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Abstract

Knowledge Graph Embeddings (KGEs) have
shown promising performance on link predic-
tion tasks by mapping the entities and rela-
tions from a knowledge graph into a geomet-
ric space. The capability of KGEs in pre-
serving graph characteristics including struc-
tural aspects and semantics, highly depends
on the design of their score function, as well
as the inherited abilities from the underlying
geometry. Many KGEs use the Euclidean ge-
ometry which renders them incapable of pre-
serving complex structures and consequently
causes wrong inferences by the models. To
address this problem, we propose a neuro dif-
ferential KGE that embeds nodes of a KG on
the trajectories of Ordinary Differential Equa-
tions (ODEs). To this end, we represent each
relation (edge) in a KG as a vector field on sev-
eral manifolds. We specifically parameterize
ODEs by a neural network to represent com-
plex manifolds and complex vector fields on
the manifolds. Therefore, the underlying em-
bedding space is capable to assume the shape
of various geometric forms to encode hetero-
geneous subgraphs. Experiments on synthetic
and benchmark datasets using state-of-the-art
KGE models justify the ODE trajectories as
a means to enable structure preservation and
consequently avoiding wrong inferences.

1 Introduction

Knowledge Graphs (KGs) have a significant im-
pact on machine learning approaches (Wang et al.,
2017). A KG usually represents factual knowledge

in triples of the form (entity, relation, entity) e.g.,
(Plato, influences, Kant). The nodes of a KG rep-
resent entities and the links denote the relations.
Although quantitatively KGs are often large-scale
with millions of triples, they are usually incom-
plete i.e. do not capture all knowledge within a do-
main of interest. To address this problem, various
approaches have been used so far, among which
link prediction using KG embeddings (KGE) at-
tracted growing attention. KGE models map enti-
ties (e) and relations (r) of a KG from a symbolic
domain to a geometric space (e.g. a vector space).
Such embedding models employ a score function
to perform the link prediction task, which uses the
learned embedding vectors (et, r, et+1) of a triple
(et, r, et+1) to compute its plausibility. This allows
to rank triples by their score, where a correct triple
should obtain a higher score and a lower rank than
an incorrect triple. KGE models have been predom-
inantly studied with a focus on the triple level.

However, in a broader view, triples of a graph
form specific subgraphs (i.e. structural patterns
distributed in the graph) in local structures. The
preservation of subgraphs in the learned represen-
tations is a major challenge. In this regard, the
choice of geometry becomes crucial as the distri-
bution of the corresponding embeddings for en-
tities and relations depends on it. Furthermore,
within each geometry, the mathematical operations
used in the score function lead to differences in
the encoding capability of KGEs. Several state-
of-the-art KGE models (Zhang et al., 2019a; Sun
et al., 2019; Trouillon et al., 2016; Bordes et al.,
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Figure 1: Structure Preservation Challenges in KGs.
The figure illustrates a path and loop of the “influences”
relation in a small excerpt of the YAGO KG for a chain
of notable people who have influenced the other. The
heat map shows that several other models incorrectly
predict a loop for the chain of influencers at the bottom
by assigning a high value for the triple P10 (marked
red) as they model relations independent of entities.

2013a) are designed in Euclidean geometry which
do not intrinsically support structural preservation.
As an example, consider Figure 1, which contains
both a loop/cycle and a path (without cycles) for
the “influences” relation. Many KGE models in-
correctly predict the path to be closed in such a
scenario. The root cause of this problem lies in
the entity-dependent nature of the "influences" re-
lation. Most of the KGE models such as RotatE
(as well as TransE, ComplEx, QuatE) consider re-
lations independent of entities. This problem can
usually only be mitigated at the cost of increasing
the dimensionality of the model, which leads to
higher computational costs and may negatively im-
pact the usefulness of learned representations in
downstream machine learning tasks.

For those KGEs with sophisticated geometry,
only a limited number of structures such as hierar-
chical or tree-like have been studied by using hy-
perbolic geometry or Poincaré Ball models (Nickel
and Kiela, 2017). In order to significantly improve
the structure preservation capabilities of KGE mod-
els, we propose a novel KGE model named FieldE
which employs differential equations (DEs) for em-
bedding KGs into a vector space. The use of dif-
ferential equations allows to overcome the entity-
specific nature of previous KGE models. In this
model, relations are viewed as trajectories connect-
ing neighboring nodes in the graph, which implies
a continuity of changes in the embedding space and

consequently describes the underlying geometry.
This is especially important, because the success
of a KGE model depends on the way it correctly
specifies the underlying geometry that describes
the natural proximity of data samples in a geomet-
ric space (Mathieu and Nickel, 2020). Designing
FieldE with a list of well-specified geometries (Eu-
clidean, Poincare Ball, Hyperboloid, and Spheri-
cal) a) improves generalization and b) increases
the interpretability. This is due to capturing the
natural proximity of entities from KG space to the
geometric space. We employ First-order Ordinary
Differential equations, which are a special class of
DEs that represent a vector field on a smooth Rie-
mannian manifold. We selected first-order ODEs,
because of their advantages over other classes of
DEs: while being capable of capturing complex
geometries, they are also efficiently implementable.
To allow our approach to self-adapt to the complex-
ity of the underlying knowledge graph, we devel-
oped a neural network based approach which learns
a suitable geometry from the training graph itself.
Therefore, FieldE combines substantial previous
research and insights of DEs, embeddings and neu-
ral networks in order to provide a comprehensive
model capable of representation learning on KGs
with multiple heterogeneous subgraphs.

2 Related Work

We describe the KGE models exploiting geomet-
ric properties for structure preservation. We also
review ODEs in ML in general, as our model is,
to the best of our knowledge, the first approach
employing ODEs in KGEs.
KGEs in Euclidean Geometry. Apart from some
discussions about encoding relational patterns, cap-
turing structures is not directly targeted by most
previous work in KGE models. TransE (Bordes
et al., 2013b) discussed simple 1-1 relational pat-
terns and its follow up models (Ji et al., 2015; Lin
et al., 2015; Wang et al., 2014) considered 1-many,
many-1, and many-many patterns. RotatE (Sun
et al., 2019) uses rotational transformations for en-
coding more complex patterns such as symmetry,
transitivity, composition, reflexivity and inversion.
Some other KGEs such as DisMult (Yang et al.,
2015), ComplEx (Trouillon et al., 2016), only focus
on effective choices of embedding by element-wise
multiplication of transformed head and tail or angle
transformation in QuatE (Zhang et al., 2019b), and
RESCAL (Nickel et al., 2011),
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KGEs in Non-Euclidean Geometry. Sev-
eral works such as MuRP, ROTH, REFH, ATTH
(Balazevic et al., 2019; Chami et al., 2020) use
non-Euclidean geometry for hierarchical struc-
tures only (Suzuki et al., 2018; Ji et al., 2016).
In (Dareddy et al., 2019), random walk and hetero-
geneous skip-gram models are used to generate the
embeddings of different structures without leverag-
ing DEs. Recently, (Lou et al., 2020) used Fréchet
mean and geometries for capturing structures but
not for link prediction task.

Use of Differential Equations in Machine
Learning. An early work that uses differential
equations in graphs is (Kozen and Stefansson,
1997), however it does not employ neural networks.
In (Chen et al., 2018), a family of deep neural
network models has been proposed which param-
eterizes the derivative of a hidden state instead of
the usual specification of a discrete sequence of
hidden layers. In this approach, ODEs are used
in the design of continuous-depth networks with
the purpose of providing an efficient computation
of the network output, which improves memory
efficiency, adaptive computation, parameter effi-
ciency (Kobyzev et al., 2020), and continuous time-
series models (Kidger et al., 2020). It is applied for
supervised learning on an image dataset and time-
series prediction. This work used ODEs in the
proposed approach without considering knowledge
graphs and embeddings for link prediction.

3 Preliminaries and Background

This section provides the preliminaries of the
Riemannian Geometry (Franciscus, 2011; Hairer,
2011) and explains its key elements required to
understand our model. The aim of our model is
to embed nodes (entities) of a KG on trajectories
of vector fields (relations) laid on the surface of a
smooth Riemannian manifold. Therefore, we first
provide the mathematical definitions for manifold,
tangent space and vector field driving the dynamics
of a DE on the manifold.

Manifold and Tangent Space We denote by M

a smooth manifold of dimension d that is embedded
in a higher dimensional Euclidean space Rn with
n ≥ d. Consider a particle moving on M. The set
of all possible directions that a particle passing a
given point may go forms a space called the tangent
space (the set of velocities). Formally, given a point
p on a manifold M, the tangent space TpM ⊂ Rn
is the set of all the vectors which are tangent to

all the continuously differentiable curves passing
through point p. A Tangent Bundle is the set of all
tangent spaces on a manifold M and is defined as
TM =

⋃
p∈M

TpM.

Vector Field A function f : M −→ TM is called
a vector field on M if f(p) ∈ TpM ⊂ Rn for all
p ∈ M. Each such f defines trajectories γ(t) on
M via the ODE

dγ(t)

dt
= f(γ(t)). (1)

If f is continuously differentiable, then for each ini-
tial condition γ(t0) = p0 ∈M there exists an open
interval [a, b] (of maximal size) with t0 ∈ [a, b]
and a unique trajectory γ : [a, b]→M solving (1)
which is twice differentiable (Hairer, 2011).

Riemannian Manifold A smooth manifold M

endowed with a Riemannian metric g is a Rieman-
nian manifold, denoted by (M, g). For p ∈M, the
function gp = g(p) = 〈., .〉p : TpM × TpM −→ R
defines an inner product on the associated tangent
space. The metric tensor is used to measure angle,
length of curves, surface area and volume locally.
Global quantities can then be derived as integrals
over the local contributions.

Geodesics and Exponential Map The manifold
equivalent of the notion of straight lines in Eu-
clidean space is given by geodesics and can be de-
fined in terms of the metric tensor g. Geodesics are
curves on the manifold such that given any two (suf-
ficiently close) points on this curve, the geodesic
minimizes the length of all curves joining these two
points. For each pair (p, v) with p ∈M, v ∈ TpM,
there exists a unique geodesic γ(t) ∈M such that
γ(0) = p and v = dγ(t)

dt

∣∣∣
t=0

. The exponential
map expp is then defined as expp : TpM −→ M

with expp(v) = γ(1). Its inverse is given by
logp : M −→ TpM.

4 Method

In this section, we propose FieldE, a new KGE
model based on Ordinary Differential equations
(ODEs). The approach relies on the following two
key components: 1) choice of a smooth Rieman-
nian manifold M on which the embedded entities
lie; 2) choice of a vector field f such that a given
relation between entities in the KG is encoded as
trajectories on M solving the ODE in Equation (2)
and connecting embedded entities that are related in
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Table 1: Summary of operations in Euclidean, Poincaré Ball, Hyperbolid, and Spherical models (Lou et al., 2020; Weber and
Nickel, 2018; Balazevic et al., 2019)

Euclidean Rd Poincaré Ball BdK Hyperboloid Hd
K Spherical Sd

Manifold M Rd {x ∈ Rd : ‖x‖ < − 1
K } {x ∈ Rd+1 : 〈x,x〉 = 1

K } {x ∈ Rd+1 : 〈x,x〉 = 1}

Exponential map
expx(v)

x + v x⊕K (tanh(
√
|K|λxK ‖v‖2 ) v√

|K|‖v‖
) cosh(

√
|K|‖v‖)x + v

sinh(
√
|K|‖v‖)√
|K|‖v‖

cos(‖v‖)x + sin(‖v‖) v
‖v‖

Distance
dist(x,y)

〈
√
x − y,x − y〉 1

|K|cosh
−1(1− 2K‖x−y‖2

(1+K‖x‖2)(1+K‖y‖2))
1
|K|cosh

−1(K〈x,y〉) cos−1(〈x,y〉)

Curvature = 0 < 0 < 0 > 0

the KG. These components can either be given ex-
plicitly, or be learned directly from the data. Table 1
includes a description of the manifolds we used in
the application of FieldE. Below, we present the
formulation of FieldE in five steps: relation formu-
lation, entity representation, triple learning, plausi-
bility measurement, vector field parameterization,
and manifold specification which are discussed in
the remainder of this section.

M r
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Figure 2: The Architecture of the FieldE Model. The
input to FieldE is a KG (the upper part). A path struc-
ture is highlighted in the graph representation. The vec-
tor representation (lower part) illustrates a trajectory of
an ODE on a manifold. Nodes of the path are sequen-
tially embedded on the trajectory guided by an NN.

Relation Formulation FieldE represents each
relation r in a KG as a vector field (fθr ) on a Rie-
mannian manifold. Here, we presume a given func-
tional form for the vector field fθr (independent of
time), which is determined by the choice of param-
eters θr. Let e(t) be a parametric trajectory that
evolves in time, t ∈ R, solving the following ODE

corresponding to relation r of the KG:

de(t)

dt
= fθr(e(t)), e(t) ∈M. (2)

Given the above formulation, each relation of a KG
corresponds to a relation-specific vector field. This
is consistent with the nature of KGs where different
relations form different structures and patterns.

Entity Representation We represent each en-
tity ei in the KG by a vector in Rn denoted
by e(t), matching each subscript i to a time t
where e(t) lies on a trajectory on the manifold
M solving the ODE (2). In particular, consider
k+ 1 entities ein , ein+1 , . . . , ein+k in the KG, each
connected to the next by a relation r. The cor-
responding embeddings are then discrete points
e(tn), e(tn+1), . . . , e(tn+k) ∈ M lying on a tra-
jectory e(t) ∈M solving the ODE in Equation (2).

Triple Learning Let ein and ein+1 be two subse-
quent nodes (e.g. the entities shown in the upper
part of the Figure 2) of a graph connected by a
relation r. This means the triple (ein , r, ein+1) is
present in the KG. Let e(tn), e(tn+1) ∈M be the
embeddings corresponding to the entities ein , ein+1

respectively (lower part of Figure 2).
We then represent a triple (ein , r, ein+1) as a tran-

sition from head entity embedding e(tn) to tail
embedding e(tn+1) on a relation-specific vector
field over the manifold. Therefore, in order to en-
code a triple (ein , r, ein+1) on the manifold, we
first compute the tangent vector at etn = e(tn),
i.e. vretn = de(tn)

dt = fθr(etn), which is the direc-
tion of movement at point etn towards the point
etn+1 = e(tn+1). We then use the exponential map
to map the tangent vector at the head embedding
to the tail embedding (determining the direction of
movement and moving towards the tail embedding
to meet the tail on the manifold) as follows:

etn+1 = expetn (vretn ). (3)
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The triple (e′in , r, e
′
in+1

) is negative if it does not
appear in the KG. To encode negative triples, the
following inequality should be satisfied:

e′tn+1
6= expe′tn

(vre′tn
). (4)

Equation 4 indicates that the triple is measured
negative if moving in the direction of the tangent
vector at the head point along the manifold does
not coincide with the tail.

Plausibility Measurement Given a triple
(ein , r, ein+1) in the KG, the plausibility of the
triple is measured by computing the distance of
the corresponding vectors etn+1 and expetn (vretn )
where vretn = fθr(etn). We denote the plausibility
measure for a given relation r by the score function
Sr, and consider two different choices: 1) the
distance-based version named DFieldE:

Sr(etn , etn+1) = −dist(etn+1 , expetn (vretn )),
(5)

where dist is a suitable distance function on the
manifold (see Table 1) , and 2) the semantic-
matching version named SFieldE:

Sr(etn , etn+1) = 〈etn+1 , expetn (vretn )〉, (6)

with 〈·, ·〉 denoting the Euclidean inner product.

Vector Field Parameterization The selection of
the function fθr is key to our KGE approach. In this
paper, we propose two approaches for determining
the vector field: a) we parameterize the vector field
function fθr by a neural network (NN) and propose
a neuro-differential KGE model, b) we consider
a vector field given by a linear function, resulting
in a linear version of our KGE model. Next, we
explain these two choices in detail.

Neuro-FieldE We parameterize the vector field
by a multi-layer feedforward NN to approximate
the underlying vector field,

fθr(e) =
∑

woi z

(∑
wLijz

(∑
wL−1jk . . .

∑
w2
pqz(w

1
qze + b1z)

))
,

(7)

where e ∈ M, L is the number of hidden layers,
wo denotes the output weight of the network and
wlmn is the weight connecting the mth node of the
layer l − 1 to the nth node of the l-th layer (see

Figure 2). All weights are collected in the vector
of parameters θr which is learned during training.
Parametrizing the vector field with an NN gives the
model enough flexibility to learn various shapes
of the manifold dynamics encoded in the vector
field fθr (representing complex geometry) from
data. This is due to the fact that NNs are universal
approximators (Hornik et al., 1989; Hornik, 1991;
Nayyeri et al., 2017), i.e. NNs are capable of ap-
proximating any continuous function.

Linear-FieldE Linear ODEs are a class of differ-
ential equations which have been widely used for
several applications (Massera and Schäffer, 1966).
Here we model the vector field as a linear function

fθr(e) = Are, (8)

for e ∈M, where Ar is an n× n matrix represent-
ing a projection on the tangent space. Depending
on the eigenvalues of Ar, the vector field can have
various shapes.

Manifold Specification There has been a surge
of efforts to appropriately select the underlying
manifold for KGE models (Nickel and Kiela, 2017;
Balazevic et al., 2019; Chami et al., 2020). How-
ever, the selection of a suitable manifold for rep-
resentation learning still remains challenging be-
cause real world KGs contain heterogeneous multi-
relational neighboring substructures. Thanks to the
way FieldE is formulated, it lends itself well to ap-
plying techniques from manifold learning in order
to explicitly identify the implicit geometry of the
KG - a promising direction of future research. Here,
we examine FieldE with the following choices of
manifolds: the Euclidean space, the unit sphere,
Hyperboloid and Poincare ball (see Table 1).

5 Model Analysis

In this part, we analyse the characteristics of the
core formulation of FieldE compared to other mod-
els. We first show that while other models such
as RotatE, and ComplEx face issues when learn-
ing relatively simple single-relational structures,
FieldE is able to overcome those issues. Moreover,
we show that FieldE subsumes popular KGEs and
consequently inherits their capabilities in learning
various well-studied patterns e.g. symmetry/inver-
sion.

Flexible Relation Embedding Most of the state-
of-the-art KGEs such as TransE, RotatE, QuatE,
ComplEx etc., consider each relation of the KG
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Table 2: Constraints in the embedding space.

MODEL CONSTRAINTS

TRANSE r + r + r = 0
ROTATE r ◦ r ◦ r = 1
FIELDE fθr(e1) + fθr(e2) + fθr(e3) = 0

as a constant vector to perform an algebraic op-
eration such as translation or rotation. Therefore,
the relation is entity-independent with regards to
the applied algebraic operation. Table 2 shows the
constraints in the vector space enforced by TransE,
RotatE and FieldE for encoding a loop with three
nodes i.e. (e1, r, e2), (e2, r, e3), (e3, r, e1). The
constraints obtained by TransE and RotatE are in-
dependent of the involved entities. In TransE, the
relation embedding becomes null (in Euclidean
geometry), which implies that the embeddings of
all involved entities are equal. Using RotatE, the
embeddings of entities in a loop are the same. How-
ever, the computed embedding for a relation with
a loop will be entity-independent. Therefore, in
one dimension of RotatE, all substructures formed
by different groups of entities should be the same
in terms of density and structure (e.g. all entities
should form loops with density of 3 here in our ex-
ample). This problem can be mitigated by increas-
ing the dimension, however, it is not fully solved
when restricting to low dimensional embeddings.

FieldE addresses the mentioned problem. The
relation-specific constraint (see Table 2) is entity-
dependent and the direction of translation is de-
termined not only based on the relation, but also
based on the entities connected by the relation and
the way in which they are mapped to the mani-
fold M. In contrast to RotateE, which can only
represent loops with a fixed number of entities,
FieldE can capture different substructures locally
(such as loops of different sizes, or loops and paths).
Note that the relation-specific constraint for Neuro-
DFieldE (Equation 2) can always be satisfied be-
cause NNs with bounded continuous activation
functions are universal approximators and univer-
sal classifiers (Hornik et al., 1989; Hornik, 1991;
Nayyeri et al., 2017) (complete proof in appendix).

In summary, the state-of-the-art KGE models
like TransE, RotatE, ComplEx and QuatE are not
capable of preserving more complex structures in
the embedding space, because they always model
the initial direction of the relation-specific move-
ments independent of the involved entities.

Subsumption of Existing Models We show (see
appendix) that FieldE subsumes popular models:

Definition 5.1 (from (Kazemi and Poole, 2018)).
A model M1 subsumes a model M2 when any scor-
ing over triples of a KG measured by model M2

can also be obtained by model M1.

Proposition 1. DFieldE subsumes TransE and Ro-
tatE. SFieldE subsumes ComplEx and QuatE.

Because FieldE subsumes existing models, it
consequently inherits their advantages in learn-
ing various patterns including symmetry, and anti-
symmetry, transitivity, inversion and composition.
Moreover, because ComplEx is fully expressive
(as defined in (Kazemi and Poole, 2018)) and it
is subsumed by SFieldE, we conclude that Neuro-
SFieldE is also fully expressive.

6 EXPERIMENTS AND RESULTS

In this section, we compare FieldE1 against TransE,
RotatE, ComplEx, QuatE, Dismult, MuRP, ATTH,
ROTH, and REFH as those performed best on the
presented benchmarks. The experiments are done
over four benchmark datasets namely FB15K-237,
WN18RR, YAGO3-10, and YouTube. We pre-
sented two versions of FieldE namely DFieldE and
SFieldE. DFieldE uses the distance function ( (5))
for score computation whereas SFieldE uses the
inner product (see Equation (6)). The comparisons
are performed in low and high dimensions. We also
considered the evaluations with and without data
augmentation (adding reverse triples).

Evaluation Metrics We use the standard metrics
for link prediction: Mean Reciprocal Rank (MRR),
and Hits@n (n = 1, 3, 10). MRR is measured by∑nt

j=1
1
rj

, where rj is the rank of the j-th test triple
and nt is the number of triples in the test set. H@n
is the number of test triples ranked less than n.

Hyperparameter Search We employed
Adam/Adagrad as the optimizers and tune
the hyperparameters based on a validation set.
The learning rate (r) and batch size (b) are
adjusted on r = {0.0002, 0.002, 0.02, 0, 1},
b = {100, 512, 1024} respectively. The embed-
ding dimension d is fixed to 100 for YAGO3-10,
1000 for FB15k-237, and 300 for YouTube. For
experiments on high dimensions (Table 3), we used
adversarial negative sampling on all the models,
with 100 negative samples in FB15K-237, 500 for

1https://github.com/mojtabanayyeri/FieldE/tree/FieldE
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YAGO3-10, 300 for YouTube. In addition, the
experiments are done on low dimension of 32 for
all of these datasets as well as WN18RR where we
used bias in the score of DFieldE with the setting
introduced in (Chami et al., 2020). To have a fair
comparison, all the results in Table 4 have been
regenerated using same setting. In these two tables,
a NN (Equation 7) approximates the vector field.
In Table 5, we use a linear function (equation 8).

Performance Evaluation. As shown in Table 3,
in all datasets, FieldE outperforms all other mod-
els across all metrics. In all other cases, a consis-
tent performance advantage can be observed, i.e. it
appears that FieldE performs well across several
datasets whereas other models show larger varia-
tions in performance. This evaluation is done on a
setting without special boosting techniques except
the above described hyperparameter search and us-
ing the adversarial loss (Sun et al., 2019) for all
evaluated models (including DFieldE with Neural
Network as a vector field, explained more in the ap-
pendix). Table 4 shows the evaluation of all models
and all datasets using Poincaré manifold (similar
results have been achieved by Hyperbloid). In this
setting, DFieldE outperforms other models using
similar manifolds (e.g., MuRP and ATTH). The ex-
periments validated the suitability of Spherical for
FB15k-237 and Euclidean manifold for YAGO3-
10, and YouTube datasets (reported in Table 3), and
Poincaré and Hyperboloid For WN18RR.

Visualization of Vector Fields. In Figure 3, we
illustrate the learned vector fields by DFieldE for
two structures on different manifolds: circular on
Sphere and hierarchical on Hyperboloid. The ar-
rows depict vector fields where each arrow at a
point represents the direction of movement to the
next point. For the relation celebrities...friend,
the vector field on the sphere is circular, enabling to
capture the loop structure. On the other hand, the
arrows of the vector fields for the relation partof
on the Hyperboloid start from the narrow part of
the manifold and move towards its wider sides –
this is suitable for capturing tree-like or hierarchi-
cal structures. The opacity relates to the size of
the arrows and means the distance between points
on the narrow side is less than the distance on the
wider side. This is consistent for hierarchical struc-
tures where the distance between the nodes grows
by moving from a root entity towards the leafs.

In Figure 4, we provide two sample visualiza-
tions for the learned vector fields of the influences

Figure 3: Learned vector fields. Showing vector field
of celebrities...friend on sphere and partof on Hy-
perboloid in FB15k-237 and WN18RR.

and isConnectedTo relations. The left figure shows
circular vector fields illustrating a preservation of
loop structure constructed by the influences relation
(see Figure 1). The right figure depicts loops and
paths created by the isConnectedTo relation (the
connections between airports as entities of the KG)
are preserved by our model.

Loop

Path

Loop

Figure 4: Vector fields on Euclidean manifold.. On
the right side, the relation “isConnectedTo” and on the
left side “influences” are shown. The X and Y axis
correspond to the 2D dimensions of vector fields.

Evaluation with Data Augmentation. Table 5
shows the performance of our model in a boosted
setting (Lacroix et al., 2018) using a full multiclass
log-softmax loss function with applied N3 regu-
larization and reciprocal (data augmentation) ap-
proaches. This setting is only suitable for semantic-
matching models such as ComplEx and QuatE,
due to the fast implementation of the matrix-vector
product. Such feature enables taking the advantage
of using full negative samples in the learning pro-
cess. Our model significantly outperforms all the
other models in all of the metrics on the YouTube
dataset. For example, in H@3, the difference in per-
formance is near 10%. On the YAGO3-10 dataset
with these boosting techniques, SFieldE outper-
forms DisMult, QuatE and ComplEx with slightly
better results. We believe that the performance dif-
ferences correlate with the complexity of data struc-
tures: The YouTube and YAGO3-10 datasets have
a similar size (1 million triples), but YouTube has
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Table 3: Link prediction results on FB15k-237, YAGO3-10, and YouTube. Best score are colored.

Model FB15k-237 YAGO3-10 YouTube
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE 0.33 0.23 0.37 0.53 0.49 0.39 0.56 0.67 0.18 0.00 0.28 0.47
RotatE 0.34 0.24 0.37 0.53 0.49 0.40 0.55 0.67 0.25 0.14 0.30 0.46
ComplEx 0.32 0.23 0.35 0.51 0.36 0.26 0.40 0.55 0.32 0.21 0.36 0.54
QuatE 0.31 0.23 0.34 0.49 - - - - 0.32 0.21 0.36 0.53
DistMult 0.24 0.15 0.26 0.42 0.34 0.24 0.28 0.54 0.04 0.01 0.03 0.10
DFieldE 0.36 0.27 0.39 0.55 0.51 0.41 0.58 0.68 0.33 0.24 0.39 0.55

Table 4: Link prediction results on FB15k-237, WN18RR, and YouTube (low dimension 32).

Model FB15k-237 WN18RR YouTube
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

MuRP 0.32 0.24 0.35 0.50 0.47 0.42 0.48 0.54 0.22 0.13 0.23 0.40
REFH 0.31 0.22 0.34 0.49 0.45 0.41 0.46 0.52 0.20 0.11 0.21 0.37
ROTH 0.31 0.22 0.35 0.50 0.48 0.44 0.49 0.55 0.20 0.11 0.21 0.37
ATTH 0.32 0.24 0.35 0.50 0.47 0.43 0.48 0.54 0.22 0.13 0.23 0.40
DFieldE 0.33 0.25 0.36 0.51 0.48 0.44 0.50 0.57 0.24 0.15 0.26 0.43

Table 5: Evaluation of models in boosting techniques.

Model YouTube
MRR H@1 H@3 H@10

ComplEx-N3 0.35 0.24 0.39 0.57
QuatE-N3 0.33 0.22 0.37 0.55
DistMult-N3 0.34 0.23 0.38 0.55
SFieldE-N3 0.41 0.28 0.47 0.64

fewer entities and relations. Therefore, YAGO3-10
is sparser than YouTube and generally contains less
complex graph structures. The performance advan-
tage of FieldE appears to increase when the under-
lying graph has higher density and contains more
complex structures. We could also observe that in-
creasing the number of hidden nodes for YouTube,
leads to gradually improving results. This means
the required complexity of the underlying vector
field could necessitate a higher complexity of the
underlying NN. This is reinforced when looking at
the simpler YAGO3-10 results, where the best re-
sults are achieved with only 5 hidden nodes and any
further increase leads to notable overfitting. In con-
clusion, we believe that complex graphs necessi-
tate complex geometries. While this is not entirely
surprising, this hypothesis could be directly investi-
gated empirically as FieldE can vary the complex-
ity using the underlying NNs.

Run-time Evaluation In terms of runtime per
batch, TransE, ComplEx and RotatE have com-
pleted the tasks within 0.10 s, 0.11 s, and 0.13 s
respectively. FieldE performs learning within 0.14
s which is mostly due to the time required for learn-
ing the underlying vector fields. FieldE is capable
of learning complex geometries whereas TransE,

ComplEx and RotatE represent simple geometry.

7 Conclusion

We presented FieldE – the first representation learn-
ing model for knowledge graphs based on Ordinary
Differential Equations. In contrast to previous mod-
els, FieldE models relations as vector fields on a
Riemannian Manifold and thereby overcomes the
drawbacks of previous works, in which relations
are entity-independent. Furthermore, we devel-
oped a neural network based approach allowing to
learn a suitable geometry from the training graph.
We have both empirically and analytically shown
that FieldE can preserve subgraph structures in
the embedding space better than state-of-the-art
models. Formally, FieldE is a generalisation of sev-
eral state-of-the-art KGE models and we could for-
mally show that it subsumes TransE, RotatE, Com-
plEx and QuatE. Evaluation on standard bench-
mark datasets shows competitive or superior per-
formance of FieldE across all datasets and metrics.
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A Problem Statement

In this part, we use an example to explore the
problem of KGE models in preservation of het-
erogeneous structures of the underlying KGs. In
order to do so, let us focus on a scenario where het-
erogeneous structures such as loops and paths are
created by an individual relation. The scenario is
explored with RotatE which is a recent state-of-the-
art among KGE models (Sun et al., 2019). Despite
the high performance of RotatE in comparison to
other models, this exploration justifies that it re-
turns wrong inferences for link prediction when
loops and paths appear in a subgraph with the same
relation. To show this, let us represent the loop and
path structures as sL (L = loop) and sP (P = path) –
each with a set of 10 connected nodes (e1 . . . e10)
with one relation (r). Therefore, (e1sL . . . e10sL)
represents the nodes of structure (sL) where enti-
ties form a loop, and (e1sP . . . e10sP ) corresponds
to the nodes of another structure with the same re-
lation but forming a path. This is illustrated by an
example in Figure 5 where the influences relation
creates such loops and paths. For each triple in this
graph e.g. (eisk , r, ejsk ), k ∈ {L,P}, the vector
representation using RotatE is eisk ◦ r = ej

sk (◦
is the multiplication between complex numbers).
The complete representations of the loop and path
are then the following:

sLoop :


(e1

sL , r, e2
sL),→ e1

sL ◦ r = e2
sL ,

...
(e9

sL , r, e10
sL),→ e9

sL ◦ r = e10
sL ,

(e10
sL , r, e1

sL).→ e10
sL ◦ r = e1

sL .

sPath :


(e1

sP , r, e2
sP ),→ e1

sP ◦ r = e2
sP ,

...
(e9

sP , r, e10
sP ).→ e9

sP ◦ r = e10
sP .

In order to compute the embedding for the r
relation, let us first take the loop structure. Start-
ing from e2 in the right side of the first triple, the
equivalent vector (e1sL ◦ r) is replaced in its sub-
sequent notation (e.g., by replacing the left side
of e2 in the second triple equation of sL, we get
e1

sL ◦ r ◦ r = e3
sL).
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Figure 5: Structure Preservation Challenges in KGs.
The figure illustrates a path and loop of the “influences”
relation in a small excerpt of the YAGO KG for a chain
of notable people who have influenced each other. The
heat map below shows that several state-of-the-art mod-
els incorrectly predict a loop for the chain of influ-
encers at the bottom by assigning a high value for the
triple P10 (marked red) as they model relations inde-
pendant of entities. The only exception (apart from
the newly proposed model) is TransE, which is how-
ever generally a lot more limited in terms of structure
preservation due to using Euclidean Geometry.

e1
sL ◦ r = e2

sL

e2
sL ◦ r = e3

sL e1
sL ◦ r ◦ r = e3

sL ,
e3

sL ◦ r = e4
sL e1

sL ◦ r ◦ r ◦ r = e4
sL ,

...
...

e9
sL ◦ r = e10

sL e1
sL ◦ r · · · ◦ r = e10

sL ,
e10

sL ◦ r = e1
sL . e1

sL ◦ r · · · ◦ r = e1
sL .

By doing this to the end, we conclude that e1sL ◦
r · · · ◦ r = e1

sL which means r ◦ · · · ◦ r = 1
where r is a complex number (r = eiθr ), therefore
θr = 2π

10 . This value is static for r in the whole
graph, therefore, this can be used to check whether
the second structure (path) is preserved.

Here, we replace the vectors the same way as
above and additionally include the value of r de-
rived in the first calculation.

e1
sP ◦ r = e2

sP

e2
sP ◦ r = e3

sP e1
sP ◦ r ◦ r = e3

sP ,
e3

sP ◦ r = e4
sP e1

sP ◦ r ◦ r ◦ r = e4
sP ,

...
...

e9
sP ◦ r = e10

sP e1
sP ◦ r · · · ◦ r = e10

sP ,
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After some derivations, we have e1
sP ◦ e

20πi
10 =

e10
sP ◦r. With a simplification step, this results in

e1
sP = e10

sP ◦r, from which the model infers that
the triple (e10sP , r, e1sP ) is positive. However, this
is a path structure and the wrong inference yields
it to be a loop structure. This shows how such het-
erogeneous structures are challenging for the Ro-
tatE model. This problem is not limited to RotatE.
Other rotation based KGE models such as QuatE
and ComplEx also have this problem. Generally,
every KGE model which uses constant relation-
based transformation such as TransE also suffer
from such limitations. The heat map in Figure 5
also indicates the wrong inferences by the state-of-
the-art models namely TransE, RotatE, ComplEx,
and QuatE. These wrong inferences lead to diffi-
culties in preservation of loop and path structures.
However, FieldE is capable of correct inferences
for different sub-structures, thus, heterogeneous
structure preservation is also satisfied. Later, we
will discuss KGEs by comparing the TransE model
with FieldE from the flexibility point of view for
relation transformation (constant vs varied vector
field).

B Flexible Relation Embedding

Here, we analyse TransE for modeling the men-
tioned subgraphs. We specifically focus on the
loop structure in this part for TransE. The model
considers a relation as a constant vector to perform
translations as

et + r = et+1. (9)

Therefore, a relation-specific transformation (here
translation) is performed in the same direction with
the same length, regardless of different entities.
This causes an issue on the learning outcome of
complex structures and patterns. To show this, with-
out loss of generality, let us consider a loop in a
graph with a relation r which connects three enti-
ties

e1
sL + r = esL2 ,

esL2 + r = esL3 ,

esL3 + r = esL1 .

(10)

After substituting the first line in Equation 10 in
the second one and comparing the result with the
third equation, we conclude that r = 0. This is
indeed problematic because embedding of all the

Table 6: Constraints in the embedding space for encod-
ing a loop with three nodes.

MODEL CONSTRAINTS

TRANSE r + r + r = 0
ROTATE r ◦ r ◦ r = 1
FIELDE fθr(e1

sL) + fθr(e
sL
2 ) + fθr(e

sL
3 ) = 0

entities will be the same i.e. different entities are
not distinguishable in the geometric space. Now we
prove that our model can encode loops, overcoming
these issues. In order to learn the loop mentioned
above, FieldE should fulfill the following equations

esL1 + fθr(e
sL
1 ) = esL2 ,

esL2 + fθr(e
sL
2 ) = esL3 ,

esL3 + fθr(e
sL
3 ) = esL1 .

(11)

In FieldE, after substituting the first line of this
equation in the second one, and again substitut-
ing the result in the third equation, we obtain the
following

fθr(e
sL
1 ) + fθr(e

sL
2 ) + fθr(e

sL
3 ) = 0. (12)

The above equation can be satisfied by FieldE
because neural networks with bounded continu-
ous activation functions (here tangent hyperbolic
function) are universal approximator and univer-
sal classifiers (Hornik et al., 1989; Hornik, 1991;
Nayyeri et al., 2017). Therefore, a well-specified
neural network for the vector field fθr can ensure
that equation (12) is satisfied.

We additionally show that our model can also
embed a path structure with other three entities
esP1 , esP2 , esP3 while preserving a loop structure with
esL1 , esL2 , esL3 .

e1
sP + fθr(e

sP
1 ) = esP2 ,

esP2 + fθr(e
sP
2 ) = esP3 ,

esP3 + fθr(e
sP
3 ) 6= esP1 .

(13)

After substituting the first line in this equation
in the second equation, and again substituting the
results in the third equation, we have

fθr(e
sP
1 ) + fθr(e

sP
2 ) + fθr(e

sP
3 ) 6= 0. (14)

Because the embeddings of esL1 , esL2 , esL3 , and
esP1 , esP2 , esP3 are distinct points, there is a neural
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network that approximates the vector field fθr in
such a way that both Equations (12) and (14) are
satisfied due to the universal approximation ability
of the underlying network. Therefore, FieldE can
learn two different sub-graph structures with the
same relation.

C Subsumption

Here we show that variants of FieldE subsume
other KGE models.

Proposition 2. DFieldE subsumes TransE and Ro-
tatE. SFieldE subsumes ComplEx and QuatE.

Proof. Here we prove that DFieldE subsumes
TransE. Note that TransE and RotateE use distance
for calculation of scores. Choosing as the mani-
fold M the Euclidean space Rd, we have for any
x ∈ Rd that TxM = M, and the exponential map
is given by expx(v) = x + v. Then, the FieldE
assumption is

et+1 = et + fθr(et).

If we set fθr = r (constant vector field), then we
have et+1 = et + r which is the assumption of
the TransE model for triple learning.

Proof. We now prove that DFieldE subsumes Ro-
tatE. The assumption in RotatE is

et+1 = et ◦ r, (15)

where entities and relations are complex vectors
and the modulus of the complex coefficients of each
relation is 1 i.e. |r| = 1. In the vector form, Equa-
tion (15) can be written in real (rotation) matrix-
vector multiplication as following

evt+1 = Rre
v
t ,

where Rr is a rotation matrix and evt denotes the
vector representation of complex numbers (with
two components of real and imaginary). Given
the assumption of DFieldE in Euclidean space
i.e. evt+1 = evt + fθr(e

v
t ), and setting fθr(e

v
t ) =

(Rr − I)evt where I is the identity matrix, the as-
sumption of RotatE is obtained. We conclude that
the RotatE model is a special case of DFieldE.

Proof. Here we present the proof of subsumption
of the ComplEx model. With the manifold given
by Euclidean space, the SFieldE uses the following
score function

Sr(e
v
t , e

v
t+1) = 〈evt+1, e

v
t + fθr(e

v
t )〉. (16)

Table 7: Symbols

Symbol Description
r relation
e entity
r head and tail and relation embedding
et t-th entity embedding
M manifold
TpM Tangent Space
d embedding dimension
vet , fθ vector field
Sr(et, et+1) score of triple (et, r, et+1)
η regularizer
L number of hidden layer in NN
woi output weight of NN
wkij kth hidden layer weight of NN
g activation function
b bias
Ar matrix vector field
Rr rotation matrix
evt r complex vector/quaternion number

Now, let us focus on the score function of Com-
plEx which is

Sr(et, et+1) = Re(〈ēt+1, r, et〉), (17)

where ē denotes the complex conjugate of e. We
represent the above equation in vectored version of
complex numbers as following

Sr(e
v
t , e

v
t+1) = 〈evt+1, αrRre

v
t 〉. (18)

We can see if fθr(et) = αr(Rr − 1
αr
I)evt in Equa-

tion (16), we obtain the score of the ComplEx
model in the vectorized form shown in Equation
18. Therefore, ComplEx is also a special case of
SFieldE.

Proof. Here, we show that SFieldE subsumes
QuatE. QuatE uses the following formula for the
score function

Sr(et, et+1) = et+1 · r ⊗ et, (19)

where ⊗ and · denote the Hamilton product and
element-wise dot product between two quaternion
vectors, respectively. Similar to RotatE, Equation
(19) can be written in matrix vector multiplication
shown in the following equation

Sr(e
v
t , e

v
t+1) = 〈evt+1,Rre

v
t 〉, (20)

where Rr is a 4d×4dmatrix and evt is a vectorized
version of quaternion numbers. Indeed, the above
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Figure 6: Handling one-to-many relations. Move-
ment on the tangent space will be determined based on
the head as source of movement and the tail as target.

equation can be constructed by the score function
of SFieldE which is given by Equation (16). This
will be the same as the score function of QuatE
in vectorized form, if the vector Field is set to
fθr(e

v
t ) = (Rr − I)evt . Therefore, SFieldE sub-

sumes the QuatE model, as well.

D Modeling Studied Relational Patterns
by FieldE

We have theoretically shown that FieldE subsumes
other state-of-the-art KGE models. Therefore, it
inherits their capability to encode well-studied rela-
tional patterns (such as symmetry, anti-symmetry,
inversion etc.). Here, we show the approach for en-
coding one-to-many relations by the FieldE model.
The meaning of one-to-many relation is when
an entity, say et is connected to several entities,
e1t+1, e

2
t+1, . . . , e

N
t+1. The score of a triple is com-

puted by dist(etn+1 , expetn (vretn )) which is upper-
bounded by using the loss function (Sun et al.,
2019), i.e. dist(etn+1 , expetn (vretn )) ≤ η1. Be-
cause smooth Riemanian manifolds are locally Eu-
clidean, there will be an area (with the center of
et) on the manifold where the tails are embed-
ded in that area and all the corresponding triples
(et, r, e

1
t+1), (et, r, e

2
t+1), . . . , (et, r, e

N
t+1) are mea-

sured as positive. This is the way how FieldE han-
dles one-to-many relations.

Another way to handle one-to-many relations is
to obtain tangent vectors considering tail to encode
a triple in the vector space i.e.

eit+1 = expet(fθir(e(t))), i = 1, . . . , N. (21)

In this way, as shown in Figure 6, the direction of
the movement on the tangent space will be deter-
mined based on the head as source of movement
and the tail as target of movement which conse-

quently enables the model to handle one-to-many
relations.

E Training and the Algorithm of FieldE

In order to optimize the parameters of the FieldE
model (θr and embedding vectors), we employ the
loss function used in RotatE (Sun et al., 2019),
which is defined as

E = −
∑

(et,r,et+1)∈T

(
log σ(η − Sr(et, et+1))+

∑
(e′t,r,e

′
t+1)∈T′

p(e′
t, r, e

′
t+1) log σ(Sr(e

′
t, e

′
t+1)− η)

)
,

(22)

where σ(.) is the Sigmoid function, T,T′ are two
distinct sets of positive and negative samples re-
spectively, and η is the hyper-parameter of the loss
and is adjusted through the validation process. Fur-
ther,

p(e′t, r, e
′
t+1) =

exp(αSr(e
′
t, e
′
t+1))∑

exp(αSr(e′t, e
′
t+1))

denotes the probability of the triple (e′t, r, e
′
t+1)

to be true negative, and the constant α is the tem-
perature of sampling. Note that a negative sam-
ple (e′t, r, e

′
t+1) is created from a positive sample

(et, r, et+1) by randomly corrupting either et or
et+1.

Datasets We run our experiments on several
public datasets with diversity in the covered
content and graph structure, namely FB15k-237
(Toutanova and Chen, 2015), WN18RR (Dettmers
et al., 2018), YAGO3-10 (Mahdisoltani et al.,
2013), WikiMovie-300k (Ostapuk et al., 2019),
and YouTube (Cen et al., 2019). Statistics of these
datasets including the number of their entities and
relations as well as the split of train, test, and vali-
dation sets are shown in Table 9.

• FB15k-237 contains a subset of FreeBase
dataset (Bollacker et al., 2008) in the form
of a standard KG. It is created for experimen-
tal purposes, and covers general world knowl-
edge for example science, politic, and sport
(Dettmers et al., 2018). FB15k-237 is a re-
fined subset of FB15k (Toutanova and Chen,
2015) in which most of the triples involved in
inverse relational patterns are removed from
the training set.
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Table 8: Link prediction on d WikiMovie-300k, and YouTube. The highlight of performances for different models
are marked.

Model WikiMovie-300k YouTube
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE 0.32 0.25 0.36 0.46 0.18 0.00 0.28 0.47
RotatE 0.32 0.25 0.35 0.45 0.25 0.14 0.30 0.46
TuckEr 0.27 0.21 0.30 0.39 0.32 0.24 0.34 0.47
ComplEx 0.28 0.21 0.30 0.40 0.32 0.21 0.36 0.54
QuatE 0.13 0.07 0.14 0.24 0.32 0.21 0.36 0.53
DistMult 0.14 0.08 0.15 0.24 0.04 0.01 0.03 0.10
MuRP 0.32 0.26 0.36 0.45 - - -

DFieldE 0.34 0.27 0.37 0.47 0.33 0.24 0.39 0.55

Figure 7: Performance variations with regard to the number of hidden nodes on the YouTube and WikiMovie-300k
datasets.

• WikiMovie-300k contains extracted knowl-
edge about films such as directors, actors
and genre from Wikidata (Vrandečić and
Krötzsch, 2014). This dataset contains 300K
triples only with entities that appear in at least
two triples.

• YAGO3-10 is a subset of information col-
lected from multilingual Wikipedias includ-
ing: English, German, French, Dutch, Italian,
Spanish, Romanian, Polish, Arabic, and Farsi.
The knowledge is general such as people influ-
encing each other, cities and airports of them
connected to each other, or organizations etc.

• YouTube is a social network dataset which
contains information about interactions be-
tween 15k users. This information is cap-
tured by five relations namely contact, shared
friends, shared subscription, shared sub-
scriber, and shared favorite videos between

users.

• WN18RR is a subset of WordNet dataset
where the inverse relations are deleted, and
the main relation patterns are symmetry/an-
tisymmetry and composition.

Specific Test Sets from FB15k-237 In order to
further analyse the model, we generated four test
sets considering the characteristics of the relations.
In addition, we explored the relations to choose the
most suitable metric for analysis as depending on
the semantics of the relations, the common met-
rics used for comparison in KGE models such as
Hits@1 is possible not to be the best criteria for
performance judgement of a model.

• Dataset1: This test set contains the relation of
/people/person/profession which appears
1311 times in the main data, and is chosen
for Right Rank Hits@k. This relation is a
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one-to-many. Based on the statistics, the low-
est number of profession for one person is
one and the highest number of professions is
recorded to be 13. Therefore, the results for
evaluations on this dataset will be shown on
Hits@1,3,10.

• Dataset2: This test set corresponds to the rela-
tions that create triples with only one possible
option in the tail. Example of such relations
is FB15k-237 is /common/ . . . /category
which appears 402 times in the train dataset.
Therefore, for such relations, the evaluation
using the Hits@k metric is not appropriate.
We provided the results using the F-Measure
metric.

• Dataset3: This test set contains those rela-
tions that can have limited options in the tail
but not only one. An example of such rela-
tions is /people/person/gender which has
two possibilities in the tail per each head. It
covers 436 triples in the dataset. Considering
such relations in the evaluation of Hits@k for
the models reduces the fairness of the com-
parisons as it is not the mistake of the models
ranking triples for genders high. This test set
has 8 more relations of similar kind and we
provide the F-Measure for these as well.

• Dataset4: This test set includes two rela-
tions with multiple options and always more
than 10 possibilities for the tails. There-
fore, here we only consider the Hits@10
of right rank for the evaluations. By aver-
aging the left and right ranks in computa-
tion of Hits@k for such relations, the per-
formance of the models was not properly
measured. An example of such relations is
/film/ . . . /film_crew_role and appears in
606 triples which is highly effecting the perfor-
mance of the models if measured on Hits@1,3
and also taking the left rank in account.

Table 9: Dataset Statistics. Number of entities, rela-
tions, and the splits.

Dataset #Ent. #Rel. #Train #Valid. #Test

FB15k-237 15k 237 272k 20k 18k
WikiMovie-300k 36k 588 240k 23k 23k
YAGO3-10 123k 37 1m 5k 5k
YouTube 2k 5 1m 65k 131k
WN18RR 40k 11 86k 3k 3k

Hyperparameter Search We implemented our
model in Python using the PyTorch library 2. We
used Adam and Adagrad as the optimizers and
tuned the hyperparameters based on the valida-
tion set. The learning rate (r) and batch size
(b) are tuned on r = {0.0002, 0.002, 0.02, 0, 1},
b = {100, 512, 1024} respectively. The embed-
ding dimension d is fixed to 100 for YAGO3-10,
1000 for FB15k-237, 300 for YouTube and 100 for
WikiMovie-300k. We set the number of negative
sample to 100 for FB15K-237, 500 for YAGO3-
10, 300 for YouTube, 100 for WikiMovie-300k
and used adversarial negative sampling for our
model as well as the other models we have re-
implemented. We presented two versions of FieldE
namely DFieldE and SFieldE. DFieldE uses the
distance function to compute the score of a triple.
On the other hand, SFieldE uses the inner product
for score computation. Here we define DFieldE as

Sr(etn , etn+1) = −dist(etn+1 , expetn (vretn )),
(23)

and SFieldE as

Sr(etn , etn+1) = 〈etn+1 , expetn (vretn )〉, (24)

with 〈·, ·〉 denoting the Euclidean inner product in
the ambient space.

Each of the above versions of FieldE can either
use a neural network to approximate the vector
field, or use an explicit linear function as a vector
field. For the Neural version of FieldE, we used a
neural network with two hidden layers. The linear
version of FieldE depends on the same parameters
except for the hidden layers and having full nega-
tive samples with N3 regularization (Lacroix et al.,
2018).

For the Neural version of FieldE, we used a neu-
ral network with two hidden layers (details in Table
10). with (500,100) hidden nodes for YAGO3-10,
(100,100) for FB15K-237a as well as YouTube, and
(5,5) for WikiMovie-300k. We fixed the parameter
η to 0.5 in equations 5 and 6.

For SFieldE, all the following parameters apply
except the hidden layers and having full negative
samples. For all other models, the same parameters
were used. We also performed evaluations in low
dimensions where we set the same hypermaram-
eters reported in (Chami et al., 2020) for all the
models.

Dataset Complexity and Size of Neural Net-
work. An interesting insight from the performance

2https://pytorch.org

https://pytorch.org
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(a) Comparison of manifolds in high dimension (500) (b) Comparison of manifolds in low dimension (32)

Figure 8: Performance of the FieldE model using different manifolds of Sphere, Euclidean, Hyperbloid, and
Poincaré Ball.

(a) Comparison of models in high dimension (500) (b) Comparison of models in low dimension (32)

Figure 9: Performance comparison of FieldE model and other State-of-the-art models.

Table 10: Best hyper-parameter settings for DFieldE for the three different datasets.

Dataset dimension learning rate batch size hidden nodes active function neg.sample margin

YAGO3-10 100 0.002 512 (500,100) tanh 500 24
FB15k-237 1000 0.1 1024 (100,100) tanh 100 9
YouTube 300 0.0002 512 (100,100) tanh 300 6

results and the characteristics of the datasets was
the connection between the complexity of knowl-
edge graphs and the complexity in design of the
FieldE’s Neural Network (i.e. the neural network
which parameterizes the vector field). As shown
in Table 9, the statistics of the datasets also reveals
their sparsity and density. For example, YouTube
with 5 relations, 2k entities and 1m triples is a
more dense and complex knowledge graph than
WikiMovie-300k with 588 relations, 36K entities
and 240K triples. In other words, the WikiMovie-

300k dataset is much sparser than the YouTube
dataset. Considering these characteristics, we ex-
plored the performance of FieldE in Hits@1,3,10
and MRR by increasing the number of hidden lay-
ers in the Neural Network characterising the vec-
tor field fθr . In Figure 7, we show the results of
comparison for YouTube and WikiMovie-300K,
where increasing the number of hidden nodes on
the YouTube dataset, the results are gradually im-
proved but not for WikiMovie-300K. This means
the complexity of the underlying vector field re-
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(a) some people influencing many (loop and
path)

(b) few people influence many (source) (c) dense influencing of many others (loop and
path)

(d) many people influencing each other (loop) (e) few people being influenced by many (sink) (f) density in few people influencing others
(source)

Figure 10: Vector field visualization of different relations.

quired the corresponding neural network to be
complex as well. In the case of WikiMovie-300k
dataset, the best results are always achieved by only
using 5 nodes in each hidden layers, and further in-
creasing the hidden nodes resulted in a decrease of
performance in all of the metrics. This clearly leads
to overfitting of the model for such sparse datasets.
The results presented in Table 8 justify these obser-
vations. As can be seen, the performance of TransE
and FieldE are quite close for WikiMovie-300K
which is a result of the simplicity of the KG. How-
ever, on a more dense and complex dataset such
as YouTube, the performance difference of TransE
and FieldE are significant. For example, compar-
ing to TransE, our model FieldE performs 15%
better in MRR, 24% better in Hits@1, 11% better
in Hits@3, and 8% better in Hits@10. Overall,
FieldE provides a flexible model by parameterizing
the vector field via a neural network with arbitrary
architecture to work on KGs with different degrees
of complexity. Note that FieldE can be as simple
as TransE if the vector field is set to be constant.

Comparison of Manifolds Certain experiments
have been done with the aim of differentiating the
effect of different manifold choices for the learning
performance of the FieldE model. To this end, we
performed FieldE on four subdatasets (test sets) of
FB15k-237, Namely Dataset1, Dataset2, Dataset3,

Dataset4, each of which is analysed with a suitable
metric (either Hits@10 right rank or F-Measure).
These evaluations have been done using different
embedding dimensions, a high dimension of 500
and a low dimension of 32 and the results are shown
in Figure 8. As can be seen, the difference of vari-
ous manifolds choices in high dimensions is small.
Non-Euclidean manifolds are performing slightly
better in three out of four datasets. The results
in low dimensions show a significant effect of the
choice of manifold. Generally, the sphere domi-
nates performance in all of the datasets. Addition-
ally, FieldE on a Poincaré Ball performs better than
FieldE using Euclidean space on Dataset3 consid-
ering the F-Measure metric.

Visualization of Vector Fields. Tracing the
vector fields created by different relations gives
the intuition about the underlying structures that
are preserved by the model. Due to the high
dimensionality, the vector fields are usually be-
yond human perception capabilities, however, in
order to provide a presentable illustration, we plot
each vector field in pair of dimensions. There-
fore, for FieldE with d = 100, we created 99 pairs
which we selected six graphs constructed from
{(7, 8), (24, 25), (37, 38), (41, 42),
(87, 88), (93, 94)} dimension.

In Figure 10, we illustrate corresponding vec-
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tor fields for influences relation in the YAGO3-10
knowledge graph. The printed vector fields corre-
spond exactly to the case shown in Figure 5 where
some people are influencing others in a loop struc-
ture, and some people influence others in a path
structure (without a return link). These results show
full structure preservation from the graph represen-
tation to the vector representation. As discussed
before, this capability also avoids incorrect infer-
ences. Subgraph 10(a) shows some people influenc-
ing many others both in path and loop structures.
Subgraph 10(b) shows trajectories of some people
being a source influencer for many others. For
those source points, the divergence is positive. The
subfigure 10(c) is another loop and path occurrence
with more density.

A source vector fields is illustrated in subfigure
10(d). The interpretation of this vector field is that
there is a person influencing many others. The
subfigure 10(e) shows a set of sink nodes (with
negative divergence) where they have been influ-
enced by many. And finally, the subfigure 10(f)
shows some more dense source entities. Overall,
all of these illustrations for the influences relation
illustrate the capability of FieldE inherited from
ODEs and facilitated by the concept of vector field
and trajectories.

Four other relations (inConnectedTo, hasGender,
owns, and livesIn) have been selected to provide
broader visualizations of vector fields. In Figure
11, we represent the vector fields of these relations
for subgraphs with different structures including
paths and loops. Each row corresponds to the visu-
alizations of one relation for which three different
learned structures are selected to be shown. For
example, subgraphs of 11(a), 11(b), and 11(c) cor-
respond to the “isconnectedto” relation that shows
which airports are connected to each other in dif-
ferent structures (loops and paths). Our visualiza-
tions capture different preserved structures includ-
ing paths and loops which show some airports are
connected in a loop form and some not. In the sub-
graphs of 11(d), 11(e), 11(f), different structures
of “hasGender” relation are captured. Same for the
“livesIn” relation, we show different visualizations
of the vector fields in 11(j), 11(k), and 11(l). By
these visualizations, we aim at giving clarity on
the effect of ODEs in learning vector fields. All
of these are trajectories lying on relation-specific
vector fields learned by the neural network of our
model. The arrows show the direction of structure

evolution in the vector space for each subfigure.
Further Evaluations. A comparison of our

model to a list of six state-of-the-art models has
been provided, in addition to four test sets. The
purpose of this evaluation is to deepen the analysis
by taking more specific metrics into account and
by designing test sets based on characteristics of
the relations. The results are presented in Figure 9
where ComplEx, Dismult, Quate, RotatE, TransE,
and pRotatE mdoels are compared to FieldE. We
performed these evaluations in low (32), and high
(500) dimensions. As can be seen, our model out-
performs all the other models in low dimension
in all the datasets except QuatE with which there
is a very close competition in Dataset3. In high
dimension, our model outperforms other models in
Dataset1 and Dataset3. For the other two datasets,
QuatE and pRotatE perform close to our model.

Additionally, we investigate the effect of coor-
dinate transformation by using a neural network
i.e.

deL(t)

dt
= fθr(eL(t)), (25)

where eL(t) = φ(e(t)) with φ being represented
by a neural network. This corresponds to pos-
ing the manifold dynamics in a (possibly lower-
dimensional) space similar to the encoder step in
auto-encoders. We observed that in Dataset4, this
variant of our model outperforms the original Eu-
clidean version without coordinate transformation
in low dimension of 32 (98 vs 88%) using right
Hits@10 (tail ranking). However, on the other
test sets, the original version of FieldE obtained
a slightly better/closer performance than FieldE
with neural coordinate transformation. We conjec-
ture that such results are due to the advantage of
the vector field used in the original FieldE which
can capture data complexity without using neural
coordinate transformation.
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(a) one airport is connected to many (source) (b) airports are connected to others (path and
loop)

(c) some airports having more connection (mix)

(d) separation of male and female (2 sinks) (e) people with one gender (sink) (f) people with one gender (sink)

(g) shared stock (loop and path) (h) shared stock (loop) (i) complexity in shared stocks (source and sink)

(j) one person lives in several place (source) (k) many people lives in one place (sink) (l) one person lives in several place (source)

Figure 11: Illustration of vector fields for isConnectedTo, hasGender, owns, and livesIn relations.


