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Abstract
Automatic construction of relevant Knowl-
edge Bases (KBs) from text, and generation
of semantically meaningful text from KBs are
both long-standing goals in Machine Learning.
In this paper, we present ReGen, a bidirec-
tional generation of text and graph leveraging
Reinforcement Learning (RL) to improve per-
formance. Graph linearization enables us to
re-frame both tasks as a sequence to sequence
generation problem regardless of the genera-
tive direction, which in turn allows the use
of Reinforcement Learning for sequence train-
ing where the model itself is employed as its
own critic leading to Self-Critical Sequence
Training (SCST). We present an extensive in-
vestigation demonstrating that the use of RL
via SCST benefits graph and text generation
on WebNLG+ 2020 and TEKGEN datasets.
Our system provides state-of-the-art results
on WebNLG+ 2020 by significantly improv-
ing upon published results from the WebNLG
2020+ Challenge for both text-to-graph and
graph-to-text generation tasks. More details in
https://github.com/IBM/regen.

1 Introduction

Graph representation of knowledge is a power-
ful tool to capture real-world information where
complex relationships between node entities can
be efficiently encoded. Automatic generation of
Knowledge Bases (KBs) from free-form text and its
counterpart of generating semantically relevant text
from KBs are both active and challenging research
topics.

Recently, there has been an increased interest
in leveraging Pretrained Language Models (PLMs)
to improve performance for text generation from
graph, or graph-to-text (G2T) task (Ribeiro et al.,
2020). Indeed, large PLMs like T5 (Raffel et al.,
2020) and BART (Lewis et al., 2020) that have been
pretrained on vast amount of diverse and variedly
structured data, are particularly good candidates
for generating natural looking text from graph data.

BART- and T5-related models have been em-
ployed by top performers in public challenges such
as the WebNLG+ 2020 Challenge (Castro Ferreira
et al., 2020b) where both graph-to-text and text-
to-graph (T2G) tasks are offered, under the names
RDF-to-Text and Text-to-RDF (semantic parsing)
respectively; RDF stands for Resource Descrip-
tion Framework, a standard for describing web re-
sources. One can notice that more teams entered
the competition for the G2T task than for T2G as
the latter is a much harder task. Best models gen-
erally use PLMs and fine-tune them for the target
modality at hand (either graph or text). This is pos-
sible by re-framing the T2G and G2T generations
as a sequence to sequence (Seq2Seq) generation
problem, which suits fine-tuning PLMs well. One
can therefore hope to leverage the large pretraining
of PLMs to improve the overall generation quality.

The Seq2Seq formulation requires any input
graph to be linearized as a sequence, which is not
unique. This creates an opportunity for data aug-
mentation where multiple linearizations are pro-
vided to the model at training time so the model
learns the content represented by the graph, not the
order of its sequential representation.

In this work, we are interested in leveraging the
power of PLMs for both G2T and T2G generation
tasks, and will demonstrate the strength of our ap-
proach by improving upon the best results of the
WebNLG+ 2020 Challenge (rev 3.0) as reported
by Castro Ferreira et al. (2020a) for both T2G (Se-
mantic Parsing) and G2T (Data-to-Text) tasks. We
will also present results for the TEKGEN Corpus
(Agarwal et al., 2021) to show performance on a
different, much larger dataset. To illustrate the task
of generation, Fig. 1 provides examples of G2T
and T2G outputs obtained using the proposed gen-
eration framework. The first two sentences of the
abstract of this paper were used as input for T2G
using our best model. The model generates a graph
from the input text by simultaneously extracting

https://github.com/IBM/regen
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Figure 1: Actual examples of generation for Text-to-Graph and Graph-to-Text tasks using our best RL models. The
first two sentences of the abstract were processed through our best models. First, a graph was created capturing
the facts from the input sentences. Then, this graph was used as input to generate text. Despite a strong domain
mismatch between input data and models, the generated paragraph is capturing most of the original sentences
content. Both models were trained using RL, specifically Self-Critical Sequence Training (SCST).

relevant nodes and linking them coherently. For
the G2T task, another model starts from the gen-
erated graph and generates semantically relevant
text from it. As one can appreciate, the final text
is quite readable and captures most facts from the
original abstract sentences despite a strong domain
mismatch between input data and training data,
which both models were built on.

Since both T2G and G2T generative tasks can
be formulated as a Seq2Seq problem, we propose
to use Reinforcement Learning (RL) as part of the
PLMs fine-tuning on the target domain data. For
both G2T and T2G tasks, a differentiable func-
tion such as the cross-entropy (CE) loss function
is often used, since minimizing it results in max-
imizing the probability of generating the correct
token/word. However, when it comes to evaluat-
ing a model’s performance, benchmarks often use
BLEU (Pa Pa Aung et al., 2020), METEOR (Lavie
and Agarwal, 2007), and chrF++ (Popović, 2017)
for G2T, or simply F1, Precision, and Recall scores
for T2G, none of which being differentiable. Dur-
ing training, one hopes that by minimizing the CE
loss, the model will tend towards better prediction
of the target tokens, hence improving on evaluation
metrics as a beneficial by-product. Thankfully, RL
provides a framework where we can update our
model parameters so to improve evaluation metrics
directly. Mixed Incremental Cross-Entropy Rein-
force from Ranzato et al. (2016) introduced using
REINFORCE (Williams, 1992) for sequence train-
ing. We propose to use one of its variant known as
Self-Critical Sequence Training (SCST) (Rennie
et al., 2017) for both T2G and G2T training.

In summary, our main contributions are:
• We propose to use RL-based sequence training,
specifically SCST, for both G2T and T2G tasks.
This is the first time that RL based training is pro-
posed to the bi-directional generation of text and

graph. To the best of our knowledge, the present
work is the first time it is introduced for a T2G task.
•We demonstrate that our approach provides better
performance than the best systems reported for the
WebNLG 2020+ Challenge.
• We provide a thorough investigation of SCST-
based training for both T2G and G2T tasks, includ-
ing best rewards combination.
•We constructed subject and relation-object bound-
aries from TEKGEN sentence-triples pairs and
showed performance of our approach for both T2G
and G2T tasks.
• We adapted the large-scale TEKGEN corpus
(Agarwal et al., 2021) for T2G and G2T tasks and
confirmed the benefit of SCST-based fine-tuning
approach over CE-trained baselines.

2 Related work

In the WebNLG+ 2020 Challenge, most top per-
forming models relied on fine-tuning of PLMs. In-
terestingly, all four top teams in this Challenge
proposed quite different approaches while leverag-
ing PLMs. 1st place Amazon AI (Guo et al., 2020a)
pipelined a relational graph convolutional network
(R-GCN) and a T5 PLM with some canonicaliza-
tion rules. 2nd place OSU Neural NLG (Li et al.,
2020), the closest to our approach in spirit, used T5
and mBART PLMs to fine-tune after special data
preprocessing. 3rd place FBConvAI (Yang et al.,
2020) used BART PLM and multiple strategies to
model input RDFs. 4th place bt5 employed a T5
PLM trained in a bi-lingual approach on English
and Russian, even using WMT English/Russian
parallel corpus.

Recently, Dognin et al. (2020); Guo et al. (2020b,
2021) proposed models trained to generate in both
T2G and G2T directions, with consistency cycles
created to enable the use of unsupervised datasets.
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In contrast, our approach of fine-tuning a T5 PLM
is fully supervised but can produce either the spe-
cialized models for T2G and G2T tasks alone, or
a hybrid model that can handle both T/G inputs
simultaneously to generate the corresponding trans-
lated G/T outputs.

Note that in contrast to many WebNLG+ 2020
Challenge participants, e.g. Li et al. (2020), no pre-
processing of the data is performed for text, while
for graph triples, we add tokens to mark subject,
predicate, and object positions in their linearized
sequence representation. Moreover, data augmenta-
tion is performed by allowing random shuffling of
triples order in graph linearization to avoid a model
to learn the exact order of triples, especially for the
T2G task.

While the use of RL training in PLM has been
explored in many works, the approach of Chen
et al. (2020) is closest to ours. However, their
work focuses on the improved text generation in
the context of natural question generation, while
in our algorithm we use it for graph-to-text and
text-to-graph generations.

3 Models

Models are trained on a dataset D composed of
a set of (xT, xG)

i samples, where superscript i
denotes the i-th sample in D, xT is made of
text (one or more sentences), and xG is a cor-
responding graph represented as a list of triples
xG = [(s1, p1, o1), . . . , (sK , pK , oK)], where the
k-th triple is composed of a subject sk, predicate
(relationship) pk, and object ok. For G2T, the
model is given xG as input and must generate x̂T. A
cross-entropy loss is computed as an expectation:

LT
CE = E

xT∼D

[
log pG2T

θ (xT)
]
, (1)

where pG2T
θ (xT) is the distribution of the generated

sequence x̂T = TG2T(xG), TG2T(.) being the trans-
formation from graph to text. Our model is param-
eterized by θ, and xT is effectively sampled from
the marginal distribution of text samples from D.
x̂T = [ŵ1, ŵ2, . . . , ŵT ] is a sequence of generated
tokens/words. Similarly, for training a T2G model,
the cross-entropy loss used in training is simply

LG
CE = E

xG∼D

[
log pT2G

θ (xG)
]
, (2)

where pT2G
θ (xG) is the distribution of the generated

graph x̂G = TT2G(xT), TT2G(.) being the transfor-
mation from text to graph, and where xG is drawn

from the marginal distribution of graph samples
from D.

In both Eq. (1) and Eq. (2), xG must be ex-
pressed as a sequence of tokens tj such that
a list of triples xG turns into a list of tokens
[t1, t2, · · · , tM ]. This is simply done by adding
tokens marking the subject, predicate, and ob-
ject boundaries in the sequence such that each
triple (sk, pk, ok) is turned into a sequence such as
[<S>, ws1, <P>, wp1, w

p
2, <O>, wo1, w

o
2, w

o
3], assum-

ing our subject is made of 1 token, our predicate of
2 tokens, and our object of 3 tokens in this example.
<S>,<P>, and <O> are just special marker tokens
to help the model know where subject, predicate
and objects are located in the sequence.

We start from a pretrained encoder-decoderM
model that we fine-tune on either T2G to getMT,
or G2T task to getMG. We also propose a third
kind of modelMT+G to be fine-tuned on both T2G
and G2T samples, i.e. the model will learn to gen-
erate in any direction, by supplying an input sam-
ple x = [xT;xG]

> and corresponding target for it.
Input from each modality is prefixed by a task spe-
cific string to distinguish transfer directions ("Text
to Graph:" for xT and "Graph to Text:" for xG).
ForMT+G models, the cross-entropy loss is sim-
ilarly defined as for Eq. (1) and Eq. (2) such that
LT+G

CE = E
x∼D

[ log pθ(x)]. All models are shown

in Fig. 2. By convention, we refer to models in this
paper by their input modality T, G, or T+G.

3.1 Reinforcement Learning

Sequence generation can be seen as an agent mak-
ing sequential decisions of picking words from
a given vocabulary. The agent reacts to its envi-
ronment by accounting for past predictions and
getting rewarded along the way, while its state
is defined by the partial sequence generated so
far. This interpretation enables the reformulation
of Seq2Seq generation within the Reinforcement
Learning (RL) framework (Sutton and Barto, 2018;
Silver, 2015). More precisely, a sequence gen-
eration task can be recast as a Markov Decision
Process (MDP) where the agent behavior follows a
policy π(at|st). Action at corresponds to picking
a particular word wt at time t from a vocabulary
V , conditioned on state st expressed as the par-
tial sequence generation st = x̂1:t = [ŵ1, . . . , ŵt],
that is sequence of words/tokens already picked.
π(at|st) is a stochastic policy that defines a proba-
bility distribution of at. Once the action at is taken,
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Notations:
x.t: text
x.g: graph

Figure 2: Specialized and hybrid models rely on the same losses for fine-tuning. However, specialized models are
dedicated to a particular generation task while hybrid models can handle both generation directions.

the agent receives a reward rt = r(st, at) before
it transitions to the next state st+1. A sequence
of actions a1:T = [a1, . . . , aT ] is selected until the
end of generation is reached. The agent aims at
maximizing the expectation of cumulative reward

J(π) = Eτ

[
T∑

t=1

γtrt

]
= Eτ [R(τ)] (3)

where γ is a discounting factor used to control the
horizon of the cumulative reward, γ ∈ [0, 1]. The
expectation is taken over trajectories τ , sequences
made of {s1, a1, r1, . . . , sT , aT , rT }, where at was
chosen from policy π(at|st). RL provides both
on-policy and off-policy approaches to maximize
J(π) in Eq. (3). We are particularly interested in
on-policy techniques that rely on data samples gen-
erated from the model to train, especially since our
models start from large fine-tuned PLMs that can
already generate good samples. This helps avoid
the common drawback of on-policy techniques
of generating poor samples at first when trained
from scratch. These policy-based (Williams, 1992;
Zaremba and Sutskever, 2016) and actor-critic
based techniques (Bahdanau et al., 2017; Rennie
et al., 2017) have been studied for text generation
and often update the underlying model with policy
gradient (Ranzato et al., 2016; Li et al., 2016; Tan
et al., 2019; Paulus et al., 2017). Policy-based meth-
ods focus on a parameterized policy πθ where θ is
optimized to maximize J(πθ). The policy πθ(at|st)
is the PLM generative model pθ, CE fine-tuned as
described at the beginning of Section 3.

REINFORCE, presented by Williams (1992), al-
lows the optimization of a model’s parameters θ
by maximizing the expected value of the word-
based reward Rw(x̂T) of generated sequence x̂T =
[ŵ1, . . . , ŵT ]. For notation convenience, note that
Rw(x̂T) = R(τ) since we are now dealing with
sequence of words/tokens x̂T selected by the ac-
tions in trajectory τ . We will also use the R(x̂T)

notation for simplicity. In order to match common
Deep Learning conventions, we can minimize a
loss expressed as the negative value of the expected
cumulative reward:

LRL =
∑

[ŵ1,...,ŵT ]

pθ(ŵ1, . . . , ŵT )Rw(ŵ1, . . . , ŵT )

= E[ŵ1,...,ŵT ]∼pθRw(ŵ1, . . . , ŵT ),

= Ex̂T∼pθRw(x̂T). (4)

Rw(x̂T) is the reward for the generated text which
is often associated with non-differentiable metrics
such as BLEU, METEOR, chrF, etc. Note that in
sequence generation, these metrics-based rewards
are available only once a whole sequence is gen-
erated, trading sparsity/delay of reward for quality
(i.e. we use the full sequence reward, not an esti-
mation of partial future reward). We circumvent
the non-differentiability issue by using the REIN-
FORCE policy gradient method:

∇θLRL ∝ (R(x̂T) b)∇θ log pθ(x̂T), (5)

where b is a baseline used to reduce the variance of
our gradient estimate. b can be any function, even
a random variable, as long as it is independent of
the actions taken to generate x̂T, as described in
Chapter 13.4 from Sutton and Barto (2018). In Self-
Critical Sequence Training (SCST) (Rennie et al.,
2017), b is chosen to be the reward of x∗T, the output
generated by the model by greedy max generation,
hence the model serving as its own critic:

∇θLSCST∝ (R(x̂T) R(x
∗
T))∇θ log pθ(x̂T), (6)

where x̂T is sampled from our model and x∗T is gen-
erated by greedy max. An interesting property of
the baseline is that if R(x̂T) > R(x∗T), sampled x̂T

has higher reward than x∗T, then the model is up-
dated to reinforce the choices made by this genera-
tion. In the opposite case where R(x̂T) < R(x∗T),
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the model update will take the negative gradient to
subdue such generation. When R(x̂T) = R(x∗T),
no update is performed on the model since the gra-
dient is effectively zeroed out, regardless of the
individual values R(x̂T) and R(x∗T). This happens
when x̂T and x∗T are identical (greedy-max and sam-
pled sequences are the same). In that case the sam-
ple is lost for RL as no update to the model will
result from this sample. Basically, REINFORCE is
a Monte Carlo method of learning where a gradient
update is applied in the direction decided by how
R(x̂T) compares to baseline b, the role of b being to
reduce the variance of the gradient estimate. Varia-
tions around REINFORCE exist on how to apply
the gradients, such as MIXER from Ranzato et al.
(2016), or on how to evaluate the baseline (Luo,
2020) to minimize the gradient variance.

In our training, PLMs are first fine-tuned using
LCE loss. Once they reach a good generation qual-
ity, the training is switched to RL fine-tuning by
minimizing LSCST.

4 Experimental Setup

In this Section, we present the experimental setup
used for all the results reported in this paper.
Models We used T5 PLMs from Wolf et al. (2020)
for our experiments for two distinct models, t5-
large (770M parameters) and t5-base (220M pa-
rameters), with a special focus on t5-large as it
is the best performing of the two on various NLP
tasks. Models were fine-tuned to be either special-
ized on T2G (MT) or G2T (MG) task, or to accom-
modate both directions of generation (MT+G).
Data processing Graphs are often represented as
list of triples. However our model expects a se-
quence of input words/tokens to work on. The
linearization of graph triples is obviously ambigu-
ous as there are many ways to traverse a graph
(Breadth First Search, Depth First Search, random
walk, etc.). In practice, we linearize the triples in
the order of the list provided by the dataset, but
use this inherent linearization ambiguity as an op-
portunity to do data-augmentation. Indeed, models
are first fine-tuned using cross-entropy loss that
strongly penalizes generation if it is in any differ-
ent order than the ground truth order. To avoid the
model to overfit to our data and memorize observed
triples order, we augment the data by including a
few permutations of the graph triples.

During graph linearization, we encode the sub-
ject, predicate, and object positions by using

<S>,<P>,<O> tokens. In practice, we expand the
model vocabulary with these special indivisible to-
kens that are not split during tokenization. No other
preprocessing is done on the data for training. We
explored masked and span-masked LM fine-tuning
to match T5 pretraining (Raffel et al., 2020) which
did not lead to any noticeable improvements.

4.1 Datasets

WebNLG+ 2020 We report results on WebNLG+
2020 (v3.0) used in the WebNLG 2020 Challenge
(Castro Ferreira et al., 2020b). The Challenge com-
prises of two tasks: RDF-to-text generation (G2T),
and Text-to-RDF semantic parsing (T2G). The Re-
source Description Framework (RDF) language is
used to encode DBpedia and is commonly used
in linked data framework. WebNLG+ uses RDF
to encode graphs as sets of triples which are as-
sociated to one or more lexicalizations of one or
more sentences each. Data for English and Russian
are provided, but we only worked on the English
subset made of 13,211 train, 1,667 dev, 2,155 testA
(semantic parsing), and 1,779 testB (data-to-text)
samples (triples sets w/ lexicalizations). The data
is clustered semantically into 16 categories seen
in train and dev sets (Airport, Astronaut, Build-
ing, etc.), while 3 categories (Film, Scientist, and
Musical-Work) were introduced in test and are un-
seen, i.e. not present in training; see Castro Fer-
reira et al. (2020a) for more details. Results are
aggregated for all, seen, and unseen categories dur-
ing evaluation. Note that in the literature, prior
works sometimes report ‘WebNLG’ results on pre-
vious dataset version, with completely different
performance ranges. We compare all our results to
WebNLG+ 2020 (v3.0) numbers reported by Cas-
tro Ferreira et al. (2020a) in their Table 6 for G2T,
and Table 10 for T2G tasks, using the provided
official scoring scripts.
TEKGEN To further study the robustness of our
system, we also provide experiments using TEK-
GEN dataset recently introduced in Agarwal et al.
(2021). The graph-sentence alignments are cu-
rated using Wikipedia and Wikidata. This serves
as a perfect large scale test-bed for both G2T and
T2G tasks. Unfortunately, this dataset lacks in en-
tity/relation/object boundaries, which makes it dif-
ficult to evaluate systems for T2G tasks. In order to
address this issue, we further process the triple-text
(with no triple boundaries) to create list of triples
using Wikidata properties lookup, via Wikidata
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WebNLG G2T BLEU↑ BLEU↑
NLTK

METEOR↑ chrF++↑
Team/model

Amazon AI (Shanghai) (Guo et al., 2020a) 0.540 0.535 0.417 0.690
OSU Neural NLG (Li et al., 2020) 0.535 0.532 0.414 0.688
FBConvAI (Yang et al., 2020) 0.527 0.523 0.413 0.686
bt5 (Agarwal et al., 2020) 0.517 0.517 0.411 0.679

ReGen (Ours) G2T.CE t5-large 0.553 0.549 0.418 0.694
ReGen (Ours) G2T.RL t5-large 0.563 0.559 0.425 0.706

ReGen (Ours) G2T.CE.ES t5-base (early CE) 0.522 0.518 0.404 0.675
ReGen (Ours) G2T.RL.ES t5-base (early CE) 0.531 0.527 0.410 0.686

ReGen (Ours) G2T.CE.best t5-base (best CE) 0.524 0.520 0.404 0.677
ReGen (Ours) G2T.RL.best t5-base (best CE) 0.527 0.523 0.408 0.681

Table 1: G2T Best results on WebNLG 2020 Challenge (v3.0) dataset. The first four rows were the top performers
of the Challenge. Results for CE and RL models are presented for our ReGen systems so to show gains from using
SCST. Our G2T.RL is the best system overall, fine-tuning a t5-large model using METEOR reward. G2T.RL.ES
and G2T.RL.best show the impact of using early stopping (ES) or best CE selection for starting SCST fine-tuning
on a t5-base smaller model while using BLEU_NLTK reward.

Query Service. Additionally, we limit the valida-
tion set and test set to 5K and 50K sentence-triples
pairs respectively. Our training split after process-
ing contains 6.3 million sentence-triples pairs. As a
contribution to the work, we will present the steps
to augment TEKGEN dataset with appropriate sub-
ject, object and relation boundaries, which enables
conventional evaluation of research systems. An
example of the processed TEKGEN is shown in
Fig. 3 in Appendix.
Metrics WebNLG+ 2020 provides automatic met-
rics to evaluate models. For G2T, we used BLEU,
BLEU_NLTK, METEOR, and chrF++ that are pro-
vided by the challenge. For T2G, F1, Precision,
and Recall scores are utilized and computed for
4 levels of match: Exact, Ent_Type, Partial and
Strict as described in Castro Ferreira et al. (2020a),
which loosely correspond to different levels of re-
laxation of how close a match of an entity must
be to the ground truth in content and position in
a triple. Note that when generating graphs/RDFs,
scoring metrics explore all possible permutations
of a graph edges. For TEKGEN, we use the same
metrics as for WebNLG+ 2020.

5 Results

For all experiments, PLMs were first exposed to
the target datasets (WebNLG+, TEKGEN) by fine-
tuning using LCE loss. They were then switched
to RL training by optimizing the LSCST loss. Al-
though no exact recipe has been established for

Seq2Seq RL-training, starting from a good CE
model helps RL training performance in practice
(Ranzato et al., 2016; Rennie et al., 2017). There-
fore, we followed the subsequent simple approach:
During fine-tuning, the evaluations are conducted
on the validation set. From the CE phase, the best
performing model iteration is selected based on the
METEOR and F1 score for the G2T and T2G tasks,
respectively, to pursue RL fine-tuning. In case of
G2T, potential ties in METEOR scores among can-
didate models, are resolved by using BLEU_NLTK,
followed by the chrF++ metric. Note that early
stopping selection of CE models led to good per-
formance for t5-base models as well. During the
SCST phase, the best model iteration on the valida-
tion set is selected and its performance numbers on
the test set are reported in our tables.

WebNLG+ 2020 G2T For the WebNLG+ 2020
Challenge, the results of the top four systems for
RDF-to-text task can be found in Tab. 1 for all cat-
egories (results for seen and unseen categories are
given in Tab. 5 in the Appendix), while descriptions
the top teams’ systems were given in Section 2. We
report our G2T results for both t5-large and t5-
base models as well. For t5-large, ReGen G2T.CE
is the best model from CE fine-tuning. ReGen
G2T.RL is best model performance for SCST train-
ing while using METEOR as reward when starting
from G2T.CE model. Tab. 1 shows that our CE
model is better than models from all top teams, and
the SCST results further improve significantly in
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WebNLG T2G Match F1↑ Precision↑ Recall↑
Team/model

Amazon AI (Shanghai) (Guo et al., 2020a)

Exact 0.689 0.689 0.690
Ent_Type 0.700 0.699 0.701
Partial 0.696 0.696 0.698
Strict 0.686 0.686 0.687

bt5 (Agarwal et al., 2020)

Exact 0.682 0.670 0.701
Ent_Type 0.737 0.721 0.762
Partial 0.713 0.700 0.736
Strict 0.675 0.663 0.695

ReGen (Ours) T2G.CE

Exact 0.723 0.714 0.738
Ent_Type 0.807 0.791 0.835
Partial 0.767 0.755 0.788
Strict 0.720 0.713 0.735

ReGen (Ours) T2G.RL

Exact 0.720 0.712 0.734
Ent_Type 0.804 0.789 0.829
Partial 0.764 0.752 0.784
Strict 0.717 0.709 0.731

Table 2: T2G Best results on WebNLG+ 2020 (v3.0) dataset. The top two teams were the first and second place
winner of the Challeneg. Our T2G.CE model improves upon all metrics for all matching schemes, providing a new
state-of-the-art results for this Challenge task. T2G.RL models, while still better than previous best results, does
not improve upon its CE counterpart.

TEKGEN G2T BLEU↑ BLEU↑
NLTK

METEOR↑ chrF++↑
Model

ReGen-CE
Val 0.240 0.241 0.231 0.400
Test 0.241 0.242 0.233 0.405

ReGen-SCST
Val 0.258 0.259 0.240 0.418
Test 0.262 0.262 0.242 0.422

Table 3: G2T Results for TEKGEN dataset. ReGen-CE establishes a baseline on this dataset. ReGen-SCST
consistently improve on the baseline on all metrics, for validation and test sets.

all metrics achieving state-of-the-art results to our
knowledge. The gain obtained by SCST alone is
quite significant and demonstrates the benefits of
RL fine-tuning for this task. We report our best
model results in Tab. 1, as well as mean and stan-
dard deviation results for multiple random number
generator seeds in Tab. 10 in Appendix. When av-
eraging results for few seeded models, sustained
gains from SCST are seen for all metrics.

Multiple reward candidates were investigated
(BLEU, BLEU_NLTK, METEOR, chrF) as well
as some linear combinations of pairs of them, as
can be seen in Tab. 7 in Appendix. In Tab. 7, for
t5-large, METEOR is consistently the best SCST
reward, and improves all the other metrics scores
as well. However, for ‘smaller’ models such as

t5-base, BLEU_NLTK is revealed to be the best
reward for improving BLEU performance as ex-
pected. Again, SCST brings significant gains
across all the metrics in that case. Note that for
t5-base model, selecting a METEOR reward im-
proves METEOR results significantly as reported
in Tab. 9 in Appendix.

Another interesting fact is that early stopping of
CE model G2T.CE.ES (at 5 epochs) leads to the
best SCST model G2T.RL.ES for t5-base, while
selecting the best CE model G2T.CE.best (at 11
epochs) still showed some gains from SCST model
G2T.RL.best. SCST needs a good starting point,
but a better CE model that has seen a lot more
epochs of our dataset maybe harder for SCST to
stir in a better solution in the parameter space.
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Moreover, the test split contains unseen categories
not present in the validation dataset which render
choices based on validation sub-optimal for the test
dataset. The best models we report in this work are
specialized modelsMG. Early in our investigation,
hybrid models were the best performing model for
G2T reaching 0.547 BLEU, 0.543 BLEU_NLTK
and 0.417 METEOR, and first to beat the Challenge
winning team. However, when batch size became
larger (20-24 samples), the specialized models took
the lead and retain it still.

For training, we optimized all our models us-
ing AdamW (Loshchilov and Hutter, 2017), vari-
ant of the Adam optimizer with default values of
β = [0.9, 0.999] and weight decay of 10−2. For
learning rate, we used 5.10−6 for all our experi-
ments as it was better than 10−5 and 10−6 as seen
in Tab. 8 in Appendix. All our models were trained
with 20-24 minibatch size on WebNLG. Further
details on our experimental setup are provided in
the Appendix in Section A.

WebNLG+ 2020 T2G Results for the Text-to-RDF
task are reported in Tab. 2 for all categories. Results
for our best model on seen and unseen categories
are given in Tab. 6 in Appendix. Amazon AI and
bt5 are the top performing teams. Again, the pro-
posed ReGen T2G.CE model shows strong results
that are better in term of all metrics, for all match-
ing categories. In themselves, these numbers are
a de-facto new state-of-the-art for this dataset, as
far as we know. SCST model T2G.RL fails to im-
prove on this model though. The exact F1 metric
was used as reward, but the model could never pull
ahead of the CE model in our experiments. The
exact F1 metric may not be a strong enough reward
to really capture the dynamics of graph generation
properly for WebNLG+ as it is very rigid in its
measure (one must have an exact match), although
the same reward gave good results on our second
dataset TEKGEN. A more sensitive metric could
possibly help. We even tried to use n-gram based
metrics (like BLEU) but to no avail. We further
address this issue at the end on this Section.

TEKGEN G2T For the TEKGEN dataset, we
present our results on Graph-to-Text generation
in Tab. 3. Similar to the experiments in WebNLG+,
we pick the best model during the CE fine-tuning
based on the METEOR score and proceed with the
RL fine-tuning. We observe that the RL fine-tuning
step helps boost the test split scores on all metrics.
It is worth noting that the scores are slightly under-

T2G F1↑ P↑ R↑
Model

ReGen-CE
Val 0.622 0.608 0.647
Test 0.619 0.605 0.643

ReGen-SCST
Val 0.615 0.600 0.640
Test 0.623 0.610 0.647

Table 4: T2G TEKGEN Results: ReGen-CE establishes
a baseline of the dataset. ReGen-SCST improves re-
sults on the test set compared to ReGen-CE.

estimating the potential of our system because of
the nature of the sentences in the TEKGEN dataset.
Unlike WebNLG+, in a paired text-graph sample
in TEKGEN, the linearized graph does not usually
cover all the concepts described in the correspond-
ing text. This leads to underestimating when the
hypothesis is scored against the reference using
n-gram metrics.

TEKGEN T2G Results for the Text-to-Graph for
TEKGEN are reported in Tab. 4. Once the CE fine-
tuning is done, we continue with the RL fine-tuning
using exact F1 as reward. The performance is con-
sistent with what we observe in G2T task for TEK-
GEN, where SCST step boosts the performance of
the model. Since, we reformulate this dataset (refer
Section 4.1) to offer as T2G and G2T tasks, our
approach is the first attempt in understanding the
nature of TEKGEN dataset and our methods pro-
vide a baseline for future research. Please note that
for both T2G and G2T tasks in TEKGEN, we only
start a t5-large PLM.

Summary Results on WebNLG+ 2020 and TEK-
GEN demonstrated that RL fine-tuning of models
leads to significant improvements of results for
T2G and G2T, establishing new state-of-the-art
results for both tasks. For WebNLG+, T2G was
a challenging task for RL fine-tuning. In further
work, we plan to address this issue by investigating
two points: First, look into a more sensible graph-
dependent sampling for graph structures, rather
than the current multinomial sampling of the best
tokens at each generation step. Second, try a differ-
ent reward schemes where the reward is more at-
tuned to the challenges of graph generation as well
as graph structure, allowing for some curriculum
learning, or increasing the harshness of rewards
gradually during training. Results on TEKGEN

showed that RL fine-tuning is a viable option even
on large-scale datasets. To enrich this quantitative
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study of ReGen, we provide a few qualitative cherry
picked results in Tab. 11 and Tab. 12 in Appendix.

6 Conclusions

In this paper, we proposed to use RL for improv-
ing upon current generation for text-to-graph and
graph-to-text tasks for the WebNLG+ 2020 Chal-
lenge dataset using pre-trained LMs. We not only
defined a novel Seq2Seq training of models in T2G
and G2T generation tasks, but we established state-
of-the-art results for WebNLG+ for both tasks, sig-
nificantly improving on the previously published
results. We provided extensive analyses of our
results and of the steps taken to reach these im-
provements. We then expanded our approach to
large scale training by means of TEKGEN where
we demonstrated that RL fine-tuning provides a
robust way to improve upon regular model fine-
tuning within a dataset that is orders of magnitude
larger than the WebNLG+ starting point. We es-
tablished gains despite a weaker content overlap
in text-graph data pairs for TEKGEN. Along the
way, we constructed subject, and relation-object
boundaries from TEKGEN sentence-triples pairs
that we plan on releasing to benefit the research
community.

Future work will focus on developing a vari-
ant of SCST that leverages the unique structure of
graph by either performing of more sensible graph-
dependent sampling, or by investigating different
reward schemes more attuned to integrating the
content and structure of graphs.

7 Broader Impact Statement

The techniques proposed in this paper are inher-
ently dependent on the training data and the PLMs
used for fine-tuning on this data. The models do
benefit from the large amount of data seen by the
PLM they are derived from, however it is fair to
assume that any detectable bias in the original data
or PLMs would most likely be transferred to the
text-to-graph and graph-to-text generative models.
This is something to keep in mind when building
these generative models. Public datasets were used
for all experiments. The TEKGEN with recreated
boundaries does not change the underlying data
and should not add any further noise nor bias to the
original data.
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A Training Setup

All our experiments were run using NVIDIA V100
GPUs for training and validation, some trainings
were done on A100. We distributed our training to
2-4 GPUs depending on availability. Each training
epoch for CE ranged from 30 minutes to 1 hour
depending on number of GPUs utilized.

Validation and testing (1,779 and 2,155 samples
for testA and testB of WebNLG+ 2020) lasted from
40 minutes to 1 hour depending on machines. Com-
putation was dominated by beam search generation
as we used beam search with beam size of 5 and a
max sequence length of 192 (since linearized graph
sequence can be quite long). We used the official
scoring scripts released by WebNLG+ 2020 Chal-
lenge to score all our experiments. The evaluation
of graph being the most computationally expensive
as all possible matching combinations are tested in
what looks like a factorial complexity, taking scor-
ing of set of triples larger than 8 from impractical
to not feasible.

All our models were built using PyTorch. Total
effective batch sizes were set to either 20 or 24
samples for our distributed training. We adjusted
the batch size on each worker to ensure consistent
global batch size of 20 or 24.

We did some search on learning rates for t5-
large training and SCST rewards, see discussion
and results in Section C.

All our trainings have a seeded random number
generator for reproducibility. We also report re-
sults on WebNLG+ 2020 G2T tasks for each train-
ing setup by showing results for 3 models from
different seeds, and provide means and standard
deviations of these results in Tab. 10.

B WebNLG+ 2020 Results per
Categories for Best G2T and T2G
Models

In Tab. 5, we are reporting results for all WebNLG+
2020 categories for our best CE and RL models.
While results for unseen categories are much worse
than for seen categories, RL fine-tuning manages
to improve on both seen and unseen categories.

Tab. 6 provides results for seen, unseen and all
categories for our best CE model ReGen T2G.CE
which established state-of-the-art results on T2G
task of WebNLG+ 2020 Challenge dataset.

C Ablation Studies

In Tables 7 and 8 we present ablation studies of
different optimized metrics and learning rates for
SCST training. As can be seen from Table 7, when
METEOR is used as a reward, we get the best per-
formance across all the metrics. We also tried using
a combination of multiple rewards with different
scaling but did not get any gain over the single
metric rewards. In Table 8. we also show the ef-
fect of learning rate on SCST performance. Using
lr = 5 · 10−6 gave us the best performance, while
higher rates, such as 10−4, led to unstable training
and collapse of SCST.

D G2T Results t5-base models for SCST
with METEOR Reward

Results for SCST fine-tuning of t5-base models
using a METEOR reward are compiled in Tab. 9.
Clearly, these models achieve better METEOR re-
sults as expected since they are RL optimized on
this metric.

E G2T Results for Models from Multiple
Random Seeds

All our training have a seeded random number gen-
erator for reproducibility. We also report the mean
and standard deviations for all our G2T models.
Each model setup was run 3 times using three in-
dependent and distinct seeds, following the same
exact process. This is to ensure that our results are
not just the product of a lucky system configuration
or otherwise advantageous random shuffling of our
training dataset. All results are reported in Tab. 10.

The gain reported between CE and RL for our t5-
large models are clearly still showing after average
of all 3 models from distinct random seeds. For
t5-base, gains between CE and RL are still present,
albeit smaller than for our best systems.

F Generation Examples for G2T and
T2G

We present some cherry-picked examples for G2T
in Tab. 12 and for T2G in Tab. 11 for both WebNLG
and TEKGEN datasets.

G Processed TEKGEN Dataset

In Fig. 3 we show an example of our processing of
TEKGEN dataset in establishing subject, relation,
object boundaries. This enables both training and
evaluating systems for T2G and G2T tasks.
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WebNLG G2T Best Models Category BLEU↑ BLEU↑
NLTK

METEOR↑ chrF++↑

Ours t5-large ReGen-CE unseen 48.76 0.489 0.397 0.653
seen 59.73 0.592 0.433 0.722

all 55.26 0.549 0.418 0.694

Ours t5-large ReGen-SCST unseen 49.06 0.493 0.404 0.665
seen 61.22 0.605 0.440 0.734

all 56.25 0.559 0.425 0.706

Table 5: G2T: Results for seen, unseen, and all categories subsets in WebNLG+ 2020 Challenge Test dataset. As
expected, unseen categories much worse results than for seen categories. RL fine-tuning manages to improve on
both seen and unseen categories.

WebNLG T2G Match F1↑ Precision↑ Recall↑
ReGen T2G.CE

unseen

Exact 0.5809 0.5662 0.6069
Ent_Type 0.7014 0.6741 0.7497
Partial 0.6453 0.6241 0.6826
Strict 0.5754 0.5608 0.6012

seen

Exact 0.8322 0.8286 0.8384
Ent_Type 0.8878 0.8811 0.8998
Partial 0.8604 0.8553 0.8696
Strict 0.8317 0.8282 0.8379

all

Exact 0.7229 0.7144 0.7376
Ent_Type 0.8067 0.7910 0.8345
Partial 0.7668 0.7547 0.7882
Strict 0.7202 0.7118 0.7349

Table 6: T2G: Results for seen, unseen, and all categories subsets in WebNLG+ 2020 Challenge Test dataset. As
expected the performance drops significantly for unseen categories and are the best for seen categories.

SCST Reward BLEU↑ BLEU↑
NLTK

METEOR↑ chrF++↑

BLEU 0.556 0.552 0.420 0.698
BLEU NLTK 0.558 0.554 0.422 0.700
METEOR 0.563 0.559 0.425 0.706
chrF++ 0.554 0.551 0.423 0.701
1/2·METEOR+1/2·BLEU NLTK 0.555 0.551 0.421 0.699
2/3·METEOR+1/3·BLEU NLTK 0.547 0.543 0.419 0.697

Table 7: Ablation study of metrics used as rewards in SCST for t5-large models. The results shown are on the test
split.

Learning Rate BLEU↑ BLEU↑
NLTK

METEOR↑ chrF++↑

10−6 0.553 0.549 0.420 0.698
5 · 10−6 0.558 0.554 0.422 0.700

10−5 0.544 0.542 0.419 0.696

Table 8: Ablation study on learning rates in SCST (using BLEU NLTK as the optimized metric)
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WebNLG G2T BLEU↑ BLEU↑
NLTK

METEOR↑ chrF++↑
Team/model

ReGen G2T.RL.ES.meteor t5-base (early CE) 0.527 0.523 0.413 0.689
ReGen G2T.RL.best.meteor t5-base (best CE) 0.528 0.526 0.412 0.681

Table 9: G2T: Best results for t5-base fine-tuned with SCST using METEOR as reward.

Team Name BLEU↑ BLEU↑
NLTK

METEOR↑ chrF++↑

ReGen G2T.CE t5-large 0.543±0.007 0.540±0.007 0.416±0.002 0.691±0.002
ReGen G2T.RL t5-large 0.553±0.007 0.550±0.007 0.422±0.002 0.702±0.003

ReGen G2T.CE.ES t5-base (early CE) 0.521±0.004 0.517±0.004 0.404±0.001 0.675±0.002
ReGen G2T.RL.ES t5-base (early CE) 0.528±0.007 0.523±0.007 0.408±0.002 0.682±0.003

ReGen G2T.CE.best t5-base (best CE) 0.524±0.000 0.520±0.001 0.404±0.000 0.670±0.000
ReGen G2T.RL.best t5-base (best CE) 0.525±0.007 0.522±0.007 0.407±0.002 0.681±0.003

ReGen G2T.RL.ES.meteor t5-base (early CE) 0.525±0.007 0.521±0.007 0.412±0.002 0.687±0.003

ReGen G2T.RL.best.meteor t5-base (best CE) 0.527±0.007 0.524±0.007 0.410±0.002 0.686±0.003

Table 10: Results means and standard deviations (SD), shown as mean±SD, for CE and SCST trained models
(including our best results model) for a total of 3 different random number generator seeds used in training.

Figure 3: An example from the processed TEKGEN dataset. The original dataset lacks KG boundaries, which
makes it difficult to evaluate T2G systems efficiently.
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Type Sentence / Graph

Source The Pontiac Rageous began and ended its production in 1997 on an assembly line in Detroit, a city in
Michigan.

Gold Pontiac_Rageous ♦ productionStartYear ♦ 1997 ♦ Pontiac_Rageous ♦ assembly ♦ Michigan ♦
Pontiac_Rageous ♦ assembly ♦ Detroit ♦ Pontiac_Rageous ♦ productionEndYear ♦ 1997 ♦ Detroit
♦ type ♦ City_(Michigan)

Hyp-CE Pontiac_Rageous ♦ assembly ♦ Detroit ♦ Pontiac_Rageous ♦ modelYears ♦ 1997 ♦ Pontiac_Rageous
♦ modelYears ♦ 1997 ♦ Detroit ♦ isPartOf ♦ Michigan

Hyp-SCST Pontiac_Rageous ♦ assembly ♦ Detroit ♦ Pontiac_Rageous ♦ modelYears ♦ 1997 ♦ Pontiac_Rageous
♦ assembly ♦ Michigan

Source In the United States, where Abraham A, Ribicoff was born, African Americans are one of the ethnic
groups. Abraham A. Ribicoff was married to Ruth Ribicoff.

Gold Abraham_A._Ribicoff ♦ spouse ♦ "Ruth Ribicoff" ♦ Abraham_A._Ribicoff ♦ birthPlace ♦
United_States ♦ United_States ♦ ethnicGroup ♦ African_Americans ♦ Abraham_A._Ribicoff ♦
nationality ♦ United_States

Hyp-CE Abraham_A._Ribicoff ♦ birthPlace ♦ United_States ♦ Abraham_A._Ribicoff ♦ spouse ♦ "Ruth
Ribicoff" ♦ United_States ♦ ethnicGroup ♦ African_Americans

Hyp-SCST Abraham_A._Ribicoff ♦ birthPlace ♦ United_States ♦ Abraham_A._Ribicoff ♦ spouse ♦ "Ruth
Ribicoff" ♦ Abraham_A._Ribicoff ♦ nationality ♦ American ♦ United_States ♦ ethnicGroup ♦
African_Americans

Source Super Capers, edited by Stacy Katzman, is a 98 minute film starring Michael Rooker and Tom Sizemore.
Gold Super_Capers ♦ editing ♦ Stacy_Katzman ♦ Super_Capers ♦ starring ♦ Michael_Rooker ♦ Su-

per_Capers ♦ starring ♦ Tom_Sizemore ♦ Super_Capers ♦ runtime | 98.0
Hyp-CE Super_Capers ♦ starring ♦ Tom_Sizemore ♦ Super_Capers ♦ timeOut ♦ "980.0"(minutes) ♦ Su-

per_Capers ♦ starring ♦ Michael_Rooker ♦ Super_Capers ♦ editor ♦ Stacy_Katzman
Hyp-SCST Super_Capers ♦ starring ♦ Tom_Sizemore ♦ Super_Capers ♦ length ♦ 98.0 (minutes) ♦ Super_Capers

♦ starring ♦ Michael_Rooker ♦ Super_Capers ♦ editor ♦ Stacy_Katzman

Source Doctor George Cary (1611-1680), Professor of Sacred Theology, lord of the manor of Clovelly, Devon,
was Dean of Exeter between 1663 and 1680 (amongst other duties responsible for the maintenance and
decoration of Exeter Cathedral).

Gold George Cary (1611-1680) ♦ position held ♦ Dean of Exeter ♦ start time ♦ 01 January 1663 ♦ date of
birth ♦ 00 1611 ♦ date of death ♦ 00 1680

Hyp-CE George Cary (priest) ♦ date of birth ♦ 01 January 1611 ♦ date of death ♦ 01 January 1680
Hyp-SCST George Cary (priest) ♦ position held ♦ Dean of Exeter ♦ date of birth ♦ 01 January 1611 ♦ date of

death ♦ 01 January 1680

Source Early general elections were held in the Bahamas on 10 April 1968.
Gold 1968 Bahamian general election ♦ point in time ♦ 10 April 1968 ♦ country ♦ The Bahamas ♦ applies

to jurisdiction ♦ The Bahamas
Hyp-CE 1968 Bahamian general election ♦ point in time ♦ 10 April 1968
Hyp-SCST 1968 Bahamian general election ♦ point in time ♦ 10 April 1968 ♦ country ♦ The Bahamas

Source The school was established on 6 January 1930, by former education minister, CWW Kannangara, who
additionally founded two other colleges located in central Ceylon.

Gold Kattankudy Central College ♦ instance of ♦ School
Hyp-CE Government Polytechnic , Colombo ♦ inception ♦ 00 1930
Hyp-SCST Government Polytechnic , Colombo ♦ inception ♦ 00 1930 ♦ instance of ♦ School

Table 11: Few cherry-picked generation for T2G task for WebNLG+ 2020 (top three) and TEKGEN (bottom
three). For each source (Text), we show the ground truth (Gold) and system generated hypothesis from the best
CE (Hyp-CE) and SCST models (Hyp-SCST). Note that the set of triples in WebNLG+ takes the form xG =
[(s1♦p1♦o1), . . . , (sK♦pK♦oK)], whereas the same for TEKGEN is of form xG = [s♦(p1♦o1), . . . , (pK♦oK)]
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Type Graph / Sentence

Source McVeagh_of_the_South_Seas ♦ starring ♦ Harry_Carey_(actor_born_1878) ♦
McVeagh_of_the_South_Seas ♦ writer ♦ Harry_Carey_(actor_born_1878)

Gold Born in 1878, Harry Carey later grew up to write and star in the movie McVeagh of the South Seas.
Harry Carey, born in 1878, wrote and appeared in the movie McVeagh of the South Seas. Harry Carey,
who was born in 1878, wrote and starred the film of McVeagh of the South Seas.

Hyp-CE McVeagh of the South Seas was written by Harry Carey, who was born in 1878.
Hyp-SCST McVeagh of the South Seas was written by Harry Carey and starred the actor Harry Carey who was born

in 1878.

Source Aleksandr_Prudnikov ♦ height ♦ 185.0 (centimetres) ♦ Aleksandr_Prudnikov ♦ youthclub ♦
FC_Spartak_Moscow ♦ FC_Spartak_Moscow ♦ ground ♦ Otkrytiye_Arena

Gold Aleksandr Prudnikov, 185cm tall played for FC Spartak Moscow’s youth team. FC Spartak Moscow is
based in the Otkrytiye Arena. Aleksandr Prudnikov who is 185 cm tall is a member of the youth side of
FC Spartak Moscow. The home ground of FC Spartak Moscow is Otkrytiye Arena. Aleksandr Prudnikov
is 185.0 cm tall and played for the FC Spartak Moscow at the Otkrytiye Arena.

Hyp-CE Aleksandr Prudnikov is 185 cm tall and played for FC Spartak Moscow’s youth team at the Otkrytiye
Arena.

Hyp-SCST Aleksandr Prudnikov is 185 cm tall and played for the youth team of FC Spartak Moscow whose home
ground is the Otkrytiye Arena.

Source Baku_Turkish_Martyrs’_Memorial ♦ nativeName ♦ "Türk Şehitleri Anıtı" ♦
Baku_Turkish_Martyrs’_Memorial ♦ location ♦ Azerbaijan

Gold The Native name of the Baku Turkish Martyrs’ Memorial is "Türk Şehitleri Anıtı" which is located in
Azerbaijan. The native name of the Baku Turkish Martyrs’ Memorial is Türk Şehitleri Anıtı located in
Azerbaijan. The native name for the Baku Turkish Martyrs’ Memorial is Türk Şehitleri Anıtı, which is
located in Baku, Azerbaijan.

Hyp-CE The native name of the Baku Turkish Martyrs’ Memorial in Azerbaijan is Türk Şehitleri Anıtı.
Hyp-SCST The Baku Turkish Martyrs’ Memorial is located in Azerbaijan and is known locally as Türk Şehitleri

Anıtı.

Source John Banister (anatomist) ♦ occupation ♦ Surgeon ♦ date of birth ♦ 01 January 1533 ♦ date of death
♦ 01 January 1610

Gold John Banister (1533-1610) was an English anatomist, surgeon and teacher.
Hyp-CE John Banister (1533-1610) was an English surgeon.
Hyp-SCST John Banister (1533-1610) was an English surgeon and anatomist.

Source WNPT (TV) ♦ country ♦ United States ♦ instance of ♦ Television station
Gold WNPT, virtual channel 8 (VHF digital channel 7), is a PBS member television station licensed to

Nashville, Tennessee, United States.
Hyp-CE WNPT, virtual channel 3 (UHF digital channel 15), is a Fox-affiliated television station licensed to

Portland, Oregon, United States.
Hyp-SCST WNPT, virtual channel 4 (UHF digital channel 16), is a Public Broadcasting Service (PBS) member

television station licensed to Portland, Oregon, United States.

Source Our Lady of the Presentation Cathedral, Natal ♦ inception ♦ 21 November 1988
Gold Our Lady of the Presentation Cathedral, Natal was inaugurated on November 21, 1988, and is located in

the district of Cidade Alta in Natal, capital of the Brazilian state of Rio Grande do Norte.
Hyp-CE Our Lady of the Presentation Cathedral, Natal was built in 1988.
Hyp-SCST Our Lady of the Presentation Cathedral, Natal was consecrated on 21 November 1988.

Table 12: Few cherry-picked generation for G2T task for WebNLG+ 2020 (top three) and TEKGEN (bottom three).
For each source (Graph), we show the ground truth (Gold) and system generated hypothesis from the best CE
(Hyp-CE) and SCST models (Hyp-SCST). Note that the set of triples in WebNLG+ 2020 takes the form xG =
[(s1♦p1♦o1), . . . , (sK♦pK♦oK)], whereas the same for TEKGEN is of form xG = [s♦(p1♦o1), . . . , (pK♦oK)]


