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Abstract

This paper presents an empirical study to effi-
ciently build named entity recognition (NER)
systems when a small amount of in-domain
labeled data is available. Based upon recent
Transformer-based self-supervised pre-trained
language models (PLMs), we investigate three
orthogonal schemes to improve model gener-
alization ability in few-shot settings: (1) meta-
learning to construct prototypes for different
entity types, (2) task-specific supervised pre-
training on noisy web data to extract entity-
related representations and (3) self-training to
leverage unlabeled in-domain data. On 10 pub-
lic NER datasets, we perform extensive empir-
ical comparisons over the proposed schemes
and their combinations with various propor-
tions of labeled data, our experiments show
that (i) in the few-shot learning setting, the
proposed NER schemes significantly improve
or outperform the commonly used baseline, a
PLM-based linear classifier fine-tuned using
domain labels. (ii) We create new state-of-the-
art results on both few-shot and training-free
settings compared with existing methods.

1 Introduction

Named Entity Recognition (NER) involves pro-
cessing unstructured text, locating and classifying
named entities (certain occurrences of words or ex-
pressions) into particular categories of pre-defined
entity types, such as persons, organizations, loca-
tions, medical codes, dates and quantities. NER
serves as an important first component for tasks
such as information extraction (Ritter et al., 2012),
information retrieval (Guo et al., 2009), question
answering (Mollá et al., 2006), task-oriented dia-
logues (Peng et al., 2020a; Gao et al., 2019) and
other language understanding applications (Nadeau
and Sekine, 2007; Shaalan, 2014). Deep learning
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Figure 1: An overview of methods studied in our paper.
Linear classifier fine-tuning is a default baseline that up-
dates an NER model from pre-trained Roberta/BERT.
We study three orthogonal strategies to improve NER
models in the limited labeled data settings.

has shown remarkable success in NER in recent
years, especially with self-supervised pre-trained
language models (PLMs) such as BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019c).
State-of-the-art (SoTA) NER models are often ini-
tialized with PLM weights, fine-tuned with stan-
dard supervised learning. One classic approach is
to add a linear classifier on top of the representa-
tions provided by PLMs, and fine-tune the entire
model using a cross-entropy objective on domain-
specific labels (Devlin et al., 2019). Despite its
simplicity, the approach generally results in good
performance on benchmarks and serves as a strong
baseline in this study.

Unfortunately, even with these PLMs, building
NER systems still remains a labor-intensive, time-
consuming task. It requires rich domain knowledge
and expert experience to annotate a large corpus
of in-domain labeled tokens to teach the models
to achieve a reasonable accuracy. However, this is
in contrast to the real-world application scenarios,
where only very small amounts of labeled data are
available for new domains, such as medical (Hofer
et al., 2018) domain. The cost of building NER sys-
tems at scale with rich annotations (i.e., hundreds
of different enterprise use-cases/domains) can be
prohibitively expensive. This draws attentions to
a challenging but practical research problem: few-
shot NER.

To deal with the challenge of few-shot learning,
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we focus on improving the generalization ability of
PLMs for NER from three complementary direc-
tions, shown in Figure 1. Instead of limiting our-
selves in making use of limited in-domain labeled
tokens with the classic approach, (i) we create pro-
totypes as the representations for different entity
types, and assign labels via the nearest neighbor
criterion; (ii) we continuously pre-train PLMs us-
ing web data with noisy labels that is available in
much larger quantities to improve NER accuracy
and robustness; (iii) we tag the in-domain unla-
beled data with soft labels via self-training (Xie
et al., 2020), and perform semi-supervised learning
in conjunction with the limited labeled data.

Our contributions include: (i) We present the
first systematic study for few-shot NER, a prob-
lem that is little explored in the literature. Three
distinctive schemes and their combinations are in-
vestigated. (ii) We perform comprehensive compar-
isons of these schemes on 10 public NER datasets
from different domains. (iii) Compared with ex-
isting methods on few-shot and training-free NER
settings, the proposed schemes achieve SoTA per-
formance despite their simplicity. To shed light
on future research on few-shot NER, our study
suggests that: (i) Noisy supervised pre-training
can significantly improve NER accuracy, and we
will release our pre-trained checkpoints. (ii) Self-
training consistently improves few-shot learning
when the ratio of data amounts between unlabeled
and labeled data is high. (iii) The performance of
prototype learning varies on different datasets. It
is useful when the number of labeled examples is
small, or when new entity types are given in the
training-free settings.

2 Background on Few-shot NER

Few-shot NER is a sequence labeling task,
where the input is a text sequence (e.g., sentence)
of length T , X = [x1,x2, ...,xT ], and the out-
put is a corresponding length-T labeling sequence
Y = [y1,y2, ...,yT ], where y ∈ Y is a one-hot
vector indicating the entity type of each token from
a pre-defined discrete label space. The training
dataset for NER often consists of pair-wise data
DL = {(Xn,Yn)}Nn=1, where N is the number
of training examples. Traditional NER systems
are trained in the standard supervised learning
paradigms, which usually requires a large num-
ber of pairwise examples, i.e., N is large. In real-
world applications, the more favorable scenarios

are that only a small number of labeled examples
are given for each entity type (N is small), because
expanding labeled data increases annotation cost
and decreases customer engagement. This yields a
challenging task few-shot NER.

Linear Classifier Fine-tuning. Following the re-
cent self-supervised PLMs (Devlin et al., 2019; Liu
et al., 2019c), a typical method for NER is to utilize
a Transformer-based backbone network to extract
the contextualized representation of each token
z = fθ0(x) . A linear classifier (i.e., a linear layer
with parameter θ1 = {W, b} followed by a Soft-
max layer) is applied to project the representation
z into the label space fθ1(z) = Softmax(Wz+b).
In another word, the end-to-end learning objective
for linear classifier based NER can be obtained via
a function composition y = fθ1 ◦ fθ0(x), with
trainable parameters θ = {θ0,θ1}. The pipeline is
shown in Figure 2(a). The model is optimized by
minimizing the cross-entropy:

L(x,y) =
∑

(X,Y)∈DL

T∑
i=1

KL(yi||q(yi|xi)), (1)

where the KL divergence between two distribu-
tions is KL(p||q) = Ep log(p/q), and the predic-
tion probability vector for each token is

q(y|x) = Softmax(W · fθ0(x) + b) (2)

In practice, θ1 = {W, b} is always updated,
while θ0 can be either frozen (Liu et al., 2019a,b;
Jie and Lu, 2019) or updated (Devlin et al., 2019;
Yang and Katiyar, 2020).

3 Methods

When only a small number of labeled tokens are
available, it renders difficulties for the classical
supervised fine-tuning approach: the model tends
to over-fit the training examples and shows poor
generalization performance on the testing set (Frit-
zler et al., 2019). In this paper, we provide a
comprehensive study specifically for limited NER
data settings, and explore three orthogonal direc-
tions shown in Figure 1: (i) How to adapt meta-
learning such as prototype-based methods for few-
shot NER? (ii) How to leverage freely-available
web data as noisy supervised pre-training data? (iii)
How to leverage unlabeled in-domain sentences in
a semi-supervised manner? Note that these three
directions are complementary to each other and can
be used jointly to further extrapolate the methodol-
ogy space in Figure 1.



10410

Mr. Bush asked Congress to raise to $ 6 billion 

Org Money Person Others

Transformer-based Backbone Network

Linear Layer + SoftMax

Org M M MO O OOP P

Model:

Target:

Input Sentence:

Entity Types:

Mr. Bush asked Congress to raise to $ 6 billion 

Person

Org Money

Support set:

Gates co-founded Microsoft …Query set:

Jobs founded NeXT Inc. with $ 7 million

Distance SoftMax

(a) Baseline: NER with a linear classifier (b) Prototype-based method

Series 5 runners up JLS and Florence and the Machine performed on show

Event Musician ArtistEntity Types:

Input Sentence:

Examples

Others

Labeled set

Unlabeled set

Student

Teacher

O M OP …

Distillation

(c) Noisy supervised pre-training (d) Self-training
Figure 2: Illustration of different methods for few-shot NER. In this example, each token in the input sentence is
categorized into one of the four entity types. (a) A typical NER system, where a linear classifier is built on top of
unsupervised pre-trained Transformer-based networks such as BERT/Roberta. (b) A prototype set is constructed
via averaging features of all tokens belonging to a given entity type in the support set (e.g., the prototype for
Person is an average of three tokens: Mr., Bush and Jobs). For a token in the query set, its distances from
different prototypes are computed, and the model is trained to maximize the likelihood to assign the query token
to its target prototype. (c) The Wikipedia dataset is employed for supervised pre-training, whose entity types are
related but different (e.g., Musician and Artist are more fine-grained types of Person in the downstream
task). The associated types on each token can be noisy. (d) Self-training: An NER system (teacher model) trained
on a small labeled dataset is used to predict soft labels for sentences in a large unlabeled dataset. The joint of the
predicted dataset and original dataset is used to train a student model.

3.1 Prototype-based Methods
Meta-learning (Ravi and Larochelle, 2017) has
shown promising results for few-shot image classi-
fication (Tian et al., 2020) and sentence classifica-
tion (Yu et al., 2018; Geng et al., 2019). It is natural
to adapt this idea to few-shot NER. The core idea is
to use episodic classification paradigm to simulate
few-shot settings during model training. Specifi-
cally in each episode,M entity types (usuallyM <
|Y|) are randomly sampled from DL, containing a
support set S = {(Xi,Yi}M×Ki=1 (K sentences per
type) and a query set Q = {(X̂i, Ŷi}M×K

′

i=1 (K ′

sentences per type).
We build our method based on prototypical net-

work (Snell et al., 2017), which introduces the no-
tion of prototypes, representing entity types as vec-
tors in the same representation space of individual
tokens. To construct the prototype for the m-th
entity type cm, the average of representations is
computed for all tokens belonging to this type in
the support set S:

cm =
1

|Sm|
∑
x∈Sm

fθ0(x), (3)

where Sm is the token set of the m-th type in S,
and fθ0 is defined in (2). For an input token x ∈ Q
from the query set, its prediction distribution is

computed by a softmax function of the distance be-
tween x and all the entity prototypes. For example,
the prediction probability for the m-th prototype is:

q(y=Im|x)=
exp (−d(fθ0(x), cm))∑
m′ exp (−d(fθ0(x), cm′))

(4)

where Im is the one-hot vector with 1 for m-th
coordinate and 0 elsewhere, and d(fθ0(x), cm) =
‖fθ0(x) − cm‖2 is used in our implementation.
We provide a simple example to illustrate the pro-
totype method in Figure 2(b). At each training
iteration, a new episode is sampled, and the model
parameter θ0 is updated via plugging (4) into (1).
In the evaluation phase, the label of a new token
x is assigned using the nearest neighbor criterion
argminm d(fθ0(x), cm).

3.2 Noisy Supervised Pre-training
Generic representations via self-supervised
pre-trained language models (Devlin et al.,
2019; Liu et al., 2019c) have benefited a wide
range of NLP applications. These models are
pre-trained with the task of randomly masked
token prediction on massive corpora, and are
agnostic to the downstream tasks. In other
words, PLMs treat each token equally, which is
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not aligned with the goal of NER: identifying
named entities as emphasized tokens and assign-
ing labels to them. For example, for a sentence
“ Mr. Bush asked Congress to raise to $ 6 billion ”,
PLMs treat to and Congress equally, while NER
aims to highlight entities like Congress and
downplay their collocated non-entity words like to.

This intuition inspires us to endow the backbone
network with an ability to upweight the representa-
tions of entities for NER. Hence, we propose to em-
ploy the large-scale noisy web data WiFiNE (Ghad-
dar and Langlais, 2018) for noisy supervised pre-
training (NSP). The authors automatically anno-
tated the 2013 English Wikipedia dump by query-
ing anchored strings as well as the coreference
mentions in each wiki page to the Freebase. The
WiFiNE dataset is of 6.8GB and contains 113 entity
types along with over 50 million sentences. Though
introducing inevitable noises (e.g., a random subset
of 1000 mentions are manually evaluated and the
accuracy of automatic annotations reaches 77% as
reported in the paper, due to the error of identifying
coreferences), this automatic annotation procedure
is highly scalable and affordable. The label set of
WiFiNE covers a wide range of fine-grained entity
types, which are often related but different from
entity types in the downstream datasets. For exam-
ple in Figure 2(c), the entity types Musician and
Artist in Wikipedia are more fine-grained than
Person in a typical NER dataset. The proposed
NSP learns representations to distinguish entities
from others. This particularly favors the few-shot
settings, preventing over-fitting via the prior knowl-
edge of extracting entities from various contexts in
pre-training.

Two pre-training objectives are considered in
NSP, respectively: the first one is to use the linear
classifier in (2), the other is a prototype-based ob-
jective in (4). For the linear classifier, we found
that the batch size of 1024 and learning rate of 1e−4

works best, and for the prototype-based approach,
we use the episodic training paradigm with M = 5
and set learning rate to be 5e−5. For both objec-
tives, we train the whole corpus for 1 epoch and
apply the Adam Optimizer (Kingma and Ba, 2015)
with a linearly decaying schedule with warmup at
0.1. We empirically compare both objectives in
experiments, and found that the linear classifier in
(2) improves pre-training more significantly.

3.3 Self-training
Though manually labeling entities is expensive,
it is easy to collect large amounts of unlabeled
data in the target domain. Hence, it becomes de-
sired to improve the model performance by effec-
tively leveraging unlabeled data DU with limited la-
beled data DL. We resort to the recent self-training
scheme (Xie et al., 2020) for semi-supervised learn-
ing. The algorithm operates as follows:

1. Learn teacher model θtea via cross-entropy
using (1) with labeled tokens DL.

2. Generate soft labels using a teacher model on
unlabeled tokens:

ỹi = fθtea(x̃i),∀x̃i ∈ DU (5)

3. Learn a student model θstu via cross-entropy
using (1) on labeled and unlabeled tokens:

LST =
1

|DL|
∑
xi∈DL

L(fθstu(xi),yi)

+
λU
|DU|

∑
x̃i∈DU

L(fθstu(x̃i), ỹi) (6)

where λU is the weighting hyper-parameter.

A visual illustration for self-training procedure
shown in Figure 2(d). It is optional to iterate from
Step 1 to Step 3 multiple times, by initializing
θtea in Step 1 with newly learned θstu in Step 3.
We only perform self-training once for simplicity,
which has already shown excellent performance.

4 Experiments

4.1 Settings
Methods. Throughout our experiments, the pre-
trained base RoBERTa model is employed as the
backbone network. We investigate the following
6 schemes for the comparative study: (i) LC is
the linear classifier fine-tuning method in Section
2, i.e., adding a linear classifier on the backbone,
and directly fine-tuning on entire model on the
target dataset; (ii) P indicates the prototype-based
method in Section 3.1; (iii) NSP refers to the noisy
supervised pre-training in Section 3.2; Depending
on the pre-training objective, we have LC+NSP
and P+NSP. (iv) ST is the self-training approach
in Section 3.3, it is combined with linear classifier
fine-tuning, denoted as LC+ST; (v) LC+NSP+ST.

We evaluate our methods on 10 public bench-
mark datasets, covering a wide range of domains.
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Datasets CoNLL Onto WikiGold WNUT Movie Restaurant SNIPS ATIS Multiwoz I2B2

Domain News General General Social Media Review Review Dialogue Dialogue Dialogue Medical
#Train 14.0k 60.0k 1.0k 3.4k 7.8k 7.7k 13.6k 5.0k 20.3k 56.2k
#Test 3.5k 8.3k 339 1.3k 2.0k 1.5k 697 893 2.8k 51.7k

#Entity Types 4 18 4 6 12 8 53 79 14 23

Table 1: Statistics on the 10 public datasets studied in our NER benchmark.

The statistics of these datasets are summarized in
Table 1, and detailed descriptions are provided in
Appendix. For each dataset, we conduct three sets
of experiments using various proportions of the
training data: 5-shot, 10% and 100%. More experi-
mental settings such as the hyper-parameters and
evaluation details are shown in Appendix.

4.2 Comprehensive Comparison Results
To gain thorough insights and benchmark few-
shot NER, we first perform an extensive com-
parative study on 6 methods across 10 datasets.
The results are shown in Table 2. We can draw
the following major conclusions: (i) By com-
paring columns 1 and 2 (or comparing 3 and
4 ), it clearly shows that noisy supervised pre-
training provides better results in most datasets,
especially in the 5-shot setting, which demonstrates
that NSP endows the model an ability to extract
better NER-related features. (ii) The compari-
son between columns 1 and 3 provides a head-
to-head comparison between linear classifier and
prototype-based methods: while the prototype-
based method demonstrates better performance
than LC on CoNLL, WikiGold, WNUT17 and Mul-
tiwoz in the 5-shot learning setting, it falls behind
LC on other datasets and in average statistics. It
shows that the prototype-based method only yields
better results when there is very limited labeled
data: the size of both entity types and examples are
small. (iii) When comparing columns 5 with 1

(or comparing columns 6 and 2 ), we observe that
using self-training consistently works better than di-
rectly fine-tuning with labeled data only, suggesting
that ST is a useful technique to leverage in-domain
unlabeled data if allowed. (iv) Column 6 shows
the highest F1-score in most cases, demonstrating
the three proposed schemes in this paper are com-
plementary to each other, and can be combined to
yield best results in practice.

In Figure 3, we show the learning curve of av-
erage F1-score on 5-shot CONLL-2003 testing
dataset over 10 repeated experiments. The check-
point via NSP provides a better initialization than
Roberta, as NSP exhibits improvement over their

2 4 6 8 10
# epoch

0.1

0.3

0.5

0.7

F1
-s

co
re

P
P + NSP
LC
LC + NSP

Figure 3: Testing F1-score curves on 5-shot NER on
CONLL-2003 dataset.

counterpart methods at the beginning of learning,
and eventually leads to higher F1-score.

4.3 Comparison with SoTA Methods

Competitive methods. The current SoTA on
few-shot NER includes: (i) StructShot (Yang
and Katiyar, 2020), which extends the nearest
neighbor classification with a decoding process
using abstract tag transition distribution. Both
the model and the transition distribution are
trained from the source dataset OntoNotes. (ii)
L-TapNet+CDT (Hou et al., 2020) is a slot tagging
method which constructs an embedding projection
space using label name semantics to well sepa-
rate different classes. It also includes a collapsed
dependency transfer mechanism to transfer label
dependency information from source domains to
target domains. (iii) SimBERT is a simple baseline
reported in (Yang and Katiyar, 2020; Hou et al.,
2020); it utilizes a nearest neighbor classifier based
on the contextualized representation output by the
pre-trained BERT, without fine-tuning on few-shot
examples. The results reported in the StructShot pa-
per use IO schema instead of BIO schema, thus we
report our performance on both for completeness.

For fair comparison, following (Yang and Kati-
yar, 2020), we also continuously pre-train our
model on OntoNotes after the noisy supervised pre-
training stage. For each 5-shot learning task, we
repeat the experiments by re-sampling few-shot ex-
amples for 10 times. The results are reported in Ta-
ble 3. We observe that our proposed methods con-
sistently outperform the StructShot model across
all three datasets, even by simply pre-training the
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Datasets Settings 1 2 3 4 5 6

LC LC + NSP P P + NSP LC + ST LC + NSP + ST

CoNLL
5-shot 0.535 0.614 0.584 0.609 0.567 0.654
10% 0.855 0.891 0.878 0.888 0.878 0.895

100% 0.919 0.920 0.911 0.915 - -

Onto
5-shot 0.577 0.688 0.533 0.570 0.605 0.711
10% 0.861 0.869 0.854 0.846 0.867 0.867

100% 0.892 0.899 0.886 0.883 - -

WikiGold
5-shot 0.470 0.640 0.511 0.604 0.481 0.684
10% 0.665 0.747 0.692 0.701 0.695 0.759

100% 0.807 0.839 0.801 0.827 - -

WNUT17
5-shot 0.257 0.342 0.295 0.359 0.300 0.376
10% 0.483 0.492 0.485 0.478 0.490 0.505

100% 0.489 0.520 0.552 0.560 - -

MIT Movie
5-shot 0.513 0.531 0.380 0.438 0.541 0.559
10% 0.651 0.657 0.563 0.583 0.659 0.666

100% 0.693 0.692 0.632 0.641 - -

MIT Restaurant
5-shot 0.487 0.491 0.441 0.484 0.503 0.513
10% 0.745 0.734 0.713 0.721 0.750 0.741

100% 0.790 0.793 0.787 0.791 - -

SNIPS
5-shot 0.792 0.824 0.750 0.773 0.796 0.830
10% 0.945 0.950 0.879 0.896 0.946 0.942

100% 0.970 0.972 0.923 0.956 - -

ATIS
5-shot 0.908 0.908 0.842 0.896 0.904 0.905
10% 0.883 0.898 0.785 0.896 0.898 0.903

100% 0.953 0.956 0.929 0.943 - -

Multiwoz
5-shot 0.123 0.198 0.219 0.451 0.200 0.225
10% 0.826 0.830 0.787 0.805 0.835 0.841

100% 0.880 0.885 0.837 0.845 - -

I2B2
5-shot 0.360 0.385 0.320 0.366 0.365 0.393
10% 0.855 0.869 0.703 0.762 0.865 0.871

100% 0.932 0.935 0.895 0.906 - -

Average
5-shot 0.502 0.562 0.488 0.555 0.526 0.585
10% 0.777 0.794 0.734 0.758 0.788 0.799

100% 0.833 0.841 0.815 0.827 - -

Table 2: F1-score on benchmark datasets with various sizes of training data. LC is linear classifier fine-tuning
method, P is prototype-based training using a nearest neighbor objective, NSP is noising supervised pre-training
and ST is self-training. The best results are in bold.

Schema Methods CoNLL I2B2 WNUT Average

IO

SimBERT † 0.286±0.025 0.091±0.007 0.077±0.022 0.151
L-TapNet+CDT † 0.671±0.016 0.101±0.009 0.238±0.039 0.336
StructShot † 0.752±0.023 0.318±0.018 0.272±0.067 0.447
P + NSP 0.757±0.021 0.322±0.033 0.442±0.024 0.507
LC + NSP 0.771±0.035 0.371±0.035 0.417±0.022 0.520
LC + NSP + ST 0.779±0.040 0.376±0.028 0.419±0.028 0.525

BIO
P + NSP 0.756±0.017 0.334±0.024 0.424±0.012 0.505
LC + NSP 0.712±0.048 0.364±0.032 0.403±0.029 0.493
LC + NSP + ST 0.722±0.011 0.369±0.021 0.409±0.013 0.500

Table 3: Comparison of
F1-score with SoTA on 5-
shot NER tasks. Results of
both BIO and IO schemas
are reported for fair com-
parison. The best results
are in bold. † indicates re-
sults from (Yang and Kati-
yar, 2020).

model on large-scale noisily tagged datasets like
Wikipedia. Our best model outperforms the pre-
vious SoTA by 8% F1-score, which demonstrates
that using large amounts of unlabeled in-domain
corpus is promising for enhancing the few-shot
NER performance.

4.4 Training-free Method Comparison
Some real-world applications require immediate in-
ference on unseen entity types. For example, novel

entity types with a few examples are frequently
given in an online fashion, but updating model
weights θ frequently is prohibitive. One may store
some token examples as supports and utilize them
for nearest neighbor classification. The setting is re-
ferred to as training-free in (Wiseman and Stratos,
2019; Ziyadi et al., 2020), as the models identify
new entities in a completely unseen target domain
using only a few supporting examples in this new
domain, without updating network parameters θ in
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Datasets Methods Number of support examples per entity type
10 20 50 100 200 500

ATIS

Neigh.Tag.† 0.067±0.008 0.088±0.007 0.111±0.007 0.143±0.006 0.221±0.006 0.339±0.006

Example† 0.174±0.011 0.198±0.012 0.222±0.011 0.268±0.027 0.345±0.022 0.401±0.010

Prototype 0.381±0.021 0.391±0.022 0.376±0.008 0.379±0.005 0.377±0.006 0.376±0.003

Prototype + NSP 0.684±0.013 0.712±0.014 0.716±0.013 0.705±0.010 0.705±0.006 0.708±0.002

Multi-Prototype 0.396±0.015 0.415±0.016 0.419±0.012 0.420±0.008 0.422±0.006 0.424±0.005

Multi-Prototype + NSP 0.712±0.014 0.748±0.011 0.760±0.008 0.742±0.005 0.743±0.003 0.746±0.002

MIT.Restaurant

Neigh.Tag.† 0.042±0.018 0.038±0.008 0.037±0.007 0.046±0.008 0.055±0.011 0.081±0.006

Example.† 0.276±0.018 0.295±0.010 0.312±0.007 0.337±0.005 0.345±0.004 0.346±0.000

Prototype 0.330±0.013 0.332±0.013 0.332±0.010 0.329±0.003 0.329±0.004 0.331±0.003

Prototype + NSP 0.455±0.016 0.455±0.012 0.455±0.013 0.438±0.013 0.437±0.008 0.438±0.006

Multi-Prototype 0.345±0.012 0.360±0.015 0.371±0.012 0.376±0.009 0.385±0.005 0.386±0.004

Multi-Prototype + NSP 0.461±0.019 0.482±0.011 0.496±0.008 0.496±0.011 0.500±0.005 0.501±0.003

MIT Movie

Neigh.Tag.† 0.031±0.020 0.045±0.019 0.041±0.011 0.053±0.009 0.054±0.007 0.086±0.008

Example.† 0.401±0.011 0.395±0.007 0.402±0.007 0.400±0.004 0.400±0.005 0.395±0.007

Prototype 0.175±0.007 0.168±0.006 0.170±0.004 0.174±0.003 0.173±0.002 0.173±0.002

Prototype + NSP 0.303±0.011 0.293±0.007 0.285±0.006 0.284±0.002 0.282±0.002 0.280±0.002

Multi-Prototype 0.197±0.007 0.207±0.005 0.219±0.004 0.227±0.002 0.229±0.003 0.230±0.002

Multi-Prototype + NSP 0.364±0.020 0.368±0.011 0.380±0.006 0.382±0.003 0.354±0.003 0.383±0.002

Table 4: F1-score on training-free settings, i.e., predicting novel entity types using nearest neighbor methods. The
best results are in bold. † indicates results from (Ziyadi et al., 2020; Wiseman and Stratos, 2019).

that target domain. Our prototype-based method is
able to perform such immediate inference. Two re-
cent studies on training-free NER are: (i) Neighbor-
tagging (Wiseman and Stratos, 2019) which copies
token-level labels from weighted nearest neighbors;
(ii) Example-based NER (Ziyadi et al., 2020) which
is the SoTA on training-free NER, identifying the
starting and ending tokens of unseen entity types.

We observed that our basic prototype-based
method, under the training-free setting, does not
gain from more given examples. We hypothesize
that this is because tokens belonging to the same
entity type are not necessarily close to each other,
and are often separated in the representation space.
Though it is hard to find one single centroid for
all tokens in the same type, we assume that there
exist local clusters of tokens belonging to the same
type. To resolve such issue, we follow (Deng et al.,
2020) and extend our method to a version called
Multi-Prototype, by creating K/5 prototypes for
each type given K examples per type. (e.g., 2 pro-
totypes per class are used for the 10-shot setting).
The prediction score for a testing token belonging
to a type is computed via averaging the prediction
probabilities from all prototypes of the same type.

We compare with previous methods in Table 4
and observe that multi-prototype methods not only
benefit from more support examples, but also sur-
pass neighbor tagging methods and example-based
NER by a large margin on two out of three datasets.
For the MIT Movie dataset, one entity type can
span a large chunk with multiple consecutive words
in a sentence, which favors the span-based method
like (Ziyadi et al., 2020). For example, the under-

lined part in the sentence “what movie does the
quote .i . . . . . .dont . . . . . .think. . . .we. . . .are. . .in. . . . . . . . .kansas . . . . . . . . . .anymore come
from” is annotated as entity type Quote. The pro-
posed methods in this paper can be combined with
the span-based approach to specifically tackle this
problem, and we leave it as future work. Further,
if slightly fine-tuning is allowed, we see that the
prototype-based method achieves 0.438 with 5-shot
learning in Table 2, better than 0.395 achieved by
example-based NER given 500 examples.

5 Related Work

General NER. NER is a long standing prob-
lem in NLP. Deep learning has significantly im-
proved the recognition accuracy. Early efforts in-
clude exploring various neural architectures (Lam-
ple et al., 2016) such as Bidrectional LSTMs (Chiu
and Nichols, 2016) and adding CRFs to capture
structures (Ma and Hovy, 2016). Early studies
have noticed the importance of reducing the anno-
tation labor, where semi-supervised learning is em-
ployed, such as clustering (Lin and Wu, 2009), and
combining supervised objective with unsupervised
word representations (Turian et al., 2010). PLMs
have recently revolutionized NER, where large-
scale Transformer-based architectures (Peters et al.,
2018; Devlin et al., 2019) are used as backbone net-
work to extract informative representations. Con-
textualized string embedding (Akbik et al., 2018)
is proposed to capture subword structures and pol-
ysemous words in different usage. Masked words
and entities are jointly trained for prediction in (Ya-
mada et al., 2020) with entity-aware self-attention.
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These methods are designed for standard super-
vised learning, and have a limited generalization
ability in few-shot settings, as empirically shown
in (Fritzler et al., 2019).

Prototype-based methods recently become pop-
ular few-shot learning approaches in machine learn-
ing community. It was firstly studied in the context
of image classification (Vinyals et al., 2016; Sung
et al., 2018; Zhao et al., 2020), and has recently
been adapted to different NLP tasks such as text
classification (Wang et al., 2018; Geng et al., 2019;
Bansal et al., 2020), machine translation (Gu et al.,
2018) and relation classification (Han et al., 2018).
The work closest related to ours is (Fritzler et al.,
2019) which explores prototypical network on few-
shot NER, but only utilizes RNNs as the backbone
model and does not leverage the power of large-
scale Transformer-based architectures for word rep-
resentations. Our work is similar to (Ziyadi et al.,
2020; Wiseman and Stratos, 2019) in that all of
them utilize the nearest neighbor criterion to assign
the entity type, but differs in that (Ziyadi et al.,
2020; Wiseman and Stratos, 2019) consider every
individual token instance for nearest neighbor com-
parison, while ours considers prototypes for com-
parison. Hence, our method is much more scalable
when the number of given examples increases.

Supervised pre-training. In computer vision,
it is a de facto standard to transfer ImageNet-
supervised pre-trained models to small image
datasets to pursue high recognition accuracy
(Yosinski et al., 2014). The recent work named
big transfer (Kolesnikov et al., 2019) has achieved
SoTA on various vision tasks via pre-training on
billions of noisily labeled web images. To gain
a stronger transfer learning ability, one may com-
bine supervised and self-supervised methods (Li
et al., 2020c,b). In NLP, supervised/grounded pre-
training have been recently explored for natural
language generation (NLG) (Keskar et al., 2019;
Zellers et al., 2019; Peng et al., 2020b; Gao et al.,
2020; Li et al., 2020a). They aim to endow GPT-
2 (Radford et al.), an ability of enabling high-level
semantic controlling in language generation, and
are often pre-trained on massive corpus consist-
ing of text sequences associated with prescribed
codes such as text style, content description, and
task-specific behavior. In contrast to NLG, to our
best knowledge, large-scale supervised pre-training
has been little studied for natural language under-

standing (NLU). There are early studies showing
promising results by transferring from medium-
sized datasets to small datasets in some NLU ap-
plications. For example, from MNLI to RTE for
sentence classification (Phang et al., 2018; Clark
et al., 2020; An et al., 2020), and from OntoNER
to CoNLL for NER (Yang and Katiyar, 2020). Our
work further increases the supervised pre-training
at the scale of web data (Ghaddar and Langlais,
2018), 1000 orders of magnitude larger than (Yang
and Katiyar, 2020), showing consistent improve-
ments.

Self-training. Self-training (Scudder, 1965) is
one of the earliest semi-supervised methods, and
has recently achieved improved performance for
tasks such as ImageNet classification (Xie et al.,
2020), visual object detection (Zoph et al., 2020),
neural machine translation (He et al., 2020) and
sentence classification (Mukherjee and Awadallah,
2020; Du et al., 2020). It is shown via object de-
tection tasks in (Zoph et al., 2020) that stronger
data augmentation and more labeled data can di-
minish the value of pre-training, while self-training
is always helpful in both low-data and high-data
regimes. Our work presents the first study of self-
training for NER, and we observe similar phe-
nomenons: it consistently boosts few-shot learning
performance across all 10 datasets.

6 Conclusion and Future Work

We have presented an empirical study on several
directions in few-shot NER. Three foundational
methods and their combinations are systematically
investigated: prototype-based methods, noisy su-
pervised pre-training and self-training. They are
intensively compared on 10 public datasets under
various settings. All of them improve the PLM’s
generalization ability when learning from a few
labeled examples, among which supervised pre-
training and self-training turn out to be particularly
effective. Our proposed schemes achieve SoTA on
both few-shot and training-free settings compared
with recent studies. We will release our bench-
marks and code, in hope of inspiring future few-
shot NER research with more advanced methods
to tackle this challenging and practical problem.

For future work, we believe our studies can be
combined with other interesting explorations in
distant supervised learning, such as augmentation-
based methods (Dai and Adel, 2020) and methods
dealing with noisy labels (Meng et al., 2021). It
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would also be promising for researchers to consider
larger pre-trained language models to learn better
entity representations.

7 Ethical Considerations

The dataset WiFiNE (Ghaddar and Langlais, 2018)
used in our noisy supervised pre-training stage is a
public dataset. It is consistent with the terms of use
of any sources and the original authors’ intellectual
property and privacy rights. As a modified version
of Wikipedia dataset, the collection procedure en-
sures no ethical concerns e.g., toxic language and
hate speech. The entity types in our pre-training
and fine-tuning datasets are common objects ob-
served in daily life, detailed in Appendix.
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Tseng, Iñigo Casanueva, Ultes Stefan, Ramadan Os-
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A. Caulier, D. Leroy, Clément Doumouro, Thibault
Gisselbrecht, F. Caltagirone, Thibaut Lavril, Maël
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A Experimental Settings

Datasets. We evaluate our methods on 10 public benchmark datasets, covering a wide range of domains:
OntoNotes 5.0 (Ralph et al., 2013), WikiGold1 (Balasuriya et al., 2009) on general domain, CoNLL
2003 (Sang and Meulder, 2003) on news domain, WNUT 2017 (Derczynski et al., 2017) on social domain,
MIT Moive (Liu et al., 2013b) and MIT Restaurant2 (Liu et al., 2013a) on review domain, SNIPS3 (Coucke
et al., 2018), ATIS4 (Hakkani-Tür et al., 2016) and Multiwoz5 (Budzianowski et al., 2018) on dialogue
domain, and I2B26 (Stubbs and Uzuner, 2015) on medical domain. The detailed statistics of these datasets
are summarized in Table 1.

For each dataset, we conduct three sets of experiments using various proportions of the training data:
5-shot, 10% and 100%. For 5-shot setting, we sample 5 sentences for each entity type in the training set
and repeat each experiment for 10 times. For 10% setting, we down-sample 10 percent of the training set,
and for 100% setting, we use the full training set as labeled data. We only study the self-training method
in 5-shot and 10% settings, by using the rest of the training set as unlabeled in-domain corpus.

Hyper-parameters. We have described details for noisy supervised pre-training in Section 3.2. For
training on target datasets, we set a fixed set of hyperparameters across all the datasets: For the linear
classifier, we set batch size = 16 for 100% and 10% settings, batch size = 4 for 5-shot setting. For each
episode in the prototype-based method, we set the number of sentences per entity type in support and
query set (K,K ′) to be (5, 15) for 100% and 10% settings, and (2, 3) for 5-shot setting. For both training
objectives, we set learning rate = 5e−5 for 100% and 10% settings, and learning rate = 1e−4 for 5-shot
setting. For all training data sizes, we set training epoch = 10, and Adam optimizer (Kingma and Ba,
2015) is used with the same linear decaying schedule as the pre-training stage. For self-training, we set
λU = 0.5.

Evaluation. We follow the standard protocols for NER tasks to evaluate the performance on the test
set (Sang and Meulder, 2003). Since RoBERTa tokenizes each word into subwords, we generate word-
level predictions based on the first word piece of a word. Word-level predictions are then turned into
entity-level predictions for evaluation when calculating the f1-score. Two tagging schemas are typically
considered to encode chunks of tokens into entities: BIO schema marks the beginning token of an entity
as B-X and the consecutive tokens as I-X, and other tokens are marked as O. IO schema uses I-X to
mark all tokens inside an entity, thus is defective as there is no boundary tag between same type of entities.
In our study, we use BIO schema by default, but also report the performance evaluated by IO schema for
fair comparison with some previous studies.

B Dataset statistics

We show the entity types and their corresponding frequencies in pre-training dataset in Table 5 and
downstream benchmark datasets in Table 6 and Table 7. We see that the entity types for pre-training and
fine-tuning are semantically related, but different in granularity. For example, the location category in
pre-training dataset contains fine-grained entity types like country, city, road, and bridge, while the Onto
dataset for fine-tuning only gives a coarse-grained partition by geopolitical locations (countries, cities)
and non geopolitical ones (highways, bridges). Further, for each categories of entity types, the pre-training
dataset has a much higher frequency than fine-tuning dataset, allowing the model to learn heterogeneous
contextual knowledge before deploying to a specific domain.

1https://github.com/juand-r/entity-recognition-datasets
2https://groups.csail.mit.edu/sls/downloads/
3https://github.com/sonos/nlu-benchmark/tree/master/2017-06-custom-intent-engines
4https://github.com/yvchen/JointSLU
5https://github.com/budzianowski/multiwoz
6https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/

https://github.com/juand-r/entity-recognition-datasets
https://groups.csail.mit.edu/sls/downloads/
https://github.com/sonos/nlu-benchmark/tree/master/2017-06-custom-intent-engines
 https://github.com/yvchen/JointSLU
https://github.com/budzianowski/multiwoz
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
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Entity type name # Entities Entity type name # Entities

person 10976096 person/author 8603619
person/athlete 5990955 person/actor 5646333

person/fictional character 4820634 person/musician 4414457
person/ethnicity 1603194 person/politician 4196151

person/artist 3971716 person/director 870744
person/monarch 847943 person/soldier 297018

person/coach 284695 person/religious leader 272999
person/engineer 202533 person/architect 192587
person/doctor 101930 person/terrorist 2759

location 11234535 location/city 13478825
location/country 10022782 location/province 2555375
location/island 741533 location/body of water 1372583
location/county 930301 location/road 740874

location/astral body 410792 location/mountain 409878
location/cemetery 155498 location/park 78388
location/railway 61438 location/bridge 39528
location/glacier 17158

organization 5280100 organization/company 8070793
organization/sports team 3236586 organization/educational institution 2124661
organization/government 1146508 organization/military 1118635

organization/political party 1006768 organization/sports league 854429
organization/news agency 378262 organization/government agency 314572

organization/airline 170127 organization/terrorist organization 40272
organization/fraternity sorority 35299

art 3420964 art/music 4480181
art/written work 3284486 art/film 2583704

art/play 214837 art/newspaper 17488
building 2038445 building/sports facility 289182

building/airport 235172 building/theater 134604
building/hospital 89793 building/restaurant 50499

building/hotel 41571 building/library 24556
building/power station 18211 building/dam 10634

computer/algorithm 1808698 computer/programming language 110646
event 2877275 event/military conflict 1199857

event/attack 453078 event/election 358101
event/sports event 268484 event/natural disaster 149982

event/protest 93586 event/terrorist attack 2244
livingthing 2736344 livingthing/animal 1117967

product 969818 product/ship 776310
product/game 770000 product/instrument 622648
product/train 558943 product/software 550727
product/car 347887 product/airplane 321361

product/weapon 320842 product/spacecraft 56071
product/computer 50812 product/mobile phone 14585

product/engine device 31956 product/camera 10198
education/educational degree 507088 education/department 126584

medicine/symptom 440572 medicine/medical treatment 360235
medicine/drug 158258

finance/currency 140008 finance/stock exchange 14861
broadcast program 1944347 broadcast/tv channel 91262

time 31543479 title 5752995
language 1565042 broadcast network 997300

food 903886 disease 743015
body part 741448 religion 666482

god 578091 chemistry 542973
award 488515 internet website 259798
law 230483 transit 132448

biology 123600 metropolitan transit line 92136

Table 5: Entity type names and corresponding numbers on Wikipedia data used in supervised pre-training. For
better visualization, we group entity label names belonging to the same root into the same blocks.
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Dataset Entity type name # Entities Entity type name # Entities

CONLL-2003
location 7140 person 6600

organization 6321 misc. 3438

Onto

person 15429 countries, cities, states 15405
organization 12820 date 10922

cardinal 7367 political groups 6870
money 2434 percent 1763

ordinal number 1640 time 1233
work of art 974 buildings,highways,bridges 860

event 748 quantity 657
product 606 language 304

law 282 other locations 12

Wikigold
location 628 organization 559
person 538 misc. 365

WNUT17
person 660 location 548
group 264 corporation 221

product 142 creative work 140

MIT Movie

plot 6468 actor 5010
genre 3384 year 2702

character name 1025 director 1787
opinion 810 origin 779

relationship 580 award 309
quotation 126 soundtrack 50

MIT Restaurant

location 3817 cuisine 2839
amenity 2541 restaurant name 1901

dish 1475 rating 1070
hours 990 price 730

SNIPS

(AddToPlaylist) playlist 1869 (AddToPlaylist) playlist owner 1107
(AddToPlaylist) music item 887 (AddToPlaylist) artist 738
(AddToPlaylist) entity name 590 (BookRestaurant) restaurant type 1359

(BookRestaurant) party size number 1022 (BookRestaurant) time range 674
(BookRestaurant) state 519 (BookRestaurant) city 513

(BookRestaurant) restaurant name 339 (BookRestaurant) country 356
(BookRestaurant) spatial relation 324 (BookRestaurant) party size description 316

(BookRestaurant) served dish 269 (BookRestaurant) cuisine 210
(BookRestaurant) sort 203 (BookRestaurant) facility 159
(BookRestaurant) poi 143 (GetWeather) time range 1047

(GetWeather) city 851 (GetWeather) country 498
(GetWeather) state 491 (GetWeather) condition temperature 476

(GetWeather) condition description 454 (GetWeather) geographic poi 290
(GetWeather) current location 271 (GetWeather) spatial relation 209

(PlayMusic) artist 1169 (PlayMusic) music item 791
(PlayMusic) service 756 (PlayMusic) year 630

(PlayMusic) sort 346 (PlayMusic) track 211
(PlayMusic) album 176 (PlayMusic) playlist 149
(PlayMusic) genre 144 (RateBook) rating value 1924

(RateBook) rating unit 1103 (RateBook) best rating 1033
(RateBook) object name 979 (RateBook) object select 952
(RateBook) object type 919 (RateBook) object part of series type 307

(SearchCreativeWork) object name 1951 (SearchCreativeWork) object type 1462
(SearchScreeningEvent) movie name 808 (SearchScreeningEvent) object type 692
(SearchScreeningEvent) movie type 674 (SearchScreeningEvent) spatial relation 665

(SearchScreeningEvent) location name 586 (SearchScreeningEvent) object location type 458
(SearchScreeningEvent) time range 265

Table 6: Entity type names and corresponding numbers on benchmark NER datasets CONLL-2003, Onto,
WikiGold, WNUT17, MIT Movie, MIT Restaurant, and SNIPS.
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Dataset Entity type name # Entities Entity type name # Entities

ATIS

(fromloc) city name 4326 (fromloc) airport name 89
(fromloc) state code 46 (fromloc) state name 39

(fromloc) airport code 15 (toloc) city name 4343
(toloc) state code 86 (toloc) state name 77

(toloc) airport name 39 (toloc) airport code 20
(toloc) country name 3 (depart date) day name 889

(depart date) day number 395 (depart date) month name 379
(depart date) today relative 84 (depart date) date relative 82

(depart date) year 25 (depart time) time 692
(depart time) period of day 593 (depart time) time relative 323
(depart time) period mod 44 (depart time) start time 25

(depart time) end time 25 (stoploc) city name 239
(arrive time) time relative 187 (arrive time) time 172
(arrive time) period of day 64 (arrive time) start time 21

(arrive time) end time 20 (arrive time) period mod 4
(arrive date) day name 88 (arrive date) month name 47

(arrive date) day number 47 (arrive date) date relative 11
(arrive date) today relative 2 (return date) date relative 10
(return date) month name 4 (return date) day number 4
(return date) today relative 1 (return date) day name 1

(stoploc) state code 5 (stoploc) airport name 1
(return time) period of day 3 (return time) period mod 2

airline name 701 round trip 348
cost relative 344 flight mod 329
city name 227 class type 217
flight stop 168 airline code 136

flight number 84 fare basis code 76
flight time 71 meal description 57

fare amount 53 transport type 48
connect 40 flight days 39

airport name 38 economy 36
airline name 32 aircraft code 31

mod 30 airport code 29
restriction code 23 meal 17

state code 8 meal code 6
day name 5 period of day 5
days code 3 time 2

today relative 2 state name 2
month name 2 day number 2
time relative 1

Multiwoz

restaurant food 4041 restaurant name 3054
hotel name 2863 restaurant booktime 2361

attraction name 1972 train leaveat 1617
train arriveby 1518 taxi departure 995

taxi destination 970 taxi leaveat 800
taxi arriveby 439 hospital department 107

bus destination 3 bus departure 2

I2B2

date 5195 doctor 1989
patient 931 hospital 925

medical record 408 city 258
phone 233 state 221

username 219 street 208
id num 174 profession 150

zip 139 organization 85
country 53 age 8
device 7 tax 5

other locations 4 email 3
url 2 bioid 1

health plan 1

Table 7: Entity type names and corresponding numbers on benchmark NER datasets ATIS, Multiwoz, and I2B2.


