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Abstract
Rumors are rampant in the era of social me-
dia. Conversation structures provide valuable
clues to differentiate between real and fake
claims. However, existing rumor detection
methods are either limited to the strict relation
of user responses or oversimplify the conversa-
tion structure. In this study, to substantially re-
inforces the interaction of user opinions while
alleviating the negative impact imposed by ir-
relevant posts, we first represent the conversa-
tion thread as an undirected interaction graph.
We then present a Claim-guided Hierarchical
Graph Attention Network for rumor classifica-
tion, which enhances the representation learn-
ing for responsive posts considering the entire
social contexts and attends over the posts that
can semantically infer the target claim. Ex-
tensive experiments on three Twitter datasets
demonstrate that our rumor detection method
achieves much better performance than state-
of-the-art methods and exhibits a superior ca-
pacity for detecting rumors at early stages.

1 Introduction

Rumor is one type of social diseases in the era of
social media. The spread of false rumors has a
far-reaching destructive impact on both society and
individuals (Ma et al., 2019b). For instance, the
global COVID-19 pandemic has created fertile soil
for the widespread of various rumors, conspiracy
theories, hoaxes, and fake news, heavily disrupt-
ing people’s peaceful lives and leading to unprece-
dented information chaos. A strange, new rumor
claiming that “wearing a mask to prevent the spread
of COVID-19 is unnecessary because the disease
can also be spread via farts" 1 may mislead masses
to belittle the importance of those potentially life-
saving masks in epidemic prevention. Therefore,
it is necessary to develop automatic approaches to
facilitate rumor detection, especially amid crises.

∗Corresponding authors.
1https://www.snopes.com/fact-check/

farting-negate-covid19-masks/

Social psychology literature defines a rumor as a
story or a statement whose truth value is unverified
or intentionally false (DiFonzo and Bordia, 2007).
Rumor detection aims to determine the veracity of
a given story or statement. For automating rumor
detection, previous studies focus on text mining
from sequential microblog streams with supervised
classifiers based on feature engineering (Castillo
et al., 2011; Yang et al., 2012; Kwon et al., 2013;
Liu et al., 2015; Ma et al., 2015) and feature learn-
ing (Ma et al., 2016; Yu et al., 2017). The inter-
actions among users generally show conductive to
provide useful clues for debunking rumors. Struc-
tured information is generally observed on social
media platforms such as Twitter. Structure-based
methods (Ma et al., 2017, 2018) are thus proposed
to capture the interactive characteristics of rumor
diffusion. We discuss briefly two types of state-
of-the-art approaches: Transformer-based (Khoo
et al., 2020; Ma and Gao, 2020) and Directed GCN-
based (Bian et al., 2020) models.

Khoo et al. (2020) exploited post-level self-
attention networks to model long-distance inter-
actions between any pair of tweets even irrele-
vant. Ma and Gao (2020) further presented a tree-
transformer model to make pairwise comparisons
among the posts in the same subtree hierarchically,
which better utilizes tree-structured user interac-
tions in the conversation thread. Bian et al. (2020)
utilized graph convolutional networks (GCNs) to
encode directed conversation trees hierarchically.
The structure-based methods however represent the
conversation as a directed tree structure, following
the bottom-up or top-down information flows. But
such kind of structure, considering directed respon-
sive relation, cannot enhance the representation
learning of each tweet by aggregating information
in parallel from the other informative tweets.

In this paper, we firstly represent the conver-
sation thread as an undirected interaction graph,
which allows full-duplex interactions between

https://www.snopes.com/fact-check/farting-negate-covid19-masks/
https://www.snopes.com/fact-check/farting-negate-covid19-masks/
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x3: That’s is answer for every protest and riot. That’s the only big word that he knows. Antifa!!

r: Antifa, not a mob of Trump supporters, violently clashed with police and broke into the U.S. 
Capitol. Trump privately blamed 'Antifa people' for storming U.S. Capitol: Axios URL

x1: Of course he did! Nothing is ever his fault... Lmao ;) 

x11: More than that, whatever he's doing, he accuses his opponents of doing. Lying bigly for example.

x2: There is a lot of publications that have provided evidence to this being true that antifa was actually the first ones in

x21: So he loves antifa then?

x22: Just like the election fraud evidence

Entail [r is True]

Contradict [r is False]

Contradict [r is False]

Contradict [r is False]

Contradict [r is False]

Contradict [r is False]

(a) Sample of a conversation thread from a false rumor

r

x1 x2

x3

x21 x22x11

(b) Undirected interaction graph

Figure 1: (a) A motivating example: A false rumor widely spread on Twitter. (b) The undirected interaction graph
for modeling the conversation thread. Blue nodes support or confirm the replied node, while orange nodes refute.
For clarity’s sake, we distinguish the responsive/sibling relationships between nodes with solid/chain lines.

posts with responsive parent-child or sibling rela-
tionships so that the rumor indicative features from
neighbors can be fully aggregated and the interac-
tion of user opinions can be reinforced. Intuitively,
we exemplify a false rumor claim and illustrate its
propagation on Twitter in Figure 1(a). We observe
that a group of tweets is triggered to reply to the
same post (i.e., parent post) in the conversation
thread. As users share opinions, conjectures, and
evidence, inaccurate information on social media
can be “self-checked" by making a comparison
with correlative tweets (Zubiaga et al., 2018). In
order to lower the weight of inaccurate responsive
information (e.g., the supportive post x2 toward
the false claim r), coherent opinions need to be
captured by comparing all responsive posts toward
the same post. To achieve this, our proposed inter-
action topology as shown in Figure 1(b) takes the
correlations between sibling nodes such as the dot-
ted box portion into account. On the other hand, by
leveraging the intrinsic structural property of graph-
based modeling, the undirected graph allows each
tweet to learn the representation by aggregating
features from all its informative neighbors. In this
way, information association between nodes in the
conversation can be adaptively propagated to each
other along the responsive parent-child or sibling
relationships while avoiding the negative impact
of irrelevant interactions such as the comparison
between x11 and x21 in Figure 1(a).

Moreover, previous studies show that it is criti-
cal to strengthen the semantic inference capacity
between posts and the claim based on textual en-
tailment reasoning (Ma et al., 2019a), so that we
could semantically infer the claim by implicitly
excavating textual inference relations such as en-
tail, contradict, and neutral. We hypothesis that all

the informative posts should be developed and ex-
tended around the content of the claim, i.e., the po-
tential and implicit target to be checked. Therefore,
the claim content is significant to catch informative
tweets, such as that in Figure 1(a), it is observed
that x22 satirizes the opinion expressed in x2, but
its contextual information is limited. Integrating
claim information for claim-aware representations
could not only enrich the semantic context of x22,
but also enable it to better guard the consistency of
topics when interacting with other nodes such as
x2 and x21.

To this end, we propose a novel Claim-guided Hi-
erarchical Graph Attention Network (ClaHi-GAT)
for detecting rumors on Twitter, which not only en-
hances the representation learning for posts by tak-
ing the entire conversation context but also attends
over the subset of informative posts. More specifi-
cally, we firstly model the conversation thread of a
claim as an undirected interaction graph. To flex-
ibly deal with the interaction of node information
and the association of the global structure of the
graph, we propose ClaHi-GAT to embed the undi-
rected interaction graph. Different from standard
graph attention networks (GATs) (Veličković et al.,
2017), we design a claim-guided hierarchical at-
tention mechanism at both post and event level to
attend over informative posts by considering the
coherent attitude and semantic inference strength
toward the claim. As a result, the post-level repre-
sentation is enhanced by the claim-aware attention
weights obtained based on the textual content of
the claim. Finally, we utilize an inference-based
attention layer to implicitly capture the inference
relation between the claim and the selected infor-
mative posts for rumor prediction at the event-level.
We conduct extensive experiments on THREE pub-
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lic Twitter datasets and demonstrate that our pro-
posed ClaHi-GAT model yields outstanding im-
provements over the state-of-the-art baselines with
a large margin, and our method performs particu-
larly well on early rumor detection which is crucial
for timely intervention and debunking. The main
contributions of this paper are three-fold:

• To our best knowledge, this is the first study of
representing conversation structure as an undi-
rected interaction graph. The graph attention-
based representation achieves significant im-
provements over state-of-the-art methods that
rely on bottom-up/top-down tree structure.

• We propose a novel ClaHi-GAT model to
represent both tweet contents and the inter-
action graph into a latent space, which cap-
tures multi-level rumor indicative features via
a claim-aware attention at the post level and
an inference-based attention at the event level.

• Experimental results show that our model
achieves superior performance on three real-
world Twitter benchmarks for both rumor clas-
sification and early detection tasks.

2 Related Work

Pioneer studies for automatic rumor detection fo-
cus on features crafted from post contents, user
profiles, and propagation patterns to learn a super-
vised classifier (Castillo et al., 2011; Yang et al.,
2012; Liu et al., 2015). Subsequent studies were
then conducted to engineer new features such as
those representing rumor diffusion and cascades
(Kwon et al., 2013; Friggeri et al., 2014; Hannak
et al., 2014). Ma et al. (2015) extended their model
with a large set of chronological social context fea-
tures. These approaches typically require heavy
preprocessing and feature engineering.

Zhao et al. (2015) relieved the engineering effort
by using a set of regular expressions (such as “re-
ally?”, “not true”, etc) to find questing and denying
tweets, but the oversimplified approach suffered
from very low recall. Ma et al. (2016) and Yu et al.
(2017) respectively utilized recurrent neural net-
works (RNNs) and convolutional neural networks
(CNNs) to learn the representations from tweets
content based on time series. Guo et al. (2018) pro-
posed a hierarchical attention model that captures
important clues from the social context of a rumor-
ous event at the post and sub-event levels. Jin et al.
(2016) exploited the conflicting viewpoints in a
credibility propagation network for verifying news

stories propagated among the tweets. However,
these approaches cannot embed features reflecting
how posts are propagated and require careful data
segmentation to prepare for time sequences.

To extract useful clues jointly from content
semantics and propagation structures, Wu et al.
(2015) proposed a hybrid SVM classifier to cap-
ture both flat and propagation patterns for detect-
ing rumors on Sina Weibo. Ma et al. (2017) used
Tree Kernel to capture the similarity of propaga-
tion trees in order to identify different types of
rumors on Twitter. Ma et al. (2018) presented tree-
structured recursive neural networks (RvNN) to
jointly generate the representation of a propagation
tree based on the post contents and their propaga-
tion structure. More recently, Khoo et al. (2020)
proposed to model potential dependencies between
any two microblog posts with the post-level self-
attention networks, which is too vulnerable to avoid
the negative impact of interactions among irrele-
vant posts. Ma and Gao (2020) treated transformer
as the unit of the tree structure to further enhance
the representation learning but its running time is
sensitive to conversation’s depth. Bian et al. (2020)
used GCNs (Kipf and Welling, 2016) to encode the
bi-directional conversation trees for higher-level
representations.

In recent years, GATs have demonstrated supe-
rior performance in a variety of NLP tasks, such
as text classification (Linmei et al., 2019), ma-
chine reading (Zheng et al., 2020), recommenda-
tion system (Wang et al., 2019), modeling knowl-
edge graph (Cui et al., 2020) and social network
bias (Yuan et al., 2019; Huang et al., 2020), etc.
Different from these previous works, in this paper,
we attempt to learn graph attention-based embed-
dings that attend to user interactions from commu-
nity response for rumor detection.

3 Problem Statement

We define a Twitter rumor detection dataset as a
set of events C = {C1, C2, ..., C|C|}, where each
event Cτ corresponds to a claim c, composed of
ideally all its relevant responsive tweets in chrono-
logical order, i.e., Cτ = {c, x1, x2, ..., xm}, where
c can also be denoted as x0 and m is the number of
responsive tweets in the conversation thread. Note
that although the tweets are notated sequentially,
there are connections among them based on their re-
ply or repost relationships. So most previous works
represent the conversation thread as a directed tree
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Figure 2: The architecture of our proposed Claim-guided Hierarchical Graph Attention Networks.

structure (Wu et al., 2015; Ma et al., 2017, 2018;
Khoo et al., 2020).

We formulate the task of rumor detection as a su-
pervised classification problem that learns a classi-
fier f from the labeled claims, that is, f : Cτ → Yτ ,
where Yτ takes one of the classes defined by the
specific dataset:

• Binary labels: rumor and non-rumor, which
simply predicts a claim as rumor or not;

• Finer-grained labels: non-rumor, false ru-
mor, true rumor, and unverified rumor, which
makes rumor detection a more challenging
classification problem (Ma et al., 2017; Zubi-
aga et al., 2016b).

Undirected Interaction Graphs Construction.
On Twitter, each set of responsive posts triggered
by the same post contains distinct rumor-indicative
patterns (Ma et al., 2017). It is worth noting that we
consider interactions not just between responsive
parent-child nodes, but also those with the sibling
relationship, for better feature aggregation from the
informative tweets. To explore the full-duplex in-
teraction patterns between responsive parent-child
nodes or sibling nodes, we model the interaction
topology among tweets as an undirected graph
G = 〈V, E〉 for an undetermined eventCτ , as exem-
plified in Figure 1(b), where V = Cτ that consists
of all relevant posts as nodes and E refers to a set
of undirected edges corresponding to the interac-
tions between the nodes in V . For example, for any
xi, xj ∈ V , xi → xj and xj → xi exist if they have
responsive parent-child or sibling relationships.

4 Claim-guided Hierarchical Graph
Attention Networks

In this section, we introduce our Claim-guided Hi-
erarchical Graph Attention Networks to embed the

undirected interaction graph for rumor detection.
The proposed neural network consists of two atten-
tion mechanisms, i.e., a Graph Attention to capture
the importance of different neighboring tweets, and
a claim-guided hierarchical attention to enhance
post content understanding. Figure 2 illustrates an
overview of our proposed model, which will be
depicted in the following subsections.

4.1 Graph Attention Networks

The core idea of GATs is to enhance the represen-
tation of responsive posts, which assign various
levels of importance to neighboring posts, rather
than treating all of them with equal importance, as
is done in the GCN model. Our intuition for apply-
ing GATs to embed undirected interaction graphs
is to reduce the weights of noisy information.

Given a tweet xi, we utilize a bi-directional
LSTM encoder over its involved word sequence
which is represented by pre-trained word embed-
dings. We then obtain the post-level representa-
tion using the last hidden state of the bi-directional
LSTM. We thus denote the event as a matrix, i.e.,
X = [c, x1, x2, · · · , x|V|−1]>, where c, xi ∈ Rd
respectively denotes the d-dimensional embedding
of the claim and each responsive tweet.

In order to encode structural contexts to improve
the post-level representation by adaptively aggre-
gating more informative signals from neighboring
tweets, we utilize self-attention to model the in-
teractions between one tweet and its neighboring
tweets in G. So the attention coefficients would
correlate to the impact of neighbors on the current
tweet. Specifically, the input for the calculation is a
set of vectors, H(l) = [h

(l)
c , h

(l)
x1 , h

(l)
x2 , ..., h

(l)
x|V|−1

]>

that denotes the hidden representations of nodes at
the l-th layer and h(l)c can also be denoted as h(l)x0 .
Initially, H(0) = X . The attention coefficient can
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be computed as follows:

α
(l)
i,j = Atten(h(l)xi , h

(l)
xj )

=
exp(φ(a>[W (l)h

(l)
xi ||W (l)h

(l)
xj ]))∑

j∈Ni

exp(φ(a>[W (l)h
(l)
xi ||W (l)h

(l)
xj ]))

(1)
where α(l)

i,j indicates the importance of tweet xj
to xi, a is a weight vector, W (l) is a layer-specific
trainable transformation matrix, || means “concate-
nate" operation, Ni contains xi’s one-hop neigh-
bors and xi itself, φ denotes the activation function,
such as LeakyReLU(Girshick et al., 2014). Then
the layer-wise propagation rule is defined as:

h(l+1)
xi = ReLU(

∑
j∈Ni

α
(l)
i,jW

(l)h(l)xj ) (2)

After that, multi-head attention is introduced to
expand the channel of self-attention and stabilize
the learning process (Vaswani et al., 2017). Thus
Eq.2 would be extended to the multi-head attention
process of concatenating K attention heads:

h(l+1)
xi =

K

‖
k=1

ReLU(
∑
j∈Ni

α
(l,k)
i,j W

(l)
k h(l)xj ) (3)

where h(l+1)
xi denotes the hidden representations

of the tweet xi at the (l+1)-th layer. α(l,k)
i,j is a nor-

malized attention coefficient calculated by the k-th
head at the l-th layer, andW (l)

k represents the corre-
sponding linear transformation matrix. After going
through an L-layer GAT, the output embedding in
the final layer is calculated using averaging, instead
of the concatenation operation:

h(L)xi = ReLU(
1

K

K∑
k=1

∑
j∈Ni

α
(l′,k)
i,j W

(l′)
k h(l

′)
xj ) (4)

where l′ = L−1, h(L)xi is the refined node represen-
tation of xi after aggregating information from the
other informative tweets. Here we employ mean-
pooling operators to jointly capture the opinions
expressed in the whole conversation, which is ob-
tained based on the refined node representation:

s̄ = mean-pooling(H(L)) (5)

where s̄ is the mean-pooled representation of the
entire graph.

4.2 Claim-guided Hierarchical Attention

On top of the GATs, we further propose the
claim-guided hierarchical attention mechanism to
strengthen the topical coherence and semantic in-

ference for our model.
Post-level Attention. To make full use of abun-
dant information in the claim and prevent off-topic
coherence that deviates from the claim’s focus, we
exploit a gating module to endow the model with
the capacity of deciding how much information
it should accept from the claim for better guid-
ing the importance allocation of the related post in
the neighborhood. The claim-aware representation
could be obtained as follows:
g(l)c→xi = sigmoid(W (l)

g h(l)xi + U (l)
g h(l)c )

h̃(l)xi = g(l)c→xi � h
(l)
xi + (1− g(l)c→xi)� h

(l)
c

(6)

where g(l)c→xi is the gate vector at the l-th layer, with
trainable parameters W (l)

g and U (l)
g . We omit the

bias to avoid notation clutter. � denotes Hadamard
product. Then we concatenate the claim-aware
representation with the original representation to
feed into Eq.1 for a refined claim-aware attention
weight:

ĥ(l)xi = [h̃(l)xi ||h
(l)
xi ]

α̂
(l)
i,j = Atten(ĥ(l)xi , ĥ

(l)
xj )

(7)

Note that in this way, we update the raw repre-
sentation and attention score h, α fed into Eq. 2-4
with the refined representation and attention score
ĥ, α̂, so that our model can determine the verdict of
a claim more reasonably with evidential posts tak-
ing the learned claim representation into account.
Event-level Attention. A natural argument against
the prior GAT-mean-based model (see Section 4.1)
is that mean-pooling over the node vectors does not
always make sense, since some nodes are more im-
portant than others for reasoning the veracity of the
rumorous event. In order to strengthen the seman-
tic inference capacity of our model, we propose
an inference module at the event level to implic-
itly capture the entailment relations between the
posts and the claim based on the Natural Language
Inference (NLI) (Bowman et al., 2015).

Inspired by the matching scheme used in clas-
sical NLI models (Mou et al., 2015; Yang et al.,
2019), given the output of the last graph attention
layer, we conduct each such pair by integrating
three matching functions between h(L)c and h(L)xi : 1)
concatenation [h

(L)
c ||h(L)xi ]; 2) element-wise prod-

uct h(L)prod = h
(L)
c � h(L)xi ; 3) absolute element-wise

difference h(L)diff = |h(L)c − h(L)xi |. Afterwards, we
can obtain a joint representation as:

hcxi = tanh
(

FC([h(L)c ||h(L)xi ||h
(L)
prod||h

(L)
diff ])

)
(8)
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We employ an attention over the output embed-
dings of the last graph attention layer to select
inference-based informative posts, which is guided
by the joint representation hcxi . This yields:

bi = tanh(FC(hcxi))

βi =
exp(bi)∑
i exp(bi)

ŝ =
∑
i

βih
(L)
xi

(9)

where βi is the normalized inference-based atten-
tion weight of xi for attaining the representation ŝ
of an entire graph. Lastly, we concatenate ŝ with s̄
and feed them into a fully-connected layer to get a
low-dimensional veracity prediction vector:

ŷ = softmax(FC([ŝ||s̄])) (10)
where FC means a fully-connected network.

4.3 Model Training

During model training, we exploit the cross-
entropy loss of the predictions ŷ and ground truth
distributions y over training data with the L2-norm.
We set the number L of the graph attention layer
as 2, and the head number K as 4. Parameters are
updated through back-propagation (Collobert et al.,
2011) with the Adam optimizer (Kingma and Ba,
2014). The learning rate is initialized as 0.0005,
and the dropout rate is 0.2. Early stopping (Yao
et al., 2007) is applied to avoid overfitting.

5 Experiments

5.1 Datasets

We conduct experiments on three public bench-
marks, including Twitter15 (Ma et al., 2017), Twit-
ter16 (Ma et al., 2017), and PHEME (Zubiaga
et al., 2016a). The label of each event in Twit-
ter15 and Twitter16 is annotated according to the
veracity tag of the article in rumor debunking web-
sites (e.g., snopes.com, Emergent.info, etc) (Ma
et al., 2017). Moreover, the fraction of different
types of rumors is imbalanced in the real-world.
For example, the number of real news usually far
exceeds that of false rumors. Therefore, we re-
sort to another public benchmark rumor dataset
PHEME2, which is unbalanced and collected based
on five real-world breaking news items. TWITTER
(Twitter15&16) datasets contain four labels: Non-
rumor (NR), False Rumor (FR), True Rumor (TR),

2https://figshare.com/articles/
dataset/PHEME_dataset_of_rumours_and_
non-rumours/4010619

and Unverified Rumor (UR), while the unbalanced
dataset PHEME collected based on five real-world
breaking news items contains two binary labels:
Rumor and Non-rumor. To evaluate the robustness
of our model on complex responsive relations, we
further split TWITTER datasets into TWITTER-S
and TWITTER-D according to the conversation
depth (TWITTER-S: ≤ 3; TWITTER-D: ≥ 4) fol-
lowing Ma and Gao (2020). The full statistics of
datasets and implementation details are shown in
the appendix.

5.2 Experimental Setup
We compare our proposed model with the follow-
ing baseline and state-of-the-art models: 1) DTR:
A Decision-Tree-based Ranking model (Zhao et al.,
2015) that identifies trending rumors by search-
ing for inquiry phrases. 2) DTC: A decision tree-
based model (Castillo et al., 2011) that utilizes a
combination of news characteristics. 3) RFC: A
random forest classifier (Kwon et al., 2013) with
a set of hand-crafted features like linguistic and
structure characteristics, etc. 4) SVM-TK: A SVM
classifier that uses a Tree Kernel (Ma et al., 2017)
which try to capture propagation structure via ker-
nel learning. 5) GRU-RNN: A RNN-based model
that learns temporal-linguistic patterns from user
comments (Ma et al., 2016). 6) RvNN: A rumor
detection approach based on tree-structured recur-
sive neural networks (Ma et al., 2018) with GRU
units that learn rumor representations via the prop-
agation structure. 7) PLAN: A transformer-based
model (Khoo et al., 2020) for rumor detection to
model long-distance interactions between any pair
of tweets even irrelevant. 8) HD-TRANS: Ma
and Gao (2020) proposed a model based on tree-
transformer networks, which focuses on proving
its effectiveness on shallow and deep conversa-
tions of datasets separately. Thus we compare it
on TWITTER-S/-D. 9) Bi-GCN: A GCN-based
model (Bian et al., 2020) on directed conversation
trees to learn higher-level representations.

We use accuracy and class-specific F-measure as
evaluation metrics. To make a fair comparison, we
conduct five-fold cross-validation on the datasets
following all baselines to obtain robust results.

5.3 Rumor Classification Performance
Table 1 and Table 2 show the performance of our
proposed method versus all the compared methods
on the TWITTER and PHEME datasets, where the
best result of each column is bolded to indicate the

https://figshare.com/articles/dataset/PHEME_dataset_of_rumours_and_non-rumours/4010619
https://figshare.com/articles/dataset/PHEME_dataset_of_rumours_and_non-rumours/4010619
https://figshare.com/articles/dataset/PHEME_dataset_of_rumours_and_non-rumours/4010619
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Dataset TWITTER-S TWITTER-D

Method Acc. NR FR TR UR Acc. NR FR TR UR
F1 F1 F1 F1 F1 F1 F1 F1

DTR 0.467 0.622 0.329 0.520 0.299 0.566 0.447 0.577 0.555 0.484
DTC 0.523 0.728 0.418 0.512 0.349 0.538 0.758 0.516 0.332 0.381
RFC 0.599 0.782 0.470 0.561 0.385 0.582 0.774 0.501 0.461 0.395
SVM-TK 0.719 0.705 0.683 0.785 0.682 0.669 0.698 0.649 0.689 0.615
GRU-RNN 0.715 0.700 0.697 0.780 0.620 0.646 0.645 0.624 0.714 0.598
RvNN 0.749 0.724 0.729 0.830 0.684 0.705 0.725 0.677 0.759 0.656
PLAN 0.764 0.742 0.744 0.840 0.699 0.719 0.746 0.708 0.760 0.646
HD-TRANS 0.789 0.749 0.784 0.837 0.776 0.768 0.773 0.781 0.783 0.721
Bi-GCN 0.790 0.716 0.758 0.843 0.816 0.803 0.792 0.788 0.796 0.814
ClaHi-GAT 0.847 0.806 0.817 0.886 0.854 0.835 0.832 0.823 0.824 0.849

Table 1: Rumor detection results on TWITTER datasets.

significant improvement over all baselines (p <
0.05). To fairly compare with HD-TRANS, our
main experiments are conducted on TWITTER-S/-
D and we also provide experimental results on the
original TWITTER datasets in the appendix for
completeness.

It is observed that the performances of the base-
lines in the first group based on handcrafted fea-
tures are obviously poor. RFC performs relatively
better because of the usage of additional temporal
traits. Except for the first group, other baselines
exploit the collective wisdom of the community by
applying natural language processing to comments
directed toward a claim without dependency on
metadata and laborious feature engineering.

Among the baselines without feature engineer-
ing in the second group, due to the representa-
tion power of message-passing architectures and
tree structures, PLAN, HD-TRANS and Bi-GCN
outperform RvNN in general. However, our
aggregation-based method achieves superior perfor-
mance among all the baselines on different datasets,
even in the case where data is just shallow/deep
conversation separately or unbalanced, which re-
flects its keen judgment on rumors and indicates
the flexibility of our model on different types of
datasets. Different from the aforementioned base-
lines, ClaHi-GAT is based on the interaction topol-
ogy considering not only the intrinsic structural
property but also the interaction between close as-
sociated posts.

The outstanding results indicate that the claim-
guided hierarchical attention mechanism based on
undirected interaction graphs modeling can effec-
tively enhance the representation learning using
semantic and structural information.

Method Acc. Non-rumor Rumor
F1 F1

DTR 0.657 0.772 0.317
DTC 0.670 0.755 0.494
RFC 0.709 0.809 0.393
SVM-TK 0.785 0.839 0.677
GRU-RNN 0.775 0.832 0.658
RvNN 0.829 0.873 0.736
PLAN 0.824 0.868 0.731
Bi-GCN 0.835 0.872 0.764
ClaHi-GAT 0.859 0.893 0.790

Table 2: Rumor detection results on PHEME dataset.

5.4 Ablation Study

We perform ablation studies by discarding some
important components of ClaHi-GAT on Twit-
ter15&16, and PHEME respectively, which include
1) ClaHi-GAT/DT: Instead of the undirected inter-
action graph, we use the directed trees (Ma et al.,
2018; Bian et al., 2020) as the model input. 2)
GAT+EA+SC: We simply concatenate the features
of the claim with the node features at each GAT
layer, to replace the claim-aware representation
in Eq.6. 3) w/o EA: We discard the event-level
(inference-based) attention as presented in Eq.9. 4)
w/o PA: We neglect the post-level (claim-aware) at-
tention by leaving out the gating module introduced
in Eq.6. 5) GAT: The backbone model described in
Sec.4.1. 6) GCN: The vanilla graph convolutional
networks with no attention.

As demonstrated in Table 3, ClaHi-GAT/DT suf-
fers a large decrease, indicating that our proposed
undirected interaction graph modeling contributes
to the final performance and its combination with
claim-guided hierarchical graph attention encoding
is critical. Each component of our model alone
improves the model, indicating their effectiveness
for embedding the interaction graph. Specifically,
GAT makes remarkable improvements over GCN,
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Method
Twitter15 Twitter16 PHEME

Acc. Acc. Acc.
ClaHi-GAT 0.891 0.908 0.859
ClaHi-GAT/DT 0.813 0.848 0.837
GAT+EA+SC 0.853 0.866 0.846
GAT+PA(w/o EA) 0.878 0.889 0.848
GAT+EA(w/o PA) 0.847 0.864 0.845
GAT 0.835 0.854 0.840
GCN 0.825 0.820 0.832

Table 3: Ablation studies on our proposed model.

reflecting the role of naive attention in reducing the
weights of noisy nodes; w/o EA and w/o PA consis-
tently outperform GAT, suggesting that both levels
of attention are comparably helpful; Combining
them hierarchically makes further improvements
and implies their complementary as represented
by ClaHi-GAT, and replacing the claim-aware at-
tention at the post level with simple concatenation
(GAT+EA+SC) also leads to performance degrada-
tion, reaffirming the more effective and reasonable
involvement of claims and advantages of the claim-
guided hierarchical attention mechanism.

5.5 Evaluation of Undirected Interaction
Graphs

We present more qualitative analyses about the
undirected interaction graph and event-level atten-
tion in this section. Figure 3 provides the exper-
imental results of ClaHi-GAT and the following
models based on different modeling ways:

1. ClaHi-GAT/DT Utilize the directional tree
applied in past influential works (Ma et al.,
2018; Ma and Gao, 2020; Bian et al., 2020)
as the modeling way instead of our proposed
undirected interaction graph.

2. ClaHi-GAT/DTS Based on the directional
tree structure similar to ClaHi-GAT/DT but
the explicit interactions between sibling nodes
are taken into account.

3. ClaHi-GAT/UD The modeling way is our
undirected interaction topology but without
considering the explicit correlations between
sibling nodes that reply to the same target.

4. ClaHi-GAT In this paper, we propose to
model the conversation thread as an undi-
rected interaction graph for our claim-guided
hierarchical graph attention networks.

From the experimental results of Figure 3, we
draw the following observations:
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Figure 3: The rumor classification performance of
ClaHi-GAT based on different modeling ways.

Effectiveness of exploring coherent opinions
among sibling nodes. Compared with ClaHi-
GAT/DT, ClaHi-GAT/DTS achieves 0.8%, 0.6%
and 0.5% boosts in accuracy on Twitter15, Twit-
ter16 and PHEME respectively. Compared with
ClaHi-GAT/UD, ClaHi-GAT achieves 5.6%, 4.3%
and 1.1% boosts in accuracy on Twitter15, Twit-
ter16 and PHEME respectively. It proves the effec-
tiveness of the enhanced interaction of user opin-
ions by exploring the correlation between sibling
nodes that reply to the same target.

Effectiveness of the undirected graphs. Due
to the simplex interactions between posts in the
directional tree, the interaction between sibling
nodes can not have a strong impact. Therefore,
we propose the undirected structure to strengthen
the aggregation of rumor indication features and
maximize the influence of the interaction between
sibling nodes. We can see that without consider-
ing the sibling relationship, ClaiHi-GAT/UD has
better results than ClaHi-GAT/DT, suggesting that
the combination of the undirected graph with our
proposed claim-guided hierarchical graph attention
mechanism is more suitable and complementary.
Not only that, ClaHi-GAT boosts the performance
as compared with ClaHi-GAT/DTS, showing 7.0%,
5.4% and 1.7% improvements in accuracy on the
three datasets, which reveals that the undirected
interaction topology does enhance semantic associ-
ations and fusion.

5.6 Early Rumor Detection

To take preventive measures to rumor spreading in a
timely manner, debunking rumors at the early stage
of their propagation is important. In early detec-
tion task, we compare different detection methods
at a series of checkpoints of “delays" that can be
measured by either the count of responsive posts
received (for Twitter15&16 dataset) or the time
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Figure 4: Early rumor detection accuracy at different checkpoints in terms of post count (or elapsed time) on
Twitter15, Twitter16, and PHEME datasets.

r: Police seen in Longpont, a village near 
to a petrol station reportedly robbed by 
the two #CharlieHebdo suspects. URL
x1: This is getting ridiculous - are there 
NEVER police personnel there? Send us 
news, not #excitoes
x2: Get those criminals!
x3: Keep doing Mossad/CIA work by 
churning out fake news.
x4: I pray for a peaceful world and 
positive energy to all.

Figure 5: Example of correctly detected false rumors at
early stage of our model.

elapsed since the claim was posted (for PHEME
dataset). The performance is evaluated by the ac-
curacy obtained when we incrementally scan test
data in order of time until the target time delay or
post volume is reached.

Figure 4 shows the performances of our ClaHi-
GAT method versus PLAN, Bi-GCN, RvNN, SVM-
TK, and DTR at various deadlines. It is observed
that models leveraging the structural information
(e.g., ClaHi-GAT method, PLAN, and Bi-GCN)
reach relatively high accuracy at a very early pe-
riod after the initial broadcast. One interesting
phenomenon is that the early performance of all
methods fluctuated more or less. We conjecture
that this is because with the propagation of the
claim there is more semantic and structural infor-
mation, meanwhile, the noisy information is in-
creased. Therefore, the results show that our model
is insensitive to data and has better stability and
robustness. ClaHi-GAT only needs about 30 posts
on TWITTER and around 4 hours on PHEME, to
achieve the saturated performance, which indicates
remarkably superior early detection performance
of our method.

To get an intuitive understanding of what is hap-
pening when we use the ClaHi-GAT model, we
present an example of sibling nodes responding
to the false claim r in our undirected interaction
graph with a heatmap of the averaged multi-head
attention score of neighbors at the last graph at-

tention layer. In Figure 5 we can see that for the
false rumor, the inaccurate information like x2 and
x4 could reduce their weights and pay more atten-
tion to the claim-related denial or questioning posts
that contradict the claim, which may help us cor-
rectly predict the false rumor. Furthermore, the
obtained attention scores play a crucial role in the
interpretability of the prediction by the highlighted
informative posts and hidden correlations.

6 Conclusion

In this paper, we propose a novel Claim-guided Hi-
erarchical Graph Attention Network based on undi-
rected interaction graphs to learn graph attention-
based embeddings that attend to user interactions
for rumor detection. Multi-level rumor indicative
features could be better captured via the claim-
aware attention at post level and the inference-
based attention at event level. The results on three
public benchmark datasets confirm the advantages
of our model. Our framework is expected to pro-
vide new guidance for future rumor detection work.
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A Dataset Details

We conduct experiments on three public benchmark
datasets, including Twitter15 (Ma et al., 2017),
Twitter16 (Ma et al., 2017), and PHEME (Zubi-
aga et al., 2016a). Twitter15 and Twitter16 datasets
contain four labels: Non-rumor (NR), False Rumor
(FR), True Rumor (TR), and Unverified Rumor
(UR), while the PHEME dataset contains two bi-
nary labels: Rumor and Non-rumor. The statistics
of the three datasets are shown in Table 4.

B Implementation Details

During model training, we exploit the cross-
entropy loss of the predictions and ground truth
distributions over training data with the L2-norm.
We set the number L of the graph attention layer
as 2, and the head number K as 4. Parameters are
updated through back-propagation (Collobert et al.,
2011) with the Adam optimizer (Kingma and Ba,
2014). The learning rate is initialized as 0.0005,
and the dropout rate is 0.2. Early stopping (Yao
et al., 2007) is applied to avoid overfitting. We
run all of our experiments on one single NVIDIA
Tesla V100-PCIE GPU. We set the batch size to
128. Since the focus in this paper is primarily on
better leveraging the graph structure and correla-
tions between nodes, we choose the text represen-
tations widely used in previous works (Ma and
Gao, 2020; Ma et al., 2020). Specifically, we use
the GLOVE 300d (Pennington et al., 2014) em-
bedding to represent each token in a tweet and get
128-dimensional contextual sentence features with
a single-layer Bi-LSTM encoder. The hidden di-
mension of each node is set to 128. We hold out
10% of the datasets for tuning the hyperparameters
and conduct 5-fold cross-validation on the rest of
the datasets. We use accuracy and class-specific
F-measure as evaluation metrics. The average run-
time for our approach on five-fold cross-validation
in one iteration is about 1.0 hours. The number of
total parameters is 52,851,029 for our model. We
implement our model with pytorch3.

C Supplemental Experiments

We provide a supplemental experiment on the origi-
nal version of TWITTER datasets for completeness,
as depicted in Table 5. Previous works like Yuan
et al. (2019), Lu and Li (2020) and Huang et al.
(2020) also conducted on the original TWITTER

3pytorch.org

Statistic Twitter15 Twitter16 PHEME
# of source tweets 1,490 818 5,802
# of tree nodes 76,351 40,867 30,376
# of non-rumors 374 205 3,830
# of false rumors 370 205 1,972
# of true rumors 372 205 –
# of unverified rumors 374 203 –
Avg. time length / tree 444 Hours 196 Hours 18 Hours
Avg. # of posts / tree 52 50 6

Table 4: Statistics of TWITTER and PHEME Dataset.

datasets leveraging the bias and social network of
the source of the claim. We did not include these
models in our experiments, because: 1) In this
paper, we work on detecting rumors solely from
the posts and comments, which takes advantage
of the “wisdom of crowds" information by min-
ing conflicting viewpoints in microblogs. In order
to improve the performance of our model effec-
tively and equitably, we do not leverage the iden-
tities of user accounts or characteristics. 2) The
experimental setups for the three models are not
consistent with 5-fold cross-validation and even
use the pre-split train, valid and test datasets by
themselves, which can not easily conduct a fair
comparison with the performance on 5-fold cross-
validation for all baselines and our proposed model.
Here we also do not include HD-TRANS in our
supplemental experiments, because it focuses on
proving its effectiveness on the shallow and deep
trees separately instead of the original TWITTER
datasets. Our implementation of the code4 released
by Bi-GCN has a big gap compared with results re-
ported in their paper (Bian et al., 2020), though our
model still performs better due to the robustness in
five-fold cross-validation. The results indicate that
our proposed methods outperform all the baselines,
confirming the advantages of ClaHi-GAT for rumor
detection task.

D Case Study

For a more comprehensive analysis on the event-
level attention, we present an example of correctly
detected false rumors, whose nodes are colored
with the inference-based attention scores (i.e., ‘βi’
in Eq.10 of the main body of this paper) at the event
level (the higher the score, the darker the color).
The visualization of tweets in Figure 6 shows that
the ClaHi-GAT captures informative tweets in the
conversation, which have a contradiction relation
towards the false claim. Hence, our event-level

4https://github.com/TianBian95/BiGCN

pytorch.org
https://github.com/TianBian95/BiGCN
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Dataset Twitter15 Twitter16

Method Acc.
NR FR TR UR

Acc.
NR FR TR UR

F1 F1 F1 F1 F1 F1 F1 F1

DTR 0.409 0.501 0.311 0.364 0.473 0.414 0.394 0.273 0.630 0.344
DTC 0.454 0.415 0.355 0.733 0.317 0.465 0.643 0.393 0.419 0.403
RFC 0.565 0.810 0.422 0.401 0.543 0.585 0.752 0.415 0.547 0.563
SVM-TK 0.667 0.619 0.669 0.772 0.645 0.662 0.643 0.623 0.783 0.655
GRU-RNN 0.641 0.684 0.634 0.688 0.571 0.633 0.617 0.715 0.577 0.527
RvNN 0.723 0.682 0.758 0.821 0.654 0.737 0.662 0.743 0.835 0.708
Bi-GCN 0.826 0.779 0.835 0.888 0.791 0.859 0.773 0.857 0.930 0.860
PLAN 0.845 0.823 0.858 0.895 0.802 0.874 0.853 0.839 0.917 0.888
ClaHi-GAT 0.891 0.878 0.882 0.931 0.867 0.908 0.862 0.916 0.954 0.901

Table 5: Rumor detection results on original Twitter15 and Twitter16 datasets.

r: Police seen in 
Longpont, a 

village near to a 
petrol station 

reportedly 
robbed by the 

two 
#CharlieHebdo
suspects. URL

x2: Get those criminals!

x3: Keep doing 
Mossad/CIA work by 

churning out fake news.

x31: In your 
own little 

world.

x311: Really? Why no blood or 
mess from the officers head 
when shot at point blank?

x1: This is getting ridiculous - are there NEVER police 
personnel there? Send us news, not #excitoes

x4: I pray for a peaceful world and positive energy to all.

Figure 6: A sample case of correctly detected false rumors of our model. We show important tweets in the
conversation and truncate others.

attention module can notice salient indicators of ru-
mor veracity in the conversation thread, e.g., posts
that contradict the false claims or entail the true
claims, and then combine them to give a correct
prediction.

E Future Work

We will explore the following directions in the fu-
ture based on error cases where our model can not
predict the correct label of the claim:

1. Traditional embedding methods like static
word vectors (e.g., GloVe or Word2Vec) used
in this paper cannot disambiguate homonyms,
express semantic and syntactic patterns well,
especially casual expression in writing on
social media. Representation from Trans-
former pre-training may effectively help us
learn more context-aware representation at
the token level. We will explore how to in-
ject the generalized contextual information
via pre-trained language models into our pro-
posed framework, to further investigate the
performance improvement.

2. The event-level attention component attempts
to investigate the inference relationship be-
tween a claim and its responsive post. One

issue of such component is the lack of explicit
supervision signal of recognizing textual in-
ference patterns. In the future, we will uti-
lize some existing language inference datasets
with explicit labels to obtain some prior
knowledge to tackle this challenge. Specif-
ically, the knowledge of recognizing entail-
ment relations in the trained model can be
transferred to our target component.

3. In reality, some users tend to simply reshare
a claim without expressing their opinions or
comments. Our model cannot perfectly handle
the instance that few users’ engagements are
available. That case is similar to the early ru-
mor detection scenario. Although our model
achieves superior performance on the early ru-
mor detection task, it still suffers from incor-
rect prediction caused by the situation where
users just mainly retweet the claim without
more opinion expression. Also, we found an
attractive point is that the same user might re-
ply to their own claim in the propagation way.
It would be heuristic for us to model novel so-
cial networks considering the special modes
(e.g., retweet or reply by the node itself post-
ing the claim) during the rumor propagation.


