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Abstract

We describe two approaches to single-root
dependency parsing that yield significant
speed ups in such parsing. One approach
has been previously used in dependency
parsers in practice, but remains undocu-
mented in the parsing literature, and is
considered a heuristic. We show that this
approach actually finds the optimal depen-
dency tree. The second approach relies on
simple reweighting of the inference graph
being input to the dependency parser and
has an optimal running time. Here, we
again show that this approach is fully
correct and identifies the highest-scoring
parse tree. Our experiments demonstrate
a manyfold speed up compared to a pre-
vious graph-based state-of-the-art parser
without any loss in accuracy or optimal-
ity.1

1 Introduction

Dependency parsing is one of the core steps in
many Natural Language Processing pipelines.
Given its wide and large-scale use, both in aca-
demic and commercial settings, even moderate
improvements in the speed and accuracy of a
dependency parser may significantly impact its
utility. In this paper, we show how to improve
the speed of graph-based dependency parsers
(McDonald et al., 2005; Qi et al., 2020) without
compromising at all on accuracy.

Graph-based dependency parsers work in two
steps. The first step forms a complete weighted
directed graph of words and a special ROOT
token by computing the weights using a trained
statistical model.2 The second step then exe-
cutes the main inference procedure: it identifies
a directed spanning tree (often referred to as

1Our code is available at https://github.com/
stanojevic/Fast-MST-Algorithm.

2The weights of edges entering ROOT are −∞.
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Figure 1: Time proportion used by the neural
and MST component when parsing with Stanza on
GPU.

arborescence) in this graph, aiming to maxi-
mize its weight, and retaining ROOT as the
root node of the arborescence.

While some of the previous work to optimize
the speed of graph-based parsers focused on
the first step (Anderson and Gómez-Rodríguez,
2020), we demonstrate in Figure 1 that most of
the parsing time is actually spent on the span-
ning tree inference routine. As sentence length
increases, the gap between the spanning tree
inference time and time spent on constructing
the weighted graph increases significantly.3

MST search is often done using the Chu-Liu-
Edmonds (CLE) algorithm (Chu and Liu, 1965;
Edmonds, 1967) that runs in O(n3) where n is
the sentence length. Tarjan (1977) presents a
relatively complicated way of implementing the
CLE algorithm in O(n2). Tarjan’s algorithm is
often cited in NLP literature, but to the best of
our knowledge has never been implemented for
dependency parsing. This is due to the common

3For this calculation, we used the Stanza parser (Qi
et al., 2020), a widely-used dependency parser.

https://github.com/stanojevic/Fast-MST-Algorithm
https://github.com/stanojevic/Fast-MST-Algorithm
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algorithm appeared in
current

implementation
worst-case

claimed
worst-case
dense graph

average-case
dense graph

claimed
worst-case

sparse graph

Gabow-Tarjan Gabow and Tarjan (1984)
Zmigrod et al. (2020) O(n2 log n) O(n2) O(n2) O(m log n)

Naïve mentioned in Zmigrod et al. (2020)
and in Section 3 n/a O(n3) O(n3) O(mn+ n2 log n)

Root Preselection code of some parsers (undocumented)
and thoroughly discussed in Section 3 O(n3) O(n3) O(n2) O(mn+ n2 log n)

Reweighting introduced in Section 4 O(n2) O(n2) O(n2) O(m+ n log n)

Table 1: Algorithms for single-root dependency parsing. The sentence length is denoted by n, and the
number of the edges in the input graph by m.

belief that the original CLE often works well
in practice (see footnote 2 in Zmigrod et al.
2020 or end of §4.2.2 in Kübler et al. 2009).
We test this claim, and show that significant
improvements can be made over CLE.
The (unconstrained) MST algorithm such

as CLE produces a tree with one root node,
namely the special token ROOT , but that root
node may have multiple edges coming out of it.
Yet, in some widely-used dependency treebanks,
such as Universal Dependencies (Nivre et al.,
2018), only one edge is permitted to come out
of ROOT . We will refer to the task of finding an
MST that contain only one outgoing edge out
of ROOT as single-root or constrained MST
parsing.

Zmigrod et al. (2020) provide an implementa-
tion of the non-trivial Gabow and Tarjan algo-
rithm to compute a constrained MST with only
one dependency edge coming out of ROOT .
While both Gabow and Tarjan and Zmigrod
et al. argue that this algorithm could be im-
plemented in O(n2), they do not describe or
follow such an implementation. The only ex-
isting implementation of this algorithm runs
in O(n2 log n), which is the best worst-case
asymptotic running time tested in the literature
for single-root dependency parsing.

In this paper, we provide two alternative ap-
proaches of computing the constrained MST
by using an unconstrained MST algorithm as
a subroutine. Both of these algorithms are
very simple to implement and understand. We
prove that the first one of them, on average,
has the same asymptotic running time as the
unconstrained algorithm used as a subroutine.
The second algorithm has the same worst-case
asymptotic runtime as the unconstrained algo-
rithm which is optimal for complete graphs.
Worst-case complexity does not guarantee

that an algorithm will be fast in practice
(Roughgarden, 2019): the actual speed might
be influenced by constant factors, memory ac-
cess patterns and the difficulty of the typical
input instances (Moret, 2002). This is why we
test all our algorithms in a typical settings en-
countered in dependency parsing. Additionally,
we propose a simple heuristic that recognizes
if the input instance is “easy” and if so returns
the correct solution even before running the
full algorithm.

As a guide to this paper, the algorithms for
single-root dependency parsing, both previously
published ones and the ones presented in this
paper, are shown in Table 1 together with their
associated computational complexity. In the
next section we will introduce the basic con-
cepts from Gabow and Tarjan algorithm that
Zmigrod et al. (2020) have put into practice
for single-root dependency parsing. This is
the only previously published work on single-
root dependency parsing. Section 3 shows
the Root Preselection algorithm for single-root
MST parsing and proves its correctness and
average runtime complexity. Section 4 shows
even better Reweighting algorithm that per-
forms well not only in average, but also in the
worst-case. Section 5 introduces the ArcMax
trick that improves practical speed of any MST
parser by recognizing the “easy” cases men-
tioned above. Section 6 experimentally tests
and verifies all of these findings.

2 The Gabow-Tarjan Algorithm

Gabow and Tarjan (1984) present an algorithm
that solves a much more general combinatorial
optimization problem than single-root MST
parsing. Concretely, they abstract a family of
optimization problems as an optimization of a
minimum weight base of a matroid. We will not
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describe here the full theory and workings of
this algorithm but just present a few important
points as related to the aspect of MST parsing.
For a good introduction to the use of matroids
for combinatorial optimization see Cormen et al.
(2009, §16.4).

Many combinatorial optimization problems
can be framed as a search for the minimum
weight base of a matroid, a structure that con-
sists of a set of “independent subsets” of a
ground set, generalizing the notion of linear
independence in vector spaces. Let us con-
sider a minimum spanning tree problem over
undirected graphs. This can be solved with a
graphic matroid. In this matroid, the ground
set contains all the edges of the graph, while in-
dependent sets contain all forests (sets of edges
that do not form a cycle). A base of this ma-
troid is a spanning tree. Finding a minimum
weight base of graphic matroid is equivalent to
finding a minimum spanning tree.4

Gabow and Tarjan extend the definition of
the problem by introducing a coloring of the
elements of matroid’s ground set: every element
can be marked as green or red. In the case of
graphic matroid the coloring would be applied
to the edges of the graph. Gabow and Tarjan
described a matroid optimization method that
finds a minimum weight base that contains
exactly q red elements, given q ∈ N. Let βi
stand for a set of all optimal bases with i red
elements. Let swap (e, f) for base B stand for
a pair of matroid’s ground elements for which it
holds that B/{e}∪{f} is also a base and that e
is green and f is red. Swaps can be ranked from
smallest to largest by weight(f) − weight(e).
Gabow and Tarjan prove the following theorem:

Theorem 1 (Augmentation Theorem; Gabow
and Tarjan 1984). Suppose B is a base in βi−1
and βi 6= ∅. If (e, f) is a smallest swap for B,
then B/{e} ∪ {f} ∈ βi.

The Augmentation Theorem specifies the gen-
eral approach of the Gabow and Tarjan algo-
rithm: start by finding the optimal base for
the smallest possible number of red elements
(this number is matroid/task dependent) and
then increase the number of red elements by
incrementally finding the smallest swap that
introduces more red elements. Stop when we

4We treat the problem of finding a minimum or a
maximum spanning tree as equivalent.

have the desired number of red elements in the
base.

While this general algorithm applies to undi-
rected spanning trees (they form a matroid),
it does not straightforwardly apply to directed
spanning trees because they do not form a ma-
troid. To accommodate for this Gabow and
Tarjan extend their definition of a swap so that,
instead of one, multiple swaps lead from one
optimal base to another of a lower order.

So how does this relate to single-root depen-
dency parsing? If we color all edges red, except
for those that are connected to the artificial
ROOT node which will be colored green, we can
look for a directed MST with only one green
edge (or equivalently with n − 1 red edges).
This is a special case of the general Gabow and
Tarjan (1984) algorithm. An adaptation of that
algorithm to dependency parsing was presented
by Zmigrod et al. (2020).

While it is stated by both Gabow and Tarjan
(1984) and Zmigrod et al. (2020) that this algo-
rithm can be implemented in O(n2) for dense
graphs by using data structures from Tarjan
(1977), it is not trivial to see how to do that. In-
deed, to the best of our knowledge, the only im-
plementation of this algorithm for dependency
parsing runs in O(n2 log n). Even implement-
ing the original unconstrained Tarjan (1977)
algorithm is non-trivial, and its presentations
with this level of efficiency in the literature his-
torically include errors. The correct efficient
O(n2) algorithm is distilled and described in
our Appendix A, and in our experiments we
contrast its implementation against the less
efficient ones.

3 The Root Preselection Algorithm

There is a simple meta-algorithm algorithm for
single-root (constrained) dependency parsing,
when given access to an unconstrained solver
as a subroutine. Imagine we want to find the
best single-root dependency tree that contains
an arc from ROOT to a single particular word
in the sentence. We can accomplish this by
disconnecting all other words from the ROOT
and running the unconstrained MST parser
(equivalently, give the relevant edges weight of
−∞). Now, we can repeat this process for all
the words and compare the weights of the single-
root dependency trees that are found for each
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word. The best tree in this comparison will
be globally best single-root dependency tree.
If the runtime complexity of the underlying
unconstrained MST parser is O(T (n)) for a
sentence of length n, the asymptotic runtime
of this meta-algorithm is O(nT (n)). We refer
to this algorithm as Naïve algorithm.
In practice, a simple heuristic is applied in

several dependency parsers on top of Naïve algo-
rithm (Parser-v3, Stanza, SuPar). The adapted
algorithm with the heuristic first runs the usual
unconstrained MST parsing. If the tree that
is found contains only one word connected to
the root, the algorithm returns it as the an-
swer. Otherwise, the parser applies the Naïve
algorithm but only over the words connected
to the root in the unconstrained parse. Since
this adapted algorithm preselects the nodes to
which to apply the naïve algorithm we refer to
it as the Root Preselection Algorithm.

We turn to explain that this undocumented
heuristic is actually correct, and will always
return the best single-rooted tree. We basically
describe why the root edge in the constrained
case has to be one of the root edges in the
unconstrained spanning tree.

The reason for this stems from an extension
of Augmentation Theorem for directed graphs
by Gabow and Tarjan. This theorem estab-
lishes the connection between the optimal so-
lution of i − 1 red elements and an optimal
solution of i red elements. It relates them with
the optimal swap (in the extended version for di-
rected graphs it is multiple swaps), where each
swap removes a green element and replaces it
with a red element. What this means in the
context of dependency parsing is that an opti-
mal solution with i edges connected to ROOT
contains all the edges connected to ROOT from
the optimal solution with i−1 edges connected
to ROOT . This recurrence implies that the edge
to ROOT from the constrained single-root de-
pendency parse is present in the unconstrained
case, so it is valid for the algorithm above to
concentrate only on finding the optimal edge
in the set of root edges provided by the uncon-
strained algorithm.
The runtime of this algorithm depends on

the number of words connected to ROOT in
the unconstrained MST. If there is only one
edge to ROOT in the unconstrained MST,

the complexity is O(T (n)). If there is more
than one edge from ROOT , the complexity is
O((r + 1)T (n)). We can write this complexity
for any number r of edges connected to ROOT
as O ((r + 1− I1(r))T (n)) where I1(·) is an in-
dicator function that returns 1 if the input is
1, otherwise it returns 0. Clearly, the worst
case of this algorithm is the same as the worst
case of the naïve algorithm because r can be as
large as n, but it is interesting to see what is
the average computational complexity for this
algorithm.

To study the average time complexity of Pres-
election algorithm we need to compute expected
runtime under some probability distribution of
the number of edges connected to ROOT in
the unconstrained MST:

E [O (preselect(n))] = E [r + 1− I1(r)] T (n)

= (E [r] + 1− P (r=1)) T (n).
(1)

This average complexity expresses the in-
tuition that if the weights of the graph are
more likely to produce unconstrained MST with
small number of root edges, the algorithm will
be faster. So what can we say about the prob-
ability over the number of root edges? In prac-
tice there are two extreme cases: graph weights
in the initial stages of training and in the final
stage after training. We will analyze them both
in turn.
For the initial stage of training, when the

parsing model is only initialized, it is reasonable
to assume that the distribution over possible
spanning trees is uniform. We can compute the
probability of having r root edges by finding the
ratio of the number of spanning trees rooted in
ROOT that contain r root edges and the total
number of spanning trees rooted in ROOT .
The total number of spanning trees is given by
Cayle’s formula (n+1)n−1 (Cayley, 1889).5 The
number of spanning trees with root edges that
go trough particular r nodes can be computed
using Matrix-Tree Theorem (Tutte, 1984). To
compute the number of spanning trees with any
r root edges we need to correct the number by

5This is Cayle’s formula with an offset of 1 because
we have in fact n+ 1 nodes due to the artificial ROOT
node. Cayle’s formula is originally defined for undi-
rected spanning trees, but it applies equally to rooted
directed spanning trees because there is one-to-one map-
ping between these two sets of trees.
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multiplying with the number of r combinations.
This gives us the following distribution over the
number of root edges:

P (r;n) =

(
n
r

)
rnn−r−1

(n+ 1)n−1
. (2)

When we put Equation 2 into Equation 1,
we get that the average case complexity under
the uniform distribution of spanning trees is:

E [O (preselect(n))] =(
2n

n+ 1
+ 1− nn−1

(n+ 1)n−1

)
T (n).

This expectation is monotonically increasing
with n. We can compute the upper bound with:

lim
n→ ∞

E [O (preselect(n))] =

(
3− 1

e

)
T (n)

< 2.64 T (n)

This shows that the Preselection algorithm
for constrained MST parsing performs, on av-
erage, just as well as any unconstrained MST
algorithm with only a small constant overhead.
This is true under the assumption of uniform
distribution over trees. The probability of the
number of roots that need to be explored de-
pends only mildly on the number of words:
the larger n the larger is the probability of
having multiple root edges, but for any n it
converges to a small value. The number of hav-
ing more then r number of edges drops rapidly
for any n: P (r > 4) < 0.02, P (r > 5) < 0.004,
P (r > 6) < 0.0005. In other words, it is very
unlikely that this algorithm will need to explore
more than a few of different root edges.
What about the distribution of root edges

with unconstrained MST after training? For
that case we can expect the distribution to be
even more peaked over having only few root
edges because the training data often has only
few root edges (or only one in the case of Uni-
versal Dependencies). To test that we collected
10 sentences for each sentence length from the
English portion of News Commentary v16 cor-
pus. We ran the English bi-affine model of
Stanza (Qi et al., 2020) and computed the av-
erage number of root edges for each sentence
length. The plot with these counts is shown
in Figure 2 as trained weights line. The plot
also shows random weights which represents

the uniform spanning tree distribution. To sim-
ulate this distribution we sample the weight of
each edge of the graph from the uniform distri-
bution. It is easy to see that in expectation all
spanning trees will have the same weight.

Zmigrod et al. mention that the distribution
of the number of root edges in a trained model
depends on the amount of training data. The
trained English model in this plot should repre-
sent the distribution with the smallest number
of root edges since this language has the largest
amount of training data. The random weights
on this plot should be approximately a lower
bound on the number of root edges of a model
with small amount of training data.
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Figure 2: The number of root edges in uncon-
strained MST for two different types of graph
weights.

This plot shows that in the weights produced
by a trained English model, the number of un-
constrained MSTs with multiple roots is small.
This means that the Root Preselection algo-
rithm will perform even better than in the ran-
dom weights setting. This plot also confirms
that the expected number of root edges for a
randomly initialized weights is smaller than 2
for any sentence length. Clearly, the variance
in the number of roots is much higher in the
random weights than in the trained weights.

While the Preselection algorithm is used in
practice by several implementations, to the best
of our knowledge, the proof of its correctness
and of its average-case complexity analysis that
was presented in this section is new.
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4 The Root Reweighting Algorithm

We turn to present a new algorithm for single-
root dependency parsing that is as fast as the
best unconstrained dependency parsing algo-
rithm even in the worst case. It is based on
a very simple observation that subtracting a
constant value c from the weights of all edges
coming out of ROOT :

• decreases the weight of any tree with k root
edges by k · c,

• does not change the ranking among the trees
with the same number of root edges, and

• does potentially change the ranking among
the trees with different number of root edges.

By choosing the right constant c ∈ R we
can arrange all trees with more than one root
edge to have lower weight than any tree with
only one root edge. Let us denote by w(·) the
function that provides the value of the weight
of an edge in the original graph. Let n stand
for the number of words. In a complete graph
we have n+1 nodes due to the artificial ROOT
token. Any spanning tree in this graph will
have n edges.
In the original graph, before the constant

is subtracted, we know for certain that the
score of any spanning tree is not smaller than
nminew(e) and not bigger than nmaxew(e).
After constant c is subtracted from all edges
coming out of ROOT , all trees with k root
edges will have their score decreased by k · c.
In this modified graph, any spanning tree with
k root edges will have score that is upper
bounded by nmaxew(e)− kc and lower bound
of nminew(e)−kc. We want the lowest scoring
single-root tree to have a higher score than any
k-root tree for k ≥ 2. More formally, we want
the following equation to hold:

nmin
e
w(e)− c > nmax

e
w(e)− kc (3)

for all 2 ≤ k ≤ n.
This implies that c should satisfy:

c > n(max
e
w(e)−min

e
w(e)) (4)

A value of c that satisfies this constraint is:

c = 1 + n(max
e
w(e)−min

e
w(e)) (5)

So by applying unconstrained MST over a
graph with the following weight function we in
fact obtain the best single-root solution:

w′(e) =

{
w(e)− c if src(e) = ROOT
w(e) otherwise

(6)

There are multiple advantages of this algo-
rithm. First, it is simple to understand and
implement. Assuming an existing implementa-
tion of any unconstrained MST algorithm, this
algorithm could be implemented very easily,
without incurring further cost to the asymp-
totic complexity. A full implementation (in
Python) is described in Appendix B.1. It is
simpler to implement even in comparison to
the Root Preselection algorithm described in
Section 3.
The second advantage is that we could use

any implementation of an unconstrained MST
as a subroutine. As mentioned before, there
is no precise description nor implementation
of Gabow and Tarjan algorithm that runs in
O(n2). The fastest implementation of Gabow
and Tarjan is by Zmigrod et al. that runs in
O(n2 log n). The Root Reweighting algorithm
can easily be implemented in O(n2) by just us-
ing the unconstrained MST algorithm of Tarjan
(1977) as a subroutine.

The third advantage is that, unlike the Pres-
election algorithm, the Reweighting algorithm
always runs the unconstrained MST algorithm
only once per sentence. This means that it will
be asymptotically fast for any distribution of
spanning trees.
Finally, in comparison to Zmigrod et al.

(2020), the Reweighting algorithm provides for
a great flexibility in choosing the underlying
unconstrained MST algorithm that is used as a
subroutine. In our experiments we use the MST
algorithm of Tarjan for dense graphs that runs
in O(n2). If the graph were sparse, for example,
due to pruning of unlikely or forbidden edges,
we could use the unconstrained MST algorithm
of Gabow et al. (1986) as a subroutine which
runs in O(m+ n log n) where m is the number
of edges in the input graph. In addition, if
we want to perform single-root projective MST
parsing, we could use the algorithm of Eisner
(1996) as a subroutine. Our algorithm also ap-
plies to k-best parsing. Assuming any existing
unconstrained k-best parsing algorithm (such
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Figure 3: General MST algorithms performance.

as Camerini et al. 1980; Hall 2007; Zmigrod
et al. 2021), the Reweighting algorithm can eas-
ily incorporate the constraint that all returned
k-best trees have a single root edge by just
changing the weights of the input graph before
calling the unconstrained k-best algorithm.

In short, this simple algorithm has all the ad-
vantages of the previous single-root algorithms
and none of their disadvantages.

5 The ArcMax Trick

The Reweighting algorithm from Section 4 that
uses Tarjan’s algorithm as a subroutine is the
best possible algorithm we could hope for in
the worst-case with respect to asymptotic com-
plexity. No algorithm can be asymptotically
faster than O(n2) for complete graphs.

Tarjan’s algorithm, works in two phases. The
first one recursively contracts cycles that result
by picking the best edge that enters each node.
The second phase then reverses the recursion
by expanding each contraction. To do all of
this, the algorithm needs to keep track of all the
contracted cycles and of modifications to the
weights entering the cycles. All of these opera-
tions are asymptotically optimal, but they do
incur some constant overhead. There are some
input instances whose structure is such that
we can avoid this overhead and avoid running
the full Tarjan’s algorithm altogether. Zhang
et al. (2017) show that the neural models are
often learned so accurately that just picking
the input arc with the highest weight for each
word often gives a valid tree.

If for each node we just pick the arc with
the highest weight and check if these arcs form
a tree we could avoid running the whole MST
algorithm. We call this trick ArcMax trick.
In principle it could be applied to any MST
algorithm, but it would not give equal benefits
to all of them. Zhang et al. apply it over the
CLE algorithm but in that case it is redundant:
CLE, as its first step, performs the same step
as ArcMax. Zhang et al. do not report any
speed improvements.
We show that a speedup can be achieved if

this trick is used as a procedure before Tarjan’s
algorithm. Tarjan’s algorithm requires that
the graph is strongly connected. In order to
achieve this we have to add edges that enter
ROOT and set their weight to −∞. This means
that Tarjan’s algorithm will always find cycles
to contract even if the problem is simple and
could be solved by picking the maximum edges
entering each word. To address this, we add
the ArcMax trick to Tarjan’s algorithm.

Checking whether ArcMax edges form a non-
projective tree can be done in linear time: do
depth-first search from the ROOT node and in
the end check if all words are visited. Checking
for the projective tree can also be done in lin-
ear time by constructing a shift-reduce oracle
(linear time), running it over the sentence (lin-
ear time) and checking whether in the end the
only token left on the stack is ROOT (constant
time). The code for the checks of projective
and non-projective trees is in Appendix B.2.

For the single-root constraint we need to ex-
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Figure 4: Single-Root MST algorithms performance without ArcMax.
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Figure 5: Single-Root MST algorithms perfor-
mance with ArcMax in trained weights setting.

tend this trick to also verify that the extracted
tree has only one edge coming out of ROOT .
For the Root Preselection and Reweighting al-
gorithms we have a choice of when to apply
the ArcMax trick: before the single-root algo-
rithm or inside it just before it calls the un-
constrained MST algorithm that is used as a
subroutine. For Root Preselection, in practice,
there is no difference in performance. However,
for Reweighting the choice is crucial. After
reweighting is applied, the edges coming out of
ROOT will not be the best edges that enter
any word, therefore ArcMax will never be use-
ful since it will not produce any complete tree.
This is why the ArcMax trick can be applied
to parsing with the Reweighting algorithm only
if it is used before Reweighting is called.

6 Experiments

In this section we experimentally answer some
questions about the performance (speed) of
different variations of the algorithms we de-
scribed. We test algorithms in two settings.
The first setting has the graph weights from a
trained English dependency paring model from
the state-of-the-art Stanza parser (Qi et al.,
2020). The parser is applied to sentences of
different length selected from the News Com-
mentary v16 corpus.6 For each length we select
exactly ten sentences. The second setting uses
graphs with weights sampled from a uniform
distribution. This setting should be similar
to the initial stages of training of most mod-
els. The number of generated random graphs
is the same as the number of sentences from
the trained setting. We will refer to the first
setting as trained weights and to the latter as
random weights. We stress that we do not test
for accuracy, but for speed. Accuracy of all the
tested algorithms remains unchanged.

Which unconstrained algorithm is the
fastest? Figure 3 shows the plots for two
different settings for CLE, Tarjan and Arc-
Max+Tarjan. In the trained setting it is visible
that worst-case complexity analysis is in fact
not informative about the actual performance
of the algorithm. CLE outperforms Tarjan’s
algorithm precisely because it can stop the al-
gorithm if the problem is easy, as described in

6http://www.statmt.org/wmt21/
translation-task.html#download

http://www.statmt.org/wmt21/translation-task.html#download
http://www.statmt.org/wmt21/translation-task.html#download
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Section 5. In the random setting, Tarjan’s al-
gorithm works better than CLE. When we add
ArcMax trick to Tarjan we get an algorithm
that works best in both settings: it optimizes
execution on the easy trained setting and it
uses robustness of Tarjan’s algorithm in the
random setting without slowing it down.

Use ArcMax before or after single-root
step? As mentioned in Section 5 there are
two places where the ArcMax trick could be
used. We argued that using it before the single-
root step is preferable. The results in Figure 6
confirm that.

40 60 80 100
sentence length

0.0

2.5
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7.5
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12.5

15.0
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e
in

m
s

Reweighting + Tarjan
ArcMax + Reweighting + Tarjan
Reweighting + ArcMax + Tarjan

Figure 6: Comparison on the timing of using the
ArcMax trick in the trained weights setting.

Which single-root algorithm is the
fastest? First we compare the algorithms
without using the ArcMax trick. Figure 4
shows this comparison. Both Preselection and
Reweighting significantly outperform the algo-
rithm of Zmigrod et al.. Reweighting outper-
forms Zmigrod et al. on average 2.6x on trained
weights and 3.6x on random weights. The differ-
ence is most extreme on the longest sentences.
The performance curve of Zmigrod et al. also
seems much more volatile.

For Preselection, we can see that the average-
case analysis from Section 3 is much more infor-
mative of the performance than the worst-case
analysis. For Preselection vs. Reweighting we
see that in the random setting the performance
of Reweighting is much more stable with very
low variance and that it consistently outper-
forms Preselection.

If we apply the ArcMax trick to all of these
algorithms, they all get much faster but the

relative speed between them stays the same. To
see that, compare the results in Figures 4a and
5. We do not show the results on the random
setting because they are equivalent to those
without ArcMax in Figure 4b.

When using all of the techniques
in our paper together, namely
ArcMax+Reweighting+Tarjan, we get an
algorithm that is on average 11x faster than
the algorithm of Zmigrod et al. when applied
to the output of a trained parser. A better
implementation of Zmigrod et al. could
possibly make this algorithm more competitive
but it is unlikely that it would compensate for
this large performance gap.

Is Reweighting algorithm always the
fastest? While the Reweighting algorithm
both theoretically and practically improves over
the Preselection algorithm, it should be men-
tioned that the performance in practice de-
pends on the implementation of Tarjan’s al-
gorithm as the underlying unconstrained MST
algorithm. If instead of Tarjan we used CLE,
the Preselection algorithm will work better
on the trained input (see Figure 11 in Ap-
pendix). The main reason for that is that
CLE algorithm, unlike Tarjan, has a computa-
tional complexity that varies, depending on
the input, between O(n2) and O(n3). On
trained input, in general, CLE tends to be
closer to its best-case complexity because there
are not many cycles to be contracted. How-
ever, the Reweighting algorithm changes the
weights of a graph in such a way that there are
always cycles that need to be contracted and
thereby causes CLE to be closer to its worst-
case complexity. This problem does not exist
with Tarjan’s algorithm that both in best and
worst-case runs in O(n2). Our recommendation
is to use ArcMax+Reweighting+Tarjan as the
fastest and most stable algorithm, but if some
other unconstrained algorithm is used in place
of Tarjan’s, it should be tested if the Reweight-
ing algorithm runs faster than Preselection.

7 Conclusion

We demonstrated how to obtain significant
speed-ups in single-root dependency parsing.
The two proposed algorithms are fast, flexible,
easy to understand and simple to implement in
comparison to previously published ones.



10549

Acknowledgments

We thank the anonymous reviewers for their
comments and useful feedback. We also thank
the developers of the Stanza parser for enabling
our work and analysis. This work was sup-
ported by ERC H2020 Advanced Fellowship
GA 742137 SEMANTAX grant and Bloomberg.
Miloš Stanojević is especially grateful to Xin
Zhan and the staff of NHS Western General
Hospital. During the last year they have helped
significantly in making this paper possible, but
the importance of their dedicated work goes far
beyond that.

References
Mark Anderson and Carlos Gómez-Rodríguez.

2020. Distilling neural networks for greener and
faster dependency parsing. In Proceedings of the
16th International Conference on Parsing Tech-
nologies and the IWPT 2020 Shared Task on
Parsing into Enhanced Universal Dependencies,
pages 2–13, Online. Association for Computa-
tional Linguistics.

P. M. Camerini, L. Fratta, and F. Maffioli. 1979. A
note on finding optimum branchings. Networks,
9(4):309–312.

Paolo M. Camerini, Luigi Fratta, and Francesco
Maffioli. 1980. Ranking arborescences in o(km
log n) time. European Journal of Operational
Research, 4(4):235–242. Combinational Opti-
mization.

Arthur Cayley. 1889. A theorem on trees. Quar-
terly Journal of Mathematics, 23:376–378.

Y. Chu and T. Liu. 1965. On the shortest ar-
borescence of a directed graph. Science Sinica,
14:1396—-1400.

Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, and Clifford Stein. 2009. In-
troduction to Algorithms, Third Edition, 3rd edi-
tion. The MIT Press.

J. Edmonds. 1967. Optimum branchings. J. Res.
Nat. Bur. Standards, pages 233—-240.

Jason M. Eisner. 1996. Three new probabilistic
models for dependency parsing: An exploration.
In COLING 1996 Volume 1: The 16th Interna-
tional Conference on Computational Linguistics.

Harold N Gabow, Zvi Galil, Thomas Spencer, and
Robert E Tarjan. 1986. Efficient algorithms for
finding minimum spanning trees in undirected
and directed graphs. Combinatorica, 6(2):109–
122.

Harold N Gabow and Robert E Tarjan. 1984. Effi-
cient algorithms for a family of matroid intersec-
tion problems. Journal of Algorithms, 5(1):80–
131.

Keith Hall. 2007. K-best spanning tree parsing. In
Proceedings of the 45th Annual Meeting of the
Association of Computational Linguistics, pages
392–399, Prague, Czech Republic. Association
for Computational Linguistics.

Sandra Kübler, Ryan McDonald, and Joakim
Nivre. 2009. Dependency parsing. Synthesis
lectures on human language technologies, 1(1):1–
127.

Ryan McDonald, Fernando Pereira, Kiril Ribarov,
and Jan Hajic. 2005. Non-projective depen-
dency parsing using spanning tree algorithms.
In Proceedings of human language technology
conference and conference on empirical methods
in natural language processing, pages 523–530.

B. M. E. Moret. 2002. Towards a discipline of ex-
perimental algorithmics. In M. H. Goldwasser,
D. S. Johnson, and C. C. McGeoch, editors,
Data Structures, Near Neighbor Searches, and
Methodology: Fifth and Sixth DIMACS Imple-
mentation Challenges, pages 197–214.

Joakim Nivre, Mitchell Abrams, Željko Agić,
Lars Ahrenberg, Lene Antonsen, Katya
Aplonova, Maria Jesus Aranzabe, Gashaw
Arutie, Masayuki Asahara, Luma Ateyah,
Mohammed Attia, Aitziber Atutxa, Liesbeth
Augustinus, Elena Badmaeva, Miguel Balles-
teros, Esha Banerjee, Sebastian Bank, Verginica
Barbu Mititelu, Victoria Basmov, John Bauer,
Sandra Bellato, Kepa Bengoetxea, Yevgeni
Berzak, Irshad Ahmad Bhat, Riyaz Ahmad
Bhat, Erica Biagetti, Eckhard Bick, Rogier
Blokland, Victoria Bobicev, Carl Börstell,
Cristina Bosco, Gosse Bouma, Sam Bowman,
Adriane Boyd, Aljoscha Burchardt, Marie Can-
dito, Bernard Caron, Gauthier Caron, Gülşen
Cebiroğlu Eryiğit, Flavio Massimiliano Cecchini,
Giuseppe G. A. Celano, Slavomír Čéplö, Savas
Cetin, Fabricio Chalub, Jinho Choi, Yongseok
Cho, Jayeol Chun, Silvie Cinková, Aurélie Col-
lomb, Çağrı Çöltekin, Miriam Connor, Marine
Courtin, Elizabeth Davidson, Marie-Catherine
de Marneffe, Valeria de Paiva, Arantza Diaz de
Ilarraza, Carly Dickerson, Peter Dirix, Kaja
Dobrovoljc, Timothy Dozat, Kira Droganova,
Puneet Dwivedi, Marhaba Eli, Ali Elkahky,
Binyam Ephrem, Tomaž Erjavec, Aline Etienne,
Richárd Farkas, Hector Fernandez Alcalde,
Jennifer Foster, Cláudia Freitas, Katarína
Gajdošová, Daniel Galbraith, Marcos Garcia,
Moa Gärdenfors, Sebastian Garza, Kim Gerdes,
Filip Ginter, Iakes Goenaga, Koldo Gojenola,
Memduh Gökırmak, Yoav Goldberg, Xavier
Gómez Guinovart, Berta Gonzáles Saavedra,
Matias Grioni, Normunds Grūz̄ıtis, Bruno
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A Tarjan’s Unconstrained MST
Algorithm

The original Chu-Liu-Edmonds algorithm
(CLE) runs in O(n3). Tarjan (1977) improves
this by using advanced data structures. Tarjan
proposes two variations of the algorithm. The
first one runs in O (m log n) where m is the
number of edges and n is the number of nodes.
In the case of dense input graphs, such as those
in dependency parsing, where the number of
edges is n2 the complexity of this algorithm is
O
(
n2 log n

)
. Tarjan proposed a second ver-

sion of the algorithm that in the case of dense
graphs has complexity of O

(
n2
)
. These two

versions of the algorithm differ only in the type
of a priority queue that they use.

The description of the algorithm in the origi-
nal paper is not very accessible and contains a
small error. Camerini et al. (1979) fixes this er-
ror and introduces some simplifications. Zwick
(2013) provides a very accessible introduction
to this algorithm, but unfortunately also with
some errors and it does not cover the optimiza-
tion for dense graphs. Our presentation here is
a synthesis of these previous presentations. We
assume that the reader is familiar with the stan-
dard CLE algorithm, Union-Find (disjoint sets)
and meldable heaps (such as Fibonacci Heaps).
For an introduction of CLE, see Kübler et al.
(2009, §4.3.3). For an introduction to Union-
Find and Fibonacci Heaps see Cormen et al.
(2009, §19 and §21)

Just like the CLE algorithm, Tarjan’s algo-
rithm works in two phases. The first phase
performs all the detection and contractions of
cycles. Phase two expands those contractions
to recover the optimal spanning tree. The algo-
rithm for Phase I is shown in Algorithm 1. This
is the first version of the algorithm that runs
in O

(
n2 log n

)
on dense graphs. We explain

later how to modify it to get O(n2) runtime.
The algorithm uses the following data struc-

tures:

• P[i] is a priority queue that contain all edges
that enter (super-)node i

• in[i] stores the best edge that enters the
(super-)node i,

• prev[i] stores the (super-)node that precedes
(super-)node i on the path that is currently
being formed,

• parent[i] stores the super-node (cycle) in
which (super-)node i takes part,

• children[i] stores all the (super-)nodes that
are part of the cycle represented by super-
node i (inverse of parent).

One of the main insights of Tarjan is that
when we do contraction of cycles, we do not
need to explicitly change the edges that enter
and leave the cycle. Instead, we keep the edges
as they are but keep a separate disjoint-set
data structure that will tell us for any edge
to which cycle its source and target belong.
This disjoint-set is represented by parent ar-
ray. To make disjoint set operations efficient
two heuristics are often applied in combination:
union-by-rank and path-compression. Union-
by-rank complicates implementation slightly
and is not very important because even with-
out it Tarjan’s algorithm has the same runtime
since disjoint-set is not a bottleneck. Path-
compression is sufficient to get a fast runtime,
but path compression destroys the tree (it main-
tains only the information of which node the
root of the tree is). Since Phase II of Tarjan’s
algorithm needs the whole tree we should keep
a separate array that works like parent, but
unlike parent it is used only for the destruc-
tive find operation of the disjoint-sets. We do
not put this in the pseudo-code since it would
complicate the presentation.

Tarjan’s algorithm requires that the graph is
strongly connected. We can easily ensure this
in O(n) time by adding edges with weight −∞
between every node i and i+ 1 in both direc-
tions (assuming any arbitrary ordering between
nodes).
The algorithm starts at an arbitrary node

a. It takes the highest scoring edge entering
a (line 9) and finds the cycle (super-node) to
which the source of the edge belongs. There
are three cases to be explored for this edge.

1. this is a self-loop, i.e. both source and
target belong to an already collapsed cycle,
in that case just move to the next best edge
of the current node,

2. this is an extension of the path, in that
case we move to the source of the path,

3. this edge closes a cycle, in that case we
collapse the cycle into a super-node.
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Figure 7: Example run of Tarjan’s algorithm.

When we collapse the cycle in case 3, we
meld the priority queues with the edges of all
the nodes that participate in the cycle. This
is why case 1 is possible: after collapsing done
by case 3 we do not remove the edges that are
within the elements that are inside the cycle.
This is the key point that differentiates the two
versions of Tarjan’s algorithm.

The first version can use any implementation
of a priority queue that has an efficient meld op-
eration, for example Fibonacci Heaps can do it
in constant time. With that heap implementa-
tion the algorithm needs to do m extract_max
operations and n meld operations that gives
complexity O(m log n).

The second version of the algorithm which is
optimized for dense graphs has a very different
implementation of a priority queue. In this
version of the algorithm, a queue is only a
simple array of length n (number of nodes)
where each element is a weight of some source
edge entering the current node or a NaN value
if that edge is already extracted. Extracting
the maximum in this representation is done by
a linear scan trough the array. Melding is an
interesting operation here because it is a lossy
operation. Imagine that we need to meld two
queues of this type named a and b. If both
queues have entering edges from some node
i, the melded queue needs to store only the
highest scoring one (we care only about the best
edge that enters the cycle from some outside
node). So c[i] = max(a[i], b[i]). If either a[i]
or b[i] is NaN then c[i] will be NaN too. This
will remove self-loops and therefore eliminate

the need for case 1 of the first version of the
algorithm. A Python implementation of this
priority queue is shown in Figure 12.
As a note, we should mention that some

papers mention that Radix sort is needed for
implementing this efficient queue. This stems
from Tarjan’s original paper that mentions
Radix sort for initialization of the queue. How-
ever, Radix sort is not needed in the complete
graph. The reason why Tarjan proposes Radix
sort is to avoid worst-case complexity when
graph is not sparse but not fully complete ei-
ther. If we want to stretch this analogy, we
can see our implementation as one that uses
Counting sort instead of Radix sort.
Since this version of a queue has a slower

extract_max and slower meld, what is its pur-
pose? The main advantage of this type of
queue is that it removes the self-loop edges
that appear with contraction so the case 1 de-
scribed above will never appear. That means
that this version of the algorithm has only n
extract_max operations and n meld operations
which gives total runtime of O(n2).

The Algorithm 2 presents the second phase
Tarjan’s algorithm that decomposes the cycle
tree constructed by the first phase. For a more
detailed description of this phase, see Zwick
(2013).

As an illustration of the first phase of Tar-
jan’s algorithm consider the graph in Figure 7a.
Imagine that the original graph contained only
black edges. In order to apply Tarjan’s algo-
rithm we first needed to add gray edges with
cost −∞ (we did not add similar edges for
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3→ 2 and 4→ 3 to keep things simple). This
graph is now strongly connected. We can start
parsing from any node in the graph. Let us
assume we started from node 2. We take the
best non-visited edge entering the current node
(extract_max(P [a])). That gives us the edge
from node 4. We go to node 4 and repeat the
same process that leads us to node 3 and then
2. We have formed a cycle by building the
path backwards. This cycle is contracted form-
ing a super-node 5. A note of this is taken in
Figure 7b that represents non-compressed ver-
sion of the disjoint-set structure. We continue
choosing the best edge from node 5 and get
to node 1 and then 0. When we take the best
edge entering node 0 we form a cycle. Notice
that this edge has weight −∞ but that is still
the best edge that enters 0. Finally we form
the cycle that covers the whole graph. Notice
that for this phase of the algorithm it does not
matter which node is our designated root node.
The choice of the root plays part only in the
second phase.

B Python Implementation

B.1 Reweighting Implementation

The implementation of the Reweighting algo-
rithm is shown in Figure 8. As input it accepts
two arguments. One of them is a function
that does unconstrained MST search. This can
be an implementation of Chu-Liu-Edmonds or
Tarjan’s algorithm.

The scores parameter is a NumPy square
matrix (np.array) with shape (n+1, n+1). Ev-
ery entry scores[i, j] represents the weight
of arc that leaves node j and enters node i (i.e.
j → i). Node 0 is ROOT node by convention.
All edges entering ROOT (i.e. scores[0, :] )
are in most implementation set to −∞ to force
MST the solution to have ROOT as root. Also
all self-loops (diagonal entries) are set to −∞.

While it is in general fine to use−∞ to signify
disconnected edges, it would make Reweighting
Equation 6 not behave correctly and make every
spanning tree have weight∞. That is why with
the first line we replace all infinite values with
a NaN value. The other lines just apply the
Equation 6 before calling the unconstrained
MST function.

Algorithm 1 Tarjan Phase I – Collapsing
1: for i ∈ V do . Initialization
2: P [i]← priority_queue({(j, i) ∈ G})
3: in[i]← null
4: prev[i]← null
5: parent[i]← null
6: children[i]← null
7: a← arbitrary vertex
8: while P [a] 6= ∅ do
9: (u, v)← extract_max(P [a])

10: b← find(u)
11: if a = b then
12: continue . This is a self-loop
13: else
14: in[a]← (u, v)
15: prev[a]← b
16: if in[u] = null then
17: a← b . Path extension
18: else
19: c← new_vertex() . New cycle
20: i← a

21: do . Collect nodes in the cycle
22: insert(children[c],find(i))
23: i← prev[i]
24: while i 6= a

25: for i ∈ children[c] do
26: parent[i]← c
27: add_const(P [i],−w(in[i]))
28: P [c]← meld(P [c], P [i])

29: a← c

Algorithm 2 Tarjan Phase II – Expanding
1: R← ∅
2: procedure dismantle(u)
3: while parent[u] 6= null do
4: for v ∈ children[parent[u]]\{u} do
5: parent[v]← null
6: if children[v] 6= null then
7: insert(R, v)

8: dismantle(r)
9: while R 6= ∅ do

10: c← extract(R)
11: (u, v)← in[c]
12: in[v]← (u, v)
13: dismantle(v)

14: return{in[u] | u ∈ V \{r}}
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B.2 ArcMax Implementation

Figure 9 shows the implementation of all func-
tions needed for the ArcMax optimization. The
arcmax function takes three arguments. scores
and mst_func are the same as in the previous
case. The one_root argument is a Boolean flag
defining whether we want to perform single-root
edge parsing or not.
This function has three main parts. The

part that computes the highest scoring edge
entering every node (scores.argmax), the part
that checks whether the subgraph is a tree,
and an optional third part that will be exe-
cuted if a subgraph is not a valid tree. The
scores.argmax part runs in O(n2) but in prac-
tice it is extremely fast because it does a very
simple operation that is implemented in C un-
der the hood. Checking whether the sub-graph
is a tree is_tree is done quickly in linear time.
The full MST parsing is performed in O(n2)
(or O(n3) if we use CLE) only if the previous
fast checks fail.

Function fast_single_root_mst shows how
to combine ArcMax and Reweighting, assuming
that there is an existing implementation of some
unconstrained MST parsing algorithm such as
Tarjan’s.

For the projective case we would need to
replace function is_tree with the function
is_projective_tree from Figure 10 and to
replace tarjan with eisner. The algorithm
for checking of whether the tree is projective in
Figure 10 runs in linear time because it visits
every arc in the sub-graphs only once.
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def reweighting(scores, mst_func):
scores2 = np.where(np.isinf(scores), np.nan, scores)
n = scores.shape[0]-1 # number of words
scores[:, 0] -= 1 + n*(np.nanmax(scores2)-np.nanmin(scores2))
return mst_func(scores)

Figure 8: Python implementation of Reweighting algorithm

def is_tree(proposal):
# proposal[i] is a parent of node i
n = proposal.shape[0] # number of words + 1 for ROOT
# convert child-parent pointers to parent-child
children = [[] for _ in range(n)]
for i in range(1, n):

children[proposal[i]].append(i)
# do depth-first search iteratively
is_visited = np.zeros(n, dtype=bool)
stack = [0]
while len(stack) != 0:

i = stack.pop()
is_visited[i] = True
stack.extend(children[i])

return is_visited.all() # true if all nodes were visited

def arcmax(scores, one_root, mst_func):
proposal = scores.argmax(axis=1) # find best arc for each node
root_count = sum(proposal[1:] == 0)
if is_tree(proposal) and (root_count == 1 or not one_root):

return proposal
else:

return mst_func(scores)

def fast_unconstrained_mst(scores):
return arcmax(scores, False, tarjan)

def fast_single_root_mst(scores):
return arcmax(scores, True, lambda x: reweighting(x, tarjan))

Figure 9: Python implementation of ArcMax optimization
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def is_projective_tree(proposal):
n = proposal.shape[0]
deps_count = np.zeros(n, dtype=int)
for i in range(1, n):

deps_count[proposal[i]] += 1
stack = [0]
for i in range(1, n):

stack.append(i)
while len(stack) > 1:

right = stack.pop()
left = stack.pop()
if proposal[left] == right:

# exists left arc
stack.append(right)
deps_count[right] -= 1

elif proposal[right] == left and deps_count[right] == 0:
# exists right arc
stack.append(left)
deps_count[left] -= 1

else:
# no attachments possible
# restore stack and move to next word
stack.append(left)
stack.append(right)
break

return stack == [0]

Figure 10: Python implementation of a linear-time check for whether a sub-graph is a projective tree.
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Figure 11: Comparison of combinations of Meta-Algorithm (Preselection, Reweighting) and MST algo-
rithm (Tarjan, CLE).
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class EdgePriorityQueue:

def __init__(self, node_id: int, edge_weights: np.ndarray):
self.target = np.full(edge_weights.shape, node_id)
self.weights = edge_weights
self.weights[node_id] = np.nan

def __len__(self) -> int:
return np.count_nonzero(~np.isnan(self.weights))

def extract_max(self) -> (int, int, float):
i = np.nanargmax(self.weights)
if np.isnan(self.weights[i]): # nanargmax bug with -inf

i = np.argmax(np.isinf(self.weights))
w = self.weights[i]
self.weights[i] = np.nan
return i, self.target[i], w

def meld_inplace(self, other) -> None:
to_replace = (self.weights < other.weights)
self.target[to_replace] = other.target[to_replace]
self.weights[to_replace] = other.weights[to_replace]
self.weights[np.isnan(other.weights)] = np.nan

def add_const(self, const: float) -> None:
self.weights[~np.isinf(self.weights)] += const

Figure 12: Python implementation of the priority queue needed for the dense graph version of Tarjan’s
algorithm.
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Figure 13: Comparison against Stanza’s implementation of single-root dependency parsing.


