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Abstract
Recent studies on compression of pretrained
language models (e.g., BERT) usually use pre-
served accuracy as the metric for evaluation.
In this paper, we propose two new metrics, la-
bel loyalty and probability loyalty that mea-
sure how closely a compressed model (i.e., stu-
dent) mimics the original model (i.e., teacher).
We also explore the effect of compression with
regard to robustness under adversarial attacks.
We benchmark quantization, pruning, knowl-
edge distillation and progressive module re-
placing with loyalty and robustness. By com-
bining multiple compression techniques, we
provide a practical strategy to achieve better
accuracy, loyalty and robustness.1

1 Introduction

Recently, many large pretrained language models
(PLMs, Devlin et al., 2019; Liu et al., 2019; Yang
et al., 2019; Shoeybi et al., 2019; Raffel et al.,
2020) have been proposed for a variety of Natu-
ral Language Processing (NLP) tasks. However, as
pointed out in recent studies (Strubell et al., 2019;
Schwartz et al., 2020a; Bender et al., 2021), these
models suffer from computational inefficiency and
high ecological cost. Many attempts have been
made to address this problem, including quantiza-
tion (Zafrir et al., 2019; Shen et al., 2020), prun-
ing (Michel et al., 2019; Sanh et al., 2020), knowl-
edge distillation (KD) (Sanh et al., 2019; Sun et al.,
2019, 2020; Turc et al., 2019; Jiao et al., 2020;
Wang et al., 2020; Zhou et al., 2021) and progres-
sive module replacing (Xu et al., 2020).

BERT (Devlin et al., 2019) is a representative
PLM. Many works compressing BERT use pre-
served accuracy with computational complexity
(e.g., speed-up ratio, FLOPS, number of param-
eters) as metrics to evaluate compression. This
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1Our code is available at https://github.com/
JetRunner/beyond-preserved-accuracy.
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Figure 1: Three metrics to evaluate the compressed
models beyond preserved accuracy. For each input, la-
bel and probability loyalty measure the shift of label
and predicted probability distribution, respectively. Ro-
bustness measures the performance of the compressed
model under adversarial attacks.

evaluation scheme is far from perfect: (1) Pre-
served accuracy cannot reflect how alike the teacher
and student2 models behave. This can be prob-
lematic when applying compression techniques in
production (to be detailed in Section 3). (2) Us-
ing preserved accuracy to evaluate models com-
pressed with more data or data augmentation (Jiao
et al., 2020) can be misleading, since one cannot
tell whether the improvement should be attributed
to the innovation of the compression technique or
addition of data. (3) Model robustness, which is
critical for production, is often missing from evalu-
ation, leaving a possible safety risk.

As illustrated in Figure 1, to measure the resem-
blance between the student and teacher models,
we propose label loyalty and probability loyalty
to target different but important aspects. We also
explore the robustness of the compressed models

2Teacher and student are originally concepts in knowledge
distillation. In this paper, we will sometimes use teacher and
student to refer to the original model and compressed model
in other compression methods for simplicity.

https://github.com/JetRunner/beyond-preserved-accuracy.
https://github.com/JetRunner/beyond-preserved-accuracy.
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by conducting black-box adversarial attacks. We
apply representative BERT compression methods
of different types to the same teacher model and
benchmark their performance in terms of accuracy,
speed, loyalty and robustness. We find that meth-
ods with a knowledge distillation loss perform well
on loyalty and that post-training quantization can
drastically improve robustness against adversar-
ial attacks. We use the conclusions drawn from
these experiments to combine multiple techniques
together and achieve significant improvement in
terms of accuracy, loyalty and robustness.

2 BERT Compression

Compressing and accelerating pretrained language
models like BERT has been an active field of re-
search. Some initial work employs conventional
methods for neural network compression to com-
press BERT. For example, Q8-BERT (Zafrir et al.,
2019) and Q-BERT (Shen et al., 2020) employ
weight quantization to reduce the number of bits
used to represent a parameter in a BERT model.
Pruning methods like Head Prune (Michel et al.,
2019) and Movement Pruning (Sanh et al., 2020)
remove weights based on their importance to re-
duce the memory footprint of pretrained models.
Another line of research focuses on exploiting the
knowledge encoded in a large pretrained model to
improve the training of more compact models. For
instance, DistilBERT (Sanh et al., 2019) and BERT-
PKD (Sun et al., 2019) employ knowledge distilla-
tion (Hinton et al., 2015) to train compact BERT
models in a task-specific and task-agnostic fashion
respectively by mimicking the behavior of large
teacher models. Recently, Xu et al. (2020) pro-
posed progressive module replacing, which trains a
compact student model by progressively replacing
the teacher layers with their more compact substi-
tutes.

3 Metrics Beyond Accuracy

3.1 Loyalty
3.1.1 Label Loyalty
Model compression is a common practice to
optimize the efficiency of a model for deploy-
ment (Cheng et al., 2017). In real-world settings,
training and deployment are often separate (Paleyes
et al., 2020). As such it is desirable to have a metric
to measure to what extent the “production model”
is different from the “development model”. More-
over, when discussing ethical concerns, previous

studies (Wang et al., 2020; Zhou et al., 2020) ignore
the risk that model compression could introduce
additional biases. However, a recent work (Hooker
et al., 2020) strongly contradicts this assumption.
In a nutshell, we would desire the student to be-
have as closely as possible to the teacher, to make
it more predictable and minimize the risk of intro-
ducing extra bias. Label loyalty directly reflects
the resemblance of the labels predicted between the
teacher and student models. It is calculated in the
same way as accuracy, but between the student’s
prediction and the teacher’s prediction, instead of
ground labels:

Ll = Accuracy(pred t, preds) (1)

where pred t and preds are the predictions of the
teacher and student, respectively.

3.1.2 Probability Loyalty
Except for the label correspondence, we argue that
the predicted probability distribution matters as
well. In industrial applications, calibration (Guo
et al., 2017; Li et al., 2020), which focuses on the
meaningfulness of confidence, is an important issue
for deployment. Many dynamic inference acceler-
ation methods (Xin et al., 2020b; Schwartz et al.,
2020b; Liu et al., 2020; Xin et al., 2020a; Li et al.,
2020) use entropy or the maximum value of the
predicted probability distribution as the signal for
early exiting. Thus, a shift of predicted probability
distribution in a compressed model could break the
calibration and invalidate calibrated early exiting
pipelines.

Kullback–Leibler (KL) divergence is often used
to measure how one probability distribution is dif-
ferent from a reference distribution.

DKL(P‖Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(2)

where X is the probability space; P and Q are
predicted probability distributions of the teacher
and students, respectively. Here, we use its variant,
the Jensen–Shannon (JS) divergence, since it is
symmetric and always has a finite value which is
desirable for a distance-like metric:

DJS(P‖Q) =
1

2
DKL(P‖M) +

1

2
DKL(Q‖M)

(3)
where M = 1

2(P + Q). Finally, the probability
loyalty between P and Q is defined as:

Lp(P‖Q) = 1−
√
DJS(P‖Q) (4)
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Method # Layer
Speed MNLI Loyalty Adversarial Attack
-up ↑ m/mm ↑ Label ↑ Probability ↑ Acc ↑ #Query ↑

Teacher (Devlin et al., 2019) 12 1.0× 84.5 / 83.3 100 100 8.1(±0.1) 89.6(±0.1)
Truncate & Finetune 6 2.0× 81.1 / 80.0 87.7(±0.2) 84.9(±0.7) 4.4(±0.1) 78.0(±0.1)
Pure KD 6 2.0× 81.1 / 80.8 89.2(±0.1) 89.5(±0.2) 6.2(±0.1) 80.1(±0.2)

Q8-PTQ (Zafrir et al., 2019) 12 1.8×‡ 80.7 / 80.4 89.6(±0.5) 80.8(±0.4) 40.2(±0.1) 91.6(±0.1)
Q8-QAT† (Zafrir et al., 2019) 12 1.8×‡ 83.4 / 82.4 89.7(±0.2) 88.2(±0.3) 6.8(±0.2) 82.7(±0.2)

Head Prune (Michel et al., 2019) 12 1.2× 80.9 / 80.6 87.8(±0.1) 85.5(±0.6) 9.1(±0.1) 90.5(±0.2)

DistilBERT† (Sanh et al., 2019) 6 2.0× 82.4 / 81.4 88.9(±0.2) 88.4(±0.4) 5.9(±0.1) 80.8(±0.2)
TinyBERT† (Jiao et al., 2020) 6 2.0× 82.7 / 82.7 88.9(±0.1) 88.4(±0.7) 6.7(±0.1) 82.1(±0.2)

BERT-PKD (Sun et al., 2019) 6 2.0× 81.3 / 81.1 88.9(±0.1) 89.0(±0.2) 6.4(±0.2) 81.9(±0.2)

BERT-of-Theseus (Xu et al., 2020) 6 2.0× 81.8 / 80.7 88.1(±0.2) 82.5(±0.3) 8.3(±0.2) 89.7(±0.2)

Table 1: Accuracy, loyalty and robustness of compressed models on the test set of MNLI (3 runs). Accuracy scores
are from the GLUE (Wang et al., 2019) test server. †These models are not initialized from (a part of) the finetuned
BERT teacher. ‡The speed-up ratio of quantization is benchmarked on CPU. ↑Higher is better.

where Lp ∈ [0, 1]; higher Lp represents higher
resemblance. Note that Equation 2 is also known
as the KD loss (Hinton et al., 2015), thus KD-based
methods will naturally have an advantage in terms
of probability loyalty.

3.2 Robustness

Deep Learning models have been shown to be vul-
nerable to adversarial examples that are slightly al-
tered with perturbations often indistinguishable to
humans (Kurakin et al., 2017). Previous work (Su
et al., 2018) found that small convolutional neural
networks (CNN) are more vulnerable to adversar-
ial attacks compared to bigger ones. Likewise, we
intend to investigate how BERT models perform
and the effect of different types of compression in
terms of robustness. We use an off-the-shelf adver-
sarial attack method, TextFooler (Jin et al., 2020),
which demonstrates state-of-the-art performance
on attacking BERT. TextFooler conducts black-box
attacks by querying the BERT model with the ad-
versarial input where words are perturbed based
on their part-of-speech role. We select two metrics
from (Jin et al., 2020), after-attack accuracy and
query number, to evaluate a model’s robustness.
After-attack accuracy represents the remaining ac-
curacy after the adversarial attack. Query number
represents how many queries with perturbed input
have been made to complete the attack.

4 Experiments

4.1 Dataset and Baselines

We use the Multi-Genre Natural Language Infer-
ence dataset (MNLI) (Williams et al., 2018) for

evaluation. The accuracy scores are from the
GLUE benchmark (Wang et al., 2019) test server.
We select representative methods of different types
of compression methods: Head Prune (Michel
et al., 2019) for pruning; Post-training Quanti-
zation (PTQ) and Quantization-aware Training
(QAT) (Zafrir et al., 2019) for quantization; Distil-
BERT (Sanh et al., 2019) and TinyBERT (Jiao et al.,
2020) for pretraining-phase knowledge distillation;
BERT-PKD (Sun et al., 2019) for downstream
knowledge distillation; and BERT-of-Theseus (Xu
et al., 2020) for module replacing. Following Sun
et al. (2019); Xu et al. (2020), we truncate the first
(bottom) 6 layers and then finetune it as a baseline
for 6-layer models. Additionally, we directly opti-
mize the KL divergence (i.e., pure KD loss) to set
an upper bound for probability loyalty.

4.2 Training Details

Our implementation is based on Hugging Face
Transformers (Wolf et al., 2020). We first fine-
tune a BERT-base model to be the teacher for KD
and the source model for quantization and pruning.
The learning rate is set to 3× 10−5 and the batch
size is 64 with 1,000 warm-up steps. For quanti-
zation and pruning, the source model is the same
finetuned teacher. For downstream KD and BERT-
of-Theseus, we initialize the model by truncating
the first (bottom) 6 layers of the finetuned teacher,
following the original papers (Sun et al., 2019; Xu
et al., 2020). QAT uses pretrained BERT-base for
initialization. For pretraining distillation, we di-
rectly finetune compressed 6-layer DistilBERT and
TinyBERT checkpoints to report results. The prun-
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ing percentage for Head Prune is 45%. The hy-
perparameters of BERT-PKD are from the original
implementation. The detailed hyperparameters for
each method can be found in Appendix A.

4.3 Experimental Results

We show experimental results in Table 1. First,
we find that post-training quantization can drasti-
cally improve model robustness. A possible ex-
planation is that the regularization effect of post-
training quantization (Paupamah et al., 2020; Wu
and Flierl, 2020) helps improve the robustness of
the model (Werpachowski et al., 2019; Ma et al.,
2020). A similar but smaller effect can be found
from pruning. However, as shown in Table 2, if we
finetune the low-precision or pruned model again,
the model would re-overfit the data and yield even
lower robustness than the original model. Second,
KD-based models maintains good label loyalty
and probability loyalty due to their optimization
objectives. Interestingly, compared to Pure KD
where we directly optimize the KL divergence, Dis-
tilBERT, TinyBERT and BERT-PKD trade some
loyalty in exchange for accuracy. Compared to
DistilBERT, TinyBERT digs up higher accuracy
by introducing layer-to-layer distillation, with their
loyalty remains identical. Also, we do not observe
a significant difference between pretraining KD
and downstream KD in terms of both loyalty and
robustness (p > 0.1). Notably, BERT-of-Theseus
has a significantly lower loyalty, suggesting the
mechanism behind it is different from KD. We also
provide some results on SST-2 (Socher et al., 2013)
in Appendix B.

5 Combining the Bag of Tricks

As we described in Section 4.3, we discover that
post-training quantization (PTQ) can improve the
robustness of a model while knowledge distilla-
tion (KD) loss benefits the loyalty of a compressed
model. Thus, by combining multiple compression
techniques, we expect to achieve a higher speed-up
ratio with improved accuracy, loyalty and robust-
ness.

To combine KD with other methods, we replace
the original cross-entropy loss in quantization-
aware training and module replacing with the
knowledge distillation loss (Hinton et al., 2015)
as in Equation 2. For pruning, we perform knowl-
edge distillation on the pruned model. We also
apply the temperature re-scaling trick from (Hinton

Method Speed MNLI L-L P-L AA # Q

Teacher 1.0× 84.5 / 83.3 100 100 8.1 89.6

Head Prune 1.2× 80.9 / 80.6 87.8 85.5 9.1 90.5
+Finetune 1.2× 83.2 / 81.9 89.1 85.5 7.2 83.2
+KD 1.2× 84.2 / 83.0 93.3 93.0 8.3 90.5
+KD+PTQ 2.2× 80.8 / 80.4 89.6 86.3 38.4 90.9

Q8-QAT 1.8× 83.4 / 82.4 89.7 88.2 6.8 82.7
Q8-PTQ 1.8× 80.7 / 80.4 89.6 80.8 40.2 91.6
+Finetune 1.8× 82.9 / 81.9 89.7 84.8 7.1 84.5
+KD 1.8× 84.1 / 83.5 94.0 93.9 7.5 86.1

BERT-PKD 2.0× 81.3 / 81.1 88.9 89.0 6.4 81.9
Theseus 2.0× 81.8 / 80.7 88.1 82.5 8.3 89.7
+KD 2.0× 82.6 / 81.7 91.2 91.4 8.0 88.7
+KD+PTQ 3.6× 80.2 / 79.9 89.5 80.3 36.5 91.3

Table 2: Accuracy and loyalty for combining multiple
compression techniques on the test set of MNLI. L-L:
label loyalty; P-L: probability loyalty; AA: after-attack
accuracy; # Q: Query number for adversarial attack.
The number of layers for each group is consistent with
Table 1.

et al., 2015) with a fixed temperature of 10. As
shown in Table 2, the knowledge distillation loss
effectively improves the accuracy and loyalty of
pruning, quantization and module replacing.

Furthermore, we post-quantize the KD-enhanced
models after they are trained. Shown in Table 2,
by adding post-training quantization, the speed and
robustness can both be boosted. Notably, the or-
der to apply PTQ and KD does matter. PTQ→KD
has high accuracy and loyalty but poor robustness
while KD→PTQ remains a good robustness with
a lower accuracy performance. To summarize, we
recommend the following compression strategy:
(1) conduct pruning or module replacing with a
KD loss; (2) for speed-sensitive and robustness-
sensitive applications, apply post-training quantiza-
tion afterwards.

6 Conclusion

In this paper, we propose label and probability loy-
alty to measure the correspondence of label and
predicted probability distribution between com-
pressed and original models. In addition to loyalty,
we investigate the robustness of different compres-
sion techniques under adversarial attacks. These
metrics reveal that post-training quantization and
knowledge distillation can drastically improve ro-
bustness and loyalty, respectively. By combining
multiple compression methods, we can further im-
prove speed, accuracy, loyalty and robustness for
various applications. Our metrics help mitigate the
gap between model training and deployment, shed
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light upon comprehensive evaluation for compres-
sion of pretrained language models, and call for the
invention of new compression techniques.

Ethical Concerns

We include a discussion about the possible ethi-
cal risks of a compressed model in Section 3.1.
Although our paper is an attempt to mitigate the
risk of introducing extra biases to compression,
we would like to point out that our metrics do not
directly indicate the bias level in the compressed
model. That is to say, additional measures should
still be taken to evaluate and debias both the teacher
and student models.
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A Hyperparameter Settings

Teacher Learning rate: 3e-5; Batch size: 64;
Warm-up steps: 1000.

Truncate & Finetune Learning rate: 3e-5;
Batch size: 128.

Pure KD Learning rate: 3e-5; Batch size: 64;
Warm-up steps: 1000; α: 1; Temperature: 10.

Q8-QAT Learning rate: 2e-5; Batch size: 128.

DistilBERT Learning rate: 3e-5; Batch size: 64;
Warm-up steps: 1000.

TinyBERT Learning rate: 3e-5; Batch size: 64;
Warm-up steps: 1000.

BERT-PKD Learning rate: 3e-5; Batch size: 64;
Warm-up steps: 1000; α: 0.7; β: 500; Temperature:
10.

BERT-of-Theseus Learning rate: 3e-5; Batch
size: 128; Warm-up steps: 8000; k: 0.00002; b:
0.5.

Head Prune + Finetune Learning rate: 2e-5;
Batch size: 128.

Head Prune + KD Learning rate: 2e-5; Batch
size: 128; Temperature: 10.

Q8 + FT Learning rate: 2e-5; Batch size: 128.

Q8 + KD Learning rate: 2e-5; Batch size: 128;
Temperature: 10.

BERT-of-Theseus + KD Learning rate: 3e-5;
Batch size: 64; Warm-up steps: 1000; Temperature:
10.

B Experimental Results on SST-2

Method Speed SST-2 L-L P-L AA # Q

Teacher 1.0× 92.0 100 100 7.5 81.2

KD 2.0× 91.5 93.8 92.4 7.2 80.3

Head Prune 1.3× 90.4 89.5 88.2 8.1 81.0

Q8-QAT 1.8× 91.4 91.8 90.3 6.6 81.4
Q8-PTQ 1.8× 90.1 91.3 88.9 26.5 86.4

Table 3: Accuracy and loyalty of some compression
techniques on the test set of SST-2. L-L: label loy-
alty; P-L: probability loyalty; AA: after-attack accu-
racy; # Q: Query number for adversarial attack. The
number of layers for each group is consistent with Ta-
ble 1.


