Adam
applying the same dual-term objective and with the
AdamW. Note that AdamW applies the L2 regu-
larization directly on the model weights, i.e., the
L2 gradients are not combined with the first and
second moments of the main loss.

Performance is evaluated on the MRPC (Dolan
and Brockett, 2005), RTE (Bentivogli et al., 2009),
and STS-B (Cer et al., 2017), and reported over
five experiments for each variant. The results in
Tab. 2, shows that MTAdam is the only method to
overcome the equal weights, achieving the results
obtained by Adam and AdamW on the prescribed
weights. The runtime of MTAdam applied on the
BERT architecture is comparable to the Adam and
AdamW alternatives, with up to 20% additional
compute time (measured on a single v100 GPU).

5.3 RecoBERT Experiments

We next apply MTAdam based training to Re-
coBERT (Malkiel et al., 2020a,b), which is a
recent state-of-the-art text-based item similarity
model. In the RecoBERT settings, a catalog of
textual items is given, where each item is com-
posed of a title-description pair. Item titles are
sentences and descriptions are paragraphs. The Re-
coBERT model is a BERT-based network trained
with self-supervision to jointly optimize a standard
masked language model (MLM) and a unique title-
description model (TDM). During training, title-
description pairs are tokenized and masked (similar
to BERT), and then propagated through the model.
The optimization goal is to reconstruct the masked
words, and predict whether a given pair of title and
description corresponds to the same item or not.
The RecoBERT objective can be expressed as:

LRecoBERT = LMLM + λLTDM (1)
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Dataset no reg. Equal weighting Prescribed weights

Adam SGD-Momentum RMSProp Adam AdamW MTAdam Adam AdamW

MRPC 85.9 ± 3.0 68.3 ± 0 68.3 ± 0 68.3 ± 0 86.9 ± 1.1 87.2 ± 1.1 87.2 ± 1.3 86.9 ± 1.1
RTE 68.5 ± 11.5 60.5 ± 1.2 54 ± 2.7 55.5 ± 2.8 72.2 ± 1.9 73.7 ± 1.8 70.0 ± 3.0 69.6 ± 4.5

STS-B 90.1 ± 0.4 80.7 ± 1.3 80.2 ± 1.4 81.3 ± 1.0 89.5 ± 0.1 90.4 ± 0.2 90.4 ± 0.1 90.4 ± 0.2

Table 2: Mean±SD over five runs of Accuracy for MRPC, RTE and STS-B.

where the LMLM is a standard masked language
model loss, λ was set to 1, and LTDM is the TDM
loss, which is a standard cross entropy employed
over the cosine between the averaged pooled em-
beddings of the title and description tokens.

In (Malkiel et al., 2020a), the authors introduced
a wines similarity task1 with a test set of items with
similarity annotations crafted by a human expert2

(see Fig.3).
We evaluate RecoBERT with MTAdam on the

wines similarity task and compare its performance
to the baselines mentioned above. The Hyperband
experiments utilize the validation loss to perform a
hyperparameter search on the λ and incorporate 40
trials (i.e. 40 training processes, which gives it a
great advantage), each trial randomly sampled a dif-
ferent lambda from the logarithmic scale between
[10−4, 104]. We report Hyperband performance, by
utilizing the trial that is associated with the chosen
lambda (λ = 17.4).

As can be seen in Tab. 3, RecoBERT applied
with MTAdam yields a sizable improvement com-
pared to the original work, and other alterna-
tives. Specifically, compared to the best per-
forming model, MTAdam improves the Mean Per-
centile Ranking (MPR) score by 0.8, Mean Recip-
rocal Rank (MRR) by 1.4 and the Hit Rate at 10
(HR@10) by 4.3.
Runtime Comparing the training time for both
the BERT and RecoBERT experiments, MTAdam
entails an additional ∼ 20% of compute time over
Adam. Specifically, in RecoBERT the original
model was trained for three days on a single V100
GPU, while MTAdam training consumed an addi-
tional 14 hours. Note that no attempt was done
yet to optimize the MTAdam code. The hyperband
experiments required 16 days (four v100 GPUs
running in parallel for 4 days). A grid search of
even a coarse resolution would have required at
least two orders of magnitude more resources than

1dataset: https://www.kaggle.com/zynicide/wine-review
2https://doi.org/10.5281/zenodo.3653403

MPR↑MRR↑ HR@10↑

eq
ua

lw
ei

. SGD-Momentum 95.5% 90.1% 60.8%
RMSProp 95.8% 91.0% 61.4%
Adam-prescribed 96.3% 91.7% 65.4%
MTAdam 97.4% 93.3% 70.5%

Hyperband-FID 96.6% 91.9% 66.2%

Table 3: RecoBERT results.

Figure 3: Samples from the wines recommendation
task. Each item is associated with a review written by a
professional wine reviewer. These two wines were also
annotated as similar by a sommelier.

MTAdam.

5.4 Image synthesis
We compare the performance of MTAdam with
other optimizers, evaluated on three methods,
pix2pix (Isola et al., 2017), CycleGan (Zhu et al.,
2017) and SRGAN (Ledig et al., 2017a).

We used the learning rate as found in each
method. Performance is evaluated using various
metrics: L1, L2, PSNR, NMSE (normalized MSE),
FID (Heusel et al., 2017), and SSIM (Wang et al.,
2004). In each case, we follow the metrics used in
the original work, with the addition of FID.

Pix2pix Experiments The objective function
of the pix2pix generator has dual-terms:

Lpix2pix = λ1L1 + λ2LGAN (2)
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Facade images maps→aerial

L1 L2 NMSE FID L1 L2 NMSE FID

SGD-Momentum (equal weights) 120.12 18308 1.132 339.40 45.1 3428.3 0.491 102.45
RMSProp (equal weights) 53.98 4913 0.303 136.10 42.4 3056.7 0.435 95.74
Adam (equal weights) 54.92 5074 0.313 133.55 38.1 2632.3 0.368 88.08
MTAdam (equal weights) 46.50 3822 0.236 130.38 33.6 2096.9 0.293 86.40

Hyperband-FID 54.12 4992 0.308 141.96 35.14 2391.2 0.341 86.45

Adam-prescribed 45.84 3811 0.235 130.50 34.4 2163.4 0.303 85.76

Table 4: Comparing various methods for training pix2pix. Lower is better for all metrics.

L1-A L2-A NMSE-A FID-A L1-B L2-B NMSE-B FID-B

ho
rs

e→
ze

br
a SGD-Momentum-suboptimal-weights 82.3 10217 0.5866 283.3 127.0 20331 0.9898 406.3

RMSProp-suboptimal-weights 73.8 8384 0.4814 233.9 70.6 7683 0.3740 230.9
Adam-suboptimal-weights 74.4 8421 0.4935 229.6 72.3 7742 0.3842 227.1
MTAdam-suboptimal-weights 68.7 7235 0.4151 73.0 69.0 7281 0.3545 139.7

Hyperband-FID 72.3 8049 0.4687 189.2 71.8 7584 0.3746 192.6

Adam-prescribed 68.6 7248 0.4161 70.6 68.6 7207 0.3509 143.8

m
ap

s→
ae

ri
al

SGD-Momentum-suboptimal-weights 26.7 1102 0.0209 437.5 73.01 7146 1.0 738.6
RMSProp-suboptimal-weights 12.9 389 0.0074 170.2 36.81 2260 0.3154 231.3
Adam-suboptimal-weights 12.9 386 0.0073 166.3 37.00 2270 0.3161 234.2
MTAdam-suboptimal-weights 10.6 376 0.0071 113.0 35.37 2242 0.3137 48.8

Hyperband-FID 12.9 387 0.0073 169.4 36.91 2226 0.3102 233.1

Adam-prescribed 8.5 301 0.0057 116.1 35.45 2250 0.3148 46.8

Table 5: Performance of the various optimization methods, when applied to the CycleGAN algorithm.

Set14 BSD100

PNSR↑ SSIM↑ FID↓ PSNR↑ SSIM↑ FID↓

eq
ua

lw
ei

gh
ts SGD-Mmntum 22.95 0.6213 74.92 23.01 0.5997 79.45

RMSProp 23.04 0.6252 72.92 23.14 0.6020 76.64
Adam 23.43 0.6264 69.96 23.71 0.6070 77.24
MTAdam 25.97 0.7219 66.03 25.23 0.6690 74.97
Hyperband-FID 24.89 66.24 67.26 24.80 0.6554 75.65

Adam-prescribed 26.02 0.7397 66.59 25.16 0.6688 72.57

Table 6: SRGAN results.

Where LGAN is the GAN loss of the generator, L1

is the pixel loss, and λ1 and λ2 are set to 100 and
1, respectively. In our study, we train Pix2pix with
equal weights, setting λ1 to 100 (which implies a
1:1 ratio between the two terms).

Two datasets are used: matching facade images
and their semantic labels (Tyleček and Šára, 2013)
and aerial photographs and matching maps (Isola
et al., 2017). Performance is reported on a holdout
test set of each benchmark.

Fig. 4 depicts the test-performance of multiple
models per epoch. The experiment’s name contains
‘equal-weights’ for the case of equal loss terms, and
‘prescribed’ when using the prescribed λ values. As
can be seen, MTAdam yields a similar convergence
as the Adam-prescribed. Specifically, MTAdam
converges substantially better than the Adam-equal-
weights experiment, leading to improved L1 and
FID scores.

In Tab. 4, MTAdam is compared with all base-
lines, applied for training pix2pix models. The top
four models in each section utilize equal weight-
ing, each applied with a different optimizer. The
Hyperband experiment utilizes the FID metric to
perform a hyperparameter search on λ2.

The results of the table clearly show the advan-
tage of MTAdam over all baseline methods. In
addition, it also shows a slight improvement in per-
formance in comparison to the usage of Adam on
the prescribed weights. Appendix Fig. 8 presents
two representative samples from the facades test
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MRPC RTE pix2pix facade CycleGAN horse2zebra

Acc. Acc. L1 L2 NMSE FID L1-A FID-AL1-B FID-B

(i) Removing L6–8 72.4 58.5 53.45 5021 0.326 134.0 74.7 225.2 71.2 217.1
(ii) Removing L6, changing gi` to gi 83.7 63.9 46.8 3850 0.258 133.5 70.1 75.2 69.5 145.7
(iii) No scaling by n1`,t in L8 78.9 64.2 46.7 3862 0.242 136.3 72.3 82.4 70.6 167.2
(iv) Line 14: scaling like Adam 84.2 63.8 48.2 3956 0.245 171.5 73.5 210.5 71.1 190.3
(v) Line 14: scaling by mean instead of max 86.3 69.2 48.3 4020 0.249 156.8 73.7 208.4 71.6 173.5

Full method 87.2 73.7 46.5 3822 0.236 130.4 68.7 73.0 69.0 139.7

Table 7: Ablation study results.

Figure 4: FID per epoch on the validation set of Facade
for three pix2pix variants. Adam-prescribed and Adam-
equal-weights employ the Adam optimizer with a loss
combination that utilizes the prescribed weights and
equal weights, respectively. MTAdam-equal-weights
utilizes MTAdam with equal weights between losses.
See appendix for the analog L1 plot.

set. Adam-equal-weights introduces visual arti-
facts and suffers from mode collapse (it generates
the same corrupted patch in the top right corner
of many images). MTAdam-equal-weights yields
higher-quality images, similar to those of the origi-
nal Pix2Pix, using the prescribed weights.
CycleGAN experiments The CycleGAN objec-
tive function is composed of six loss terms:

LCycleGAN = λ1LGAN_A + λ1LGAN_B+

λ2Lcycle_A+λ2Lcycle_B+λ3Lidt_A+λ3Lidt_B
(3)

Where the LGAN , Lcycle, Lidt terms are the GAN
loss, cycle GAN loss and identity loss, for each one
of the sides (A or B). λ1, λ2 and λ3 are set to 1,
10 and 0.5, respectively. In our experiments, we
employ CycleGAN with suboptimal weighting, by
setting λ2 to 1000, leaving λ1 and λ3 unchanged.

Appendix Fig. 4 compares the convergence of
three CycleGAN models: (1-2) MTAdam and

Adam, both with suboptimal weighting, and (3)
Adam with the prescribed weights. All models
are applied to the horse2zebra dataset (Deng et al.,
2009). As can be seen, MTAdam exhibits a com-
petitive convergence to the Adam experiment ap-
plied with the prescribed weights, which is much
better than the performance of Adam with the
suboptimal weights. Tab. 5 presents the perfor-
mance of MTAdam applied on CycleGAN, com-
pared to all five baselines, and evaluated on two
datasets. MTAdam with the suboptimal weight-
ing yields competitive performance to the Adam
method, which uses the prescribed hyperparams.

Appendix Fig. 9 exhibits representative im-
ages from the CycleGAN models, showing that
MTAdam, even when applied to a loss with subop-
timal weights, matches or improves the results of
Adam on the prescribed weights.

SRGAN The Super Resolution GAN (SR-
GAN) (Ledig et al., 2017a) objective function is:

LSRGAN = λ1LMSE+λ2LGAN+λ3LPerceptual
(4)

for which the total loss is a combination of a GAN
loss, perceptual loss and MSE. The λ1, λ2 and
λ3 are set to 1, 0.001 and 0.006. We employ a
suboptimal combination between the loss terms, by
setting λ2 = λ3 = 1.

We evaluate SRGAN trained with MTAdam and
equal weights on two test sets, Set14 (Zeyde et al.,
2010) and BSD100 (Martin et al., 2001). The re-
sults, listed in Tab. 6 demonstrate that MTAdam can
effectively recover from suboptimal weights, while
the other optimization methods suffer a degradation
in performance.

5.5 Ablation Study

Tab. 7 presents an ablation study for suboptimal
pix2pix on the facade images and for suboptimal
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CycleGAN on the zebra2horse dataset. The follow-
ing variants are considered (the descriptions refer
to Alg. 1): (i) treating all layers as one layer and
eliminating lines 6-8 altogether. (ii) training all
layers at once, and performing the normalization
in line 8 once for the entire gradient, i.e., still nor-
malizing by the magnitude of the gradient of the
first term. (iii) scaling the gradients of each layer l
and each term i in line 8 by (nil,t)

−1 but not by n1l,t.

(iv) replacing the term max(v̂1t ...v̂
I
t ) in line 14 with

v̂it, in an analogous way to line 14 in Adam. (v)
replacing the same term with the mean I−1

∑
v̂it.

The results, shown in Tab. 7, indicate that it is
crucial to employ a per layer analysis, in the way
it is done in MTAdam, that normalizing by the
magnitude of the gradient of an anchor term is
highly beneficial, and that the maximal variance is
a better alternative to other scaling terms.

6 Conclusions

MTAdam is shown to be a widely applicable op-
timizer, which can dynamically balance multiple
loss terms in an effective way. It is a general algo-
rithm, which can find its usage in additional types
of tasks that require the optimization of multiple
terms, such as domain adaptation and some forms
of self-supervised learning. Our code is attached
as supplementary. MTAdam is implemented as a
generic pytorch optimizer and applying it is almost
as simple as applying Adam.
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Radim Tyleček and Radim Šára. 2013. Spatial pat-
tern templates for recognition of objects with regular
structure. In German Conference on Pattern Recog-
nition, pages 364–374. Springer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and
Eero P Simoncelli. 2004. Image quality assessment:
from error visibility to structural similarity. IEEE
transactions on image processing, 13(4):600–612.

Zi Wang, Bolei Zhou, and Stefanie Jegelka. 2016. Op-
timization as estimation with gaussian processes in
bandit settings. In Artificial Intelligence and Statis-
tics, pages 1022–1031.

Roman Zeyde, Michael Elad, and Matan Protter.
2010. On single image scale-up using sparse-
representations. In International conference on
curves and surfaces, pages 711–730. Springer.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. 2017. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Pro-
ceedings of the IEEE international conference on
computer vision, pages 2223–2232.

Supplementary Appendices3

A Motivation

Following Sec. 3 in the main text, Fig.5 presents
the gradients’ magnitude of the two learned param-
eters of the polynomial f(x) = ax + bx2 w.r.t.
the loss function. Fig.6 presents the FID scores
vs. epoch, for the different SRGAN experiments
described in the same section.

B Image synthesis

Fig. 7, depicts the test-performance of multiple
pix2pix models per epoch. The experiment’s name
contains ‘equal-weights’ for the case of equal loss
terms, and ‘prescribed’ when using the prescribed
λ values. As can be seen, MTAdam yields a similar
convergence as the Adam-prescribed, measured by
the L1 scores, and converges substantially better
than the Adam-equal-weights (we observe a similar
trend in the FID, as presented in the main text).

The pix2pix Hyperband experiments incorporate
40 trials (i.e. 40 training processes, which gives it
a great advantage), each trial randomly sampled a
different lambda from the range [10−4, 104]. We re-
port Hyperband performance, by utilizing the trial
that is associated with the chosen lambda. In the
aerial experiment, the Hyperband failed to choose
a λ2 value that is close to the original value of 1.
In the facade experiment, Hyperband sampled at
least one lambda value between 0.5 to 10, yet the
retrieved best model utilizes a higher lambda value
of 162.89, since this value showed a preferable FID

3Put here for the reader’s convenience.
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Figure 5: Training dynamics in a two neurons network,
learning the coefficients of a polynomial of the form
f(x) = ax + bx2, minimizing L1, L2 or L1 where
the gradients are scaled with the magnitudes of the
L2 gradients. The plot presents the gradients’ magni-
tude of the two parameters w.r.t. the loss function (i.e.
‖( ∂L1

∂W1
, ∂L1
∂W2

)‖2 and ‖( ∂L2
∂W1

, ∂L2
∂W2

)‖2 for the L1 and L2
experiments, respectively).

score on the validation set. In the maps dataset, a
value of 59.61 was selected.

Fig. 8 compares the convergence of three Cycle-
GAN models: unbalanced MTAdam, unbalanced
Adam, and balanced Adam. All models are ap-
plied on the horse2zebra dataset (Deng et al., 2009).
As can be seen, MTAdam exhibits a competitive
convergence to the Adam experiment applied with
balanced weighting, which is much better than the
performance of Adam on the unbalanced weights.

Fig. 9 presents a few representative samples from
the CycleGAN(Zhu et al., 2017) experiments, em-
ployed to transfer horse images to zebras. As can
be seen, the unbalanced Adam training completely
fails to generate zebras images and collapses to
the identity mapping. This can be attributed to the
domination of cyclic loss in the unbalanced settings,
which dictates the convergence, leaveing the other
loss terms ineffective. On the other hand, the un-
balanced MTAdam model was able to successfully
generate zebra images, in a quality that is simi-
lar or better to the balanced adam model (which
uses the prescribed weights). In particular, in the
first row, we can see that CycleGAN-Unbalanced-
MTAdam was able to outperform the CycleGAN-
Balanced-Adam experiment, as the latter fails to
generate a zebra image for this particular sample,
while MTAdam was able to generate a fairly good
quality image.

Fig. 10 depicts a few samples from the same
models described above, this time employed to
generate horse images from zebra images. As can

be seen, the unbalanced Adam fails again to gener-
ate horse images, collapses to the identity mapping,
and this time also introduces visual artifacts in a
few images (see the green artifact in the bottom
row). In addition, MTAdam yields images of the
same quality as the balanced Adam experiment.

Fig. 11 presents visual results for the SRGAN
(Ledig et al., 2017a) experiments. The images were
taken from Set14 (Zeyde et al., 2010). All models
were trained to generate high-resolution images
from low-resolution images, with a factor of 4x
upscaling. As can be seen, the SRGAN model that
employs unbalanced weights and Adam optimizer
yields images with visual artifacts, and low fidelity.
This can be attributed to the domination of the
GAN and perceptual loss terms over the pixel-wise
term. In contrast, the SRGAN model that employs
our MTAdam optimizer with unbalanced weights
yields images of the same quality as the SRGAN
that utilizes the prescribed weights (Ledig et al.,
2017a) and Adam.
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(a) (b)

Figure 6: We train a superresolution image mapping technique using two out of three loss terms: MSE, GAN, and
perceptual loss. (a) the GAN loss is well balanced and we obtain effective training when combining it with the
MSE loss. However, the weight of the perceptual loss was naively set to 1, which is about two orders of magnitude
larger than the optimal value for combining it with the MSE loss. This leads to poor SSIM scores (shown in the
main text) and FID scores (shown in this figure). However, when scaling the perceptual loss gradients by the
magnitude of the gradients of the GAN loss, the perceptual loss supports the MSE loss. (b) same, where the roles
of the perceptual loss and the GAN loss are reversed.

Figure 7: L1 per epoch on the validation set of Facade
for three pix2pix variants. Adam-prescribed and Adam-
equal-weights employ the Adam optimizer with a loss
combination that utilizes the prescribed weights and
equal weights, respectively. MTAdam-equal-weights
utilizes MTAdam with equal weights between losses.
See the main text for the analog FID plot.
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Figure 8: The L1 (left) and FID (right) metrics evaluated per epoch CycleGAN models trained on the horse2zebra
dataset (Deng et al., 2009). (top) generated zebra images. (bottom) generated horse images.
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Figure 9: Samples from the CycleGAN experiments employed on the zebra2horse dataset, mapping horse
images to zebras. CycleGAN-Balanced-Adam employs CycleGAN with the prescribed weights (Zhu et al.,
2017). CycleGAN-Unbalanced-Adam runs with unbalanced initial weights, which fails to generate zebra images.
CycleGAN-Unbalanced-MTAdam (our method) starts with unbalanced weights but produces images of the same
quality as CycleGAN-Balanced-Adam.
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Figure 10: Samples from the CycleGAN experiments employed on the zebra2horse dataset, mapping zebra im-
ages to horses. CycleGAN-Balanced-Adam employs CycleGAN with the prescribed weights (Zhu et al., 2017).
CycleGAN-Unbalanced-Adam runs with unbalanced initial weights, fails to generate horse images, collapses to
identity mapping, and introduces visual artifacts. CycleGAN-Unbalanced-MTAdam (our method) starts with un-
balanced weights but produces images of the same quality as CycleGAN-Balanced-Adam.
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Figure 11: Samples from the test set of the SRGAN(Ledig et al., 2017a) experiments. Images were taken
from Set14(Zeyde et al., 2010). SRGAN-Unbalaced-Adam employs SRGAN training with the unbalanced initial
weights, as described in the main text. SRGAN-Balanced-Adam employs SRGAN with the prescribed weights.
SRGAN-Unbalanced-MTAdam utilizes our proposed MTAdam optimizer, runs with unbalanced initial weights
but produces images of the same quality of SRGAN-Balanced-Adam.

Figure 12: Samples from the Facade test set. Adam-prescribed employs pix2pix with the prescribed weights (Isola
et al., 2017). Adam-equal-weights runs with equal initial weights, which leads to visual artifacts and low fidelity
(see the top right patch). MTAdam-equal-weights (our method) starts with equal weighting but produces images
of the same quality as Adam-prescribed.
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(a) (b) (c) (d) (e)

Figure 13: CycleGAN results for mapping (a) real maps to fake images in the aerial photos domain for (b) Adam
with suboptimal weights, (c) MTAdam with suboptimal weights, and (d) Adam with the prescribed weights. (e)
the ground truth.


