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Abstract

Neural models and symbolic rules such as reg-
ular expressions have their respective merits
and weaknesses. In this paper, we study the
integration of the two approaches for the slot
filling task by converting regular expressions
into neural networks. Specifically, we first con-
vert regular expressions into a special form of
finite-state transducers, then unfold its approx-
imate inference algorithm as a bidirectional re-
current neural model that performs slot filling
via sequence labeling. Experimental results
show that our model has superior zero-shot
and few-shot performance and stays competi-
tive when there are sufficient training data.

1 Introduction

Neural approaches almost dominate recent natural
language processing (NLP) research. The tremen-
dous success of neural networks benefits from their
strong capability of learning from a large amount
of annotated data. On the other hand, systems
based on symbolic rules, while being no longer
the mainstream approach to NLP research, are still
very widely used in practice because of their in-
terpretability, trustworthiness and decent zero-shot
performance in data-scarce scenarios. Therefore,
how to integrate neural and symbolic approaches
while retaining their respective advantages is be-
coming an active research direction.

In this paper, we try to integrate neural networks
with regular expressions (RE), one of the most
widely used forms of symbolic rules. We focus
on the slot filling task (SF), a typical application
scenario of REs that aims to identify words in a
sentence that carry specific information. For exam-
ple, given the sentence “show me the flights from
New York to Dallas.”, SF aims to tag the span “New
York” as the content of slot fr.city (the departing
city). An RE specifies text patterns of both con-
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tents and contexts and uses capturing groups to
mark target contents.

Existing methods that integrate neural networks
and symbolic rules either use rule outputs as
pseudo-labels to distill knowledge into neural net-
works (Zhang et al., 2018; Hu et al., 2016), or use
rule outputs to influence attention weights or output
logits of neural networks (Luo et al., 2018; Wang
et al., 2019; Li and Srikumar, 2019). These in-
tegration methods can outperform both rules and
pure neural networks when there are sufficient train-
ing data. However, since they still require train-
ing, their performance is well below that of rules
in zero-shot and low-resource settings. More re-
cently, Jiang et al. (2020) proposed a novel method
that converts REs into neural networks, which can
match the performance of the original REs without
training and can compete with previous integra-
tion methods when trained. Unfortunately, their
method is designed for text classification and can-
not be easily extended to the SF task because it does
not model RE capturing groups and only computes
sentence-level scores.

In this work, we propose to neuralize REs with
capturing groups for the SF task. Our method is
inspired by Jiang et al. (2020) but differs from
their work in many aspects. Specifically, we treat
SF as a sequence labeling task with the BIO tag
scheme and convert REs with capturing groups
into finite-state transducers (FST) with restricted
output dependencies. We propose an approximate
FST inference algorithm and unfold it as a neural
model that resembles bidirectional RNN models
for sequence labeling. Our model is approximately
equivalent to the original REs and can be further
improved by training on labeled data. We also
propose several techniques to enhance the model
without harming its initial approximation to the
REs.

We conduct our experiments on three popular
SF datasets involving two domains and two lan-
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Figure 1: The procedure of neuralizing an RE system.

guages. Results show that our model has supe-
rior performance on zero-shot and low-resource
settings compared with all the previous methods
and remains competitive on rich-resource settings.
We provide our source code as well as a handy
toolkit for writing and converting REs in https:
//github.com/jeffchy/RE2NN-SEQ.

2 Background

2.1 Regular Expression for Slot Filling

We describe a slot filling system based on word-
level REs with capturing groups. Consider the
following RE that captures the content of a sentence
for slot fr.city (the departing city).

w∗� from
[
w∗�
]
〈 fr.city 〉 to w∗�

w� is the wildcard symbol for words and it
matches any word; symbol ∗ is the Kleene star op-
eration which means the preceding symbol or sub-
expression can appear for zero or more times.

[
sub-

expression
]
〈 name 〉 is a capturing group that cap-

tures the contents matched by the sub-expression
and tag them as name. An RE can have multiple
capturing groups. To do slot filling, we write REs
in which each capturing group is dedicated to a slot
indicated by the name, and then we apply the REs
one by one to capture the contents in the input sen-
tences. For words captured by multiple groups with
different names, we resolve the conflicts based on
pre-defined priority. For example, given sentence
show me the flights from New York to Dallas, the
RE above would identify “New York” for slot fr.city.

2.2 Finite-State Transducer

A finite-state transducer (FST) is a finite-state ma-
chine with input and output. At each time step, it
accepts a word, transits from one state to another,
and outputs a label. It is formally defined as a
6-tuple: T = 〈 Q,Σ,Γ, QI , QF ,Ω 〉 .
• Q: a finite set of states. |Q| = K.
• Σ: a finite input vocabulary. |Σ| = V .
• Γ: a finite output vocabulary. |Γ| = L.
• QI : a finite set of start states, a subset of Q.
• QF : a finite set of final states, a subset of Q.
• Ω = Σ× Γ×Q×Q: all possible transitions.
× denotes cartesian product.
If we assign a weight to each transition and

a weight to each state for being a start state or
final state, then we get a weighted finite-state
transducer (WFST). We can use a 4th-order ten-
sor TΩ ∈ RV×L×K×K to represent the transition
weights, and two K-dimension vectors µ and ν to
represent the weights of start and final states. An
FST can be viewed as a WFST with 0/1 weights.
Specifically, TΩ[m,n, i, j] = 1 iff. T accepts in-
put token σm, transits from state qi to state qj , and
outputs γn, where σm ∈ Σ, γn ∈ Γ, qi, qj ∈ Q.
µ[i] = 1 iff. qi ∈ QI and ν[j] = 1 iff. qj ∈ QF .

We define a path as a sequence of transitions.
An FST accepts an input sequence if there exists at
least one path that starts from a start state, matches
the input sequence at each position, and ends at
a final state. We call such a path an accepting
path, which defines a mapping from the input se-
quence to an output sequence. The score of path
ω1, · · · , ωm with start state qi and final state qj can

https://github.com/jeffchy/RE2NN-SEQ
https://github.com/jeffchy/RE2NN-SEQ
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q0 q1 q2 q3

w�/l�

from/l� w�/B-fr.city

w�/I-fr.city

to/l�

w�/l�

Figure 2: An example finite state transducer. q0 is the
only start state and q3 is the only final state. w� is the
wildcard for input words and l� is the wildcard for out-
put labels. Each arc represents a possible transition and
the slash above each arc separates the input (left) and
the output (right).

be computed as: µ[i]·(
∏m

k=1 TΩ(ωk))·ν[j], where
TΩ(ωk) denotes the weight of transition ωk.

We show an example FST in Fig. 2. The in-
put “flights from New York to Dallas” can be ac-
cepted by the FST, and the accepting path indicates
a state sequence [q0, q0, q1, q2, q2, q3, q3] and out-
put sequence [l�, l�, B-fr.city, I-fr.city, l�, l�].

3 Method

In this section, we introduce the several steps of
neuralizing REs (as shown in Fig. 1) as well as the
decoding and training methods.

3.1 Converting RE to FST

Sakuma et al. (2012) rigorously show that any RE
with capturing groups can be converted into an FST.
The equivalence of the RE and FST is reflected in:
(1) RE matches a sentence if and only if the cor-
responding FST has at least one accepting path;
(2) the output sequence of the FST matches the
content captured by the RE. Here we use the BIO
tag scheme in the FST output to specify captured
groups. For example, we tag New and York as B-
fr.city and I-fr.city to represent the captured group
New York as fr.city. For words outside of any cap-
ture group (e.g., ‘from’, ‘Dallas’ in the example
sentence (Sec. 2.1)), however, we depart from the
BIO scheme and assign a wildcard label l� instead
of the outside label ‘O’ to them, which means the
RE is totally unsure about which label the words
should be assigned because groups in other REs
might capture them. For example, ‘Dallas’ can be
captured by another RE as ‘to.city’ (arriving city)
and hence shall not be assigned label ‘O’.

To convert an RE to an FST, we view an FST
as a finite-state automaton with vocabulary Σ× Γ,
use Thompson’s construction (Thompson, 1968)
to build the automata from the RE and further
minimize the automata using Hopcroft’s algorithm
(Hopcroft, 1971). In the resulting FST, the input

Algorithm 1: Inference in FST

1 Input: x = x1, · · · , xm. T = 〈 TΩ,µ,ν〉
2 Step 1: sum out the dimension w.r.t. label for tensor
TΩ to get T ′Ω ∈ RV×K×K . Let T ′Ω[xt] denote the
transition matrix of word xt from T ′Ω

3 Step 2: calculate forward scores. let α0 = µT .
4 for t← 1 to m do
5 αt = αt−1 · T ′Ω[xt].

6 Step 3: calculate backward scores. let βm = νT .
7 for t← m to 1 do
8 βt−1 = βt · T ′Ω[xt]

T .

9 Step 4: get label scores ct ∈ RL at each position t
10 (ct)k = (αt−1)i (TΩ[xt])kij (βt)j (einsum

notation)

vocabulary Σ is the RE vocabulary and the output
vocabulary Γ contains labels B-X and I-X for each
slot X, as well as O and the wildcard label l�. As an
example, the RE in Sec. 2.1 can be converted into
an FST shown in Fig. 2. We provide the complete
conversion algorithm and prove its correctness in
Appendix A. When there are multiple REs, we take
the union of the REs with the ‘or’ operation (i.e.,
a|b) to form a big RE and turn it into an FST.

3.2 Inference in FST

Given sentence x = x1, · · · , xm, FST infer-
ence aims to find the output label sequence y =
y1, · · · , ym. The score of y is defined as the weight
sum of all the accepting paths matching input x
and output y. As finding the highest scoring output
given a sentence is proved to be NP-hard (Casacu-
berta and De La Higuera, 2000), we instead use an
approximate inference that finds the highest scor-
ing output label at each position independently of
the labels at all the other positions. This can be
done with the classic variable elimination algo-
rithm, which involves a forward process summing
out variables to the left and a backward process
summing out variables to the right of each position.
We show the algorithm of computing label scores
simultaneously at all the positions in Algorithm 1.

3.3 Independent FST

The 4th-order tensor in the FST leads to the
following issues. (1) High space complexity
O(V LK2). (2) High time complexity for each po-
sition: O(LK2). (3) Hard to decompose the tensor
(see Sec. 3.4).

FST to i-FST We address these concerns by
transforming the FST such that each label output
is independent of the input and the source state
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q0 q1 q2 q3

q′2

w�/l�

from / l� w� / B-fr.city

w� / I-fr.city

w� / I-fr.city

to / l�

to / l�

w�/l�

Figure 3: An example i-FST. q′2 is the added state.

Algorithm 2: Inference in i-FST.

1 Input: x = x1, · · · , xm. T = 〈 T ,O,µ,ν〉
2 Step 1: sum out the dimension w.r.t. label forO to

get vector o ∈ RK . Let ◦ denote element-wise
multiplication.

3 Step 2: calculate forward scores, let α0 = µT .
4 for t← 1 to m do
5 αt = (αt−1 · T [xt]) ◦ oT .

6 Step 3: calculate backward scores, let βm = νT .
7 for t← m to 1 do
8 βt−1 = (βt ◦ oT ) · T [xt]

T .

9 Step 4: get label scores ct ∈ RL at each position t.
10 ct = (αt ◦ βt) ·O

of the transition given the target state. We call it
independent FSTs (i-FST). Fig. 3 shows an i-FST
converted from the FST shown in Fig. 2. In the
example i-FST, the output is B-fr.city if we reach q2,
but in the original FST, the output could be either
B-fr.city or I-fr.city depending on the source state.
We show the conversion algorithm in Appendix B.
The algorithm runs in polynomial time O(LK3)
and adds at most O(LK) new states. As FSTs con-
verted from REs naturally satisfy this independence
condition in most cases, the algorithm runs much
faster and adds no more than 50% new states in our
experiments on three datasets.

3th-order representation Because of the inde-
pendence in an i-FST, we can use a 3th-order tensor
T ∈ RV×K×K to represent transitions between
states given an input, and a matrix to represent
the mapping from end states to the output label
O ∈ RK×L. We can use T and O to recover
the 4th-order tensor of an i-FST: TΩ[σ, γ, i, j] =
T [σ, i, j]×O[j, γ].

Inference in i-FST We can again apply variable
elimination to compute label scores (Algorithm
2). Since the output label now depends only on
one state, the time complexity is also reduced. We
compare FST and i-FST in Table 1.

We find that i-FST inference resembles running
a BiRNN model with a linear output layer for se-
quence labeling. We recurrently update the forward

FST i-FST
space O(V LK2) O(V K2

1 )

time at each
position

O(LK2) O(LK1 + 2K2
1 )

scoring transition reaching state

factor graph

Table 1: Comparison of FST and i-FST.K1 denotes the
number of states for i-FST. In practice, K1 ≤ 1.5K.
In the factor graphs, variable S and E represents the
source and target states of a transition, and X, Y repre-
sent the input and output.

score αt and backward score βt based on the input
xt and the previous scores at each position, so αt

and βt resemble the forward and backward hid-
den states in a BiRNN. At position t, we aggregate
αt and βt and map them to the label score vector
yt, which also resembles concatenating the bidirec-
tional hidden states together and feeding them into
the output layer in a BiRNN.

3.4 Parameter Tensor Decomposition: the
last step towards FSTRNN

An i-FST is much more compact and faster but
it still: (1) has too many parameters (especially
T ∈ RV×K×K) compared to a traditional BiRNN;
and (2) is unable to incorporate external word em-
beddings. To tackle these problems, we adopt the
tensor decomposition-based method proposed by
Jiang et al. (2020) and modify the forward and
backward score computation accordingly (Steps 3
and 4 in Algorithm 2).

CP Decomposition (CPD) We apply CPD to de-
compose the 3th-order tensor T into three matri-
ces: ER ∈ RV×R,DS ∈ RK×R,DE ∈ RK×R,
where R is rank, a hyper-parameter. A higher rank
usually results in lower decomposition errors. We
show the detail of CPD in Appendix C. After tensor
decomposition, we use ER,DS ,DE instead of T
to compute forward and backward scores. Line 5
of Algorithm 2 becomes:

vt =ER[xt]

g =(αt−1 ·DS) ◦ vt
αt =(g ·DT

E) ◦ oT
(1)

where ER ∈ RV×R can be treated as a special
word embedding matrix derived from the original
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RE, and vt is the embedding of word xt selected
fromER. IfER,DS ,DE reconstruct T perfectly,
then Eqa. 1 is equivalent to line 5 in Algorithm 2.
Similarly, the backward score equation in line 8 is
modified to:

vt =ER[xt]

a =((βt ◦ oT ) ·DE) ◦ vt
βt−1 =(a ·DT

S )

(2)

Incorporating External Word Embedding As
mentioned above, we treat ER[xt] as an R-
dimension word vector. We may also want to inject
additional information of the word by incorporating
externally pretrained word embedding.

For static word embeddings such as GloVe, we
again adopt the method of Jiang et al. (2020). Let
Ew ∈ RV×D denote the word embedding matrix
we want to incorporate. Ew[xt] is theD dimension
word vector for xt. To combine these two word
vectors together, we introduce a D × R trainable
matrix G that maps the pretrained word vector
fromD dimension toR dimension. G is initialized
as E†wER, where E†w is the pseudo-inverse of Ew.
As a result, Ew[xt] ·G approximates ER[xt]. We
then interpolate these two R-dimension vectors
with hyper-parameter η to get new vt, and use it to
calculate the forward and backward scores in Eqa.
1 and 2.

vt = ηER[xt] + (1− η)Ew[xt] ·G (3)

To incorporate contextualized word embeddings
such as BERT, we first use two methods to ac-
quire an intermediate static word embedding ma-
trix Ew ∈ RV×D: (1) The Aggregate method pro-
posed by Bommasani et al. (2020); (2) A Random
matrix Ew ∼ N (0, 0.5). Then we initialize G as
E†wER. The new word embedding vt for xt can
be obtained by Eqa.4, where ut is the contextual
word embedding of xt.

vt = ηER[xt] + (1− η)ut ·G (4)

3.5 Enhancements
We enhance the model without harming its approx-
imation to the FST with the following techniques.

Non-linearity We apply the tanh activation
function to αt and βt. For example, the third for-
mular of Eqa. 1 becomes: αt = tanh ((g ·DT

t ) ◦
oT ). Note that y = tanh (x) is close to y = x
when x ∈ [−1, 1], so we find that our model still

approximates the FST very well. As will be shown
later, when the model is trained with labeled data,
applying tanh leads to better performance.

Dummy States The number of FST states K is
decided by the REs. We may introduce K ′ addi-
tional states to improve the capacity of the model.
We achieve that by padding the parameter matrices.
For example, we padDS ∈ RK×R with a random
matrix D′S ∈ RK′×R, where D′S ∼ N (0, 1e−5).
The padding numbers are so small that these new
states can be seen as being isolated with no tran-
sition and hence do not interfere with the FST in-
ference. However, transitions from and to these
states will be automatically established after train-
ing, which often improves the model performance.

Gated Variants We follow (Jiang et al., 2020)
and add an update gate zt and a reset get rt into the
forward and backward score computation. We call
it FSTGRU. We close the gates initially by setting
a big bias term so that our model still approximates
the FST. After training, the gates would be utilized
and lead to better model performance. We show
details in Appendix D.
Algorithm 3:

1 Input: ct, τ, i (index
of label l�).

2 c′t = priority(ct)
3 c′t[i] = min(c′t[i], τ)
4 k = arg max (ct)
5 lt ← L[k]
6 if lt is l� then
7 lt ← O

8 Output: lt.

Algorithm 4:
1 Input: c1, · · · , cm, τ, i.
2 for t← 1 to m do
3 c′t = priority(ct)
4 c′t[i] = min(ct[i], τ)

5 l1, · · · , lm ←
viterbi(c′1, · · · , c′m)

6 if lt is l� then
7 lt ← O
8 Output: l1, · · · , lm.

3.6 Decoding

FST inference produces a label score vector ct at
each position t. Here we show how to output labels
from the score vectors.

Priority We first feed the label scores at each
position into a priority layer to resolve conflicts
when different groups capture the same word. The
priority relations between slot labels are specified
by human experts and can be represented as a set
of logic rules. We turn the rules into soft logic
computation that can be implemented with an MLP
which takes ct as input and outputs an updated
vector c′t ∈ RL. We show details in Appendix E.

FSTRNN-Softmax Before decoding from c′t, we
introduce a fixed threshold τ ∈ (0, 1) (set to 0.1 by
default) to handle the wildcard label l�. Intuitively,
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l� represents unsureness, so we only choose it when
the scores of all the other labels are below τ . In
that case, we deem the word is not captured by
any groups and hence output label O. In all the
other cases, we output the highest-scoring label.
We show the decoding step in Algorithm 3.

FSTRNN-CRF Linear chain CRF is widely used
in sequence labeling decoding. It can be easily inte-
grated into our model. We first handle l� similarly
using threshold τ . We then regard label scores as
CRF emission scores and use the Viterbi algorithm
to produce the output sequence. Finally, we again
change l� to O. We initialize the CRF transition
probabilities p(yt|yt−1) to 1

L so that initially we ob-
tain the same output sequence as FSTRNN-Softmax.
We show the decoding step for FSTRNN-CRF in
Algorithm 4.

3.7 Training Using Label Data

To approximate REs, we initialize the model param-
eters: ER,DS ,DE ,O,α0,βm from the corre-
sponding i-FST. But unlike REs, our model can be
trained using labeled data to further improve its per-
formance. For FSTRNN-Softmax, we optimize the
cross-entropy loss at each position. For FSTRNN-
CRF, we optimize the classic CRF loss. We opti-
mize the loss functions using Adam (Kingma and
Ba, 2014). As l� is a dummy label that does not
appear in the training data, its score will be auto-
matically reduced over training, which implies we
learn to remove unsureness of the original RE.

4 Experiments

4.1 Experimental Settings

Datasets and REs We perform our experiments
on three SF datasets involving 2 languages and 2
domains: ATIS (Hemphill et al., 1990), ATIS-ZH
(Mansour and Haider, 2021), and SNIPS (Coucke
et al., 2018). ATIS contains English queries for
airline service and ATIS-ZH is the Chinese version
of ATIS. SNIPS is a collection of English queries
to voice assistants. It has a large vocabulary and is
more complex than ATIS. Both ATIS and SNIPS
are widely adopted for evaluating SF models. For
each dataset, we ask an RE expert to write RE rules.
We show the statistics of the datasets and REs in
Table 2. We leave more details of RE writing in
Appendix F.

Baselines We choose Bi(RNN/GRU/LSTM)-
(Softmax/CRF) (Huang et al., 2015) as base models

for experiments with static word embeddings, and
use BERT-base-uncased1 + (Softmax/CRF) (Chen
et al., 2019a) as base models for experiments
with contextualized word embeddings. When
using BERT, we represent each word using the
last BERT hidden state of the first sub-token and
feed these hidden states into a linear layer. These
baseline methods are widely used for SF. We also
compare previous methods of enhancing these
base models with REs. Luo et al. (2018) use REs
as additional input features (+i), use REs to adjust
output logits (+o) or apply both of them (+io)2.
We also compare two knowledge-distillation-based
algorithms that treat RE results as a teacher to
help the learning of the base model. One is the
classic knowledge distillation method proposed by
Hinton et al. (2015) (+kd), and the other combines
knowledge distillation with posterior regularization
(Hu et al., 2016) (+pr).

Training Settings When using static word em-
beddings, we use 100d GloVe (Pennington et al.,
2014) embedding for ATIS and SNIPS and use
300d FastText (Bojanowski et al., 2017) embed-
ding for ATIS-ZH; we also fix word embeddings
Ew,ER during training. When using contextural
word embeddings, we finetune BERT for both our
methods and the baselines. Our methods have com-
parable numbers of trainable parameters to those
of the baselines. We show the parameter numbers
and hyper-parameter tuning of our methods and
baselines in Appendix G and H. We compare our
methods and the baselines on zero-shot, 10-shot,
50-shot, 10%, and 100% of the training data. We
report averaged results from four runs with differ-
ent random seeds for data sampling and parameter
initialization.

4.2 Evaluation

We report the micro F1 scores of our methods and
baselines on various training settings. We leave the
BiLSTM results in Appendix J because BiGRU is
slightly better. We do the same for +io (worse than
+i).

4.2.1 With Static Word Embeddings
Zero-shot We show the zero-shot performance
for models with non-contextual word embeddings
in Table 3. Results show that our methods reach

1https://huggingface.co/bert-base-uncased
2As our model does not have an attention layer, we do not

compare our model with their attention based method.
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#Train #Vocab #Slots #RE Time (h) K K1 Precision Recall F1

ATIS 3982 943 83 50 6 114 126 90.34 60.35 72.36
ATIS-ZH 3982 1072 83 34 4 65 94 92.52 63.36 75.21

SNIPS 13084 12134 39 25 8 94 104 85.33 37.37 51.98

Table 2: Statistics of the datasets and REs. For each dataset, we show the number of training samples, vocabulary
size and slot number. For the REs of each dataset, K is the state number of the FST converted from the REs and
K ′ is the state number of the corresponding i-FST. We also show the time spent in writing the REs and the SF
performance of the REs.

Model ATIS ATIS-ZH SNIPS

So
ftm

ax

FSTRNN 73.10 74.87 52.02
FSTGRU 73.10 74.87 52.02
BiGRU+(kd/pr/none) 1.76 1.91 0.69
BiGRU+i 0.17 0.29 0.48
BiGRU+o 11.70 22.88 10.49

C
R

F FSTRNN 73.10 74.87 52.02
FSTGRU 73.10 74.87 52.02

/ RE 72.36 75.21 51.98

Table 3: Zero-shot results (F1) with static word embed-
dings.

comparable or even better results in comparison
with the original REs without any training and per-
form much better than all the other baselines. Be-
cause +kd, +pr are knowledge-distillation-based
methods, they are the same as +none without any
training. The base models and their +i, +kd, +pr
enhancements perform at the random guessing
level, while +o is better but still significantly infe-
rior to the original REs. FSTRNN/FSTGRU with
Softmax/CRF perform almost the same because of
our initialization strategy described in Sec. 3.5
and Sec. 3.6. sometimes outperform the original
REs because of randomness and external word em-
bedding incorporation when η < 1. We give an
analysis of the impact of η in Appendix I.

Few-shot Can our model maintain the lead over
the baselines and be trained to outperform the orig-
inal REs on low-resource settings? The 10-shot
and 50-shot results in Table 5 give a YES answer.
On the few-shot settings, our methods outperform
all baselines (including REs). This is because, on
one hand, our models have a better starting point
derived from the REs in comparison with the neural
baselines; and on the other hand, our models can
learn to improve using labeled data in comparison
with the RE baseline. With 50 shots of the train-
ing data, our methods outperform the REs by +2.3
F1 on ATIS and around +1.0 F1 on ATIS-ZH and
SNIPS. The enhancement methods, especially +i,

SNIPS
Model

0 10 50 10% 100%
BERT+FSTRNN 52.28 52.39 52.52 89.07 95.67
BERT+FSTGRU 52.28 51.84 52.75 88.67 95.79
BERT - 24.79 47.68 89.60 95.60
BERT+i - 24.78 50.57 90.34 95.71
BERT+o - 24.92 46.61 89.91 95.75
BERT+kd - 27.06 48.30 89.81 96.00
BERT+pr - 24.79 47.38 90.50 95.57
BERT+FSTRNN+CRF 52.28 52.48 52.51 90.05 95.45
BERT+FSTGRU+CRF 52.28 51.57 52.28 89.43 96.23
BERT+CRF - 25.17 49.96 90.54 95.99
BERT+CRF+i - 23.47 49.47 89.97 95.71
BERT+CRF+o - 25.56 50.06 90.52 95.88
BERT+CRF+kd - 25.42 48.95 90.07 95.66
BERT+CRF+pr - 25.17 49.96 90.61 96.10

Table 4: Zero-shot, low-resource and rich-resource re-
sults (F1) for BERT-enhanced models on SNIPS. A red-
der color indicates better F1. ‘-’ indicates almost ran-
dom performance.

are effective in low-resource settings and can im-
prove the base models with RE information. CRF
and gates do not help our methods and baselines
because of the lack of training data.

Rich-resource We show the results with 10%
and 100% of the training data in Table 5. With
static word embeddings, our methods still perform
the best with 10% of the training data on ATIS and
ATIS-ZH and remain competitive with 100% of the
training data on all three datasets. The baselines
perform reasonably well with sufficient training
samples. However, there does not exist a single
baseline that consistently performs the best.

Our methods underperform the baselines on
SNIPS 10%, which might be caused by the com-
plexity of the SNIPS dataset and the quality of the
RE rules (which have 85 precision compared to
90+ for ATIS and ATIS-ZH). We also observe that
CRF and gates significantly improve the perfor-
mance of our methods and baseline without BERT.



9488

Model
ATIS ATIS-ZH SNIPS Average over Datasets

10 50 10% 100% 10 50 10% 100% 10 50 10% 100% 10 50 10% 100%
So

ftm
ax

FSTRNN 74.59 74.94 85.43 93.82 75.09 75.25 82.25 89.32 51.94 52.84 78.14 90.15 67.21 67.68 81.94 91.10
BiRNN 57.11 65.80 80.93 94.30 63.56 65.07 81.90 89.89 17.03 39.37 77.58 87.62 45.90 56.75 80.14 90.60
BiRNN+i 59.24 69.29 82.25 93.80 65.72 70.84 81.64 89.64 21.60 43.68 79.45 88.47 48.86 61.27 81.11 90.64
BiRNN+o 54.64 66.44 80.63 93.91 64.89 65.79 81.29 89.24 16.87 39.75 76.75 87.95 45.47 57.33 79.56 90.37
BiRNN+kd 54.21 65.45 81.44 94.18 63.31 65.10 81.80 89.77 17.60 39.56 78.47 88.83 45.04 56.70 80.57 90.93
BiRNN+pr 55.21 68.28 81.13 93.91 63.56 65.07 81.90 89.73 17.85 39.56 77.50 88.13 45.54 57.64 80.18 90.59
FSTGRU 74.59 74.94 86.89 94.74 75.85 76.19 82.80 90.50 52.05 52.75 80.50 90.92 67.50 67.96 83.40 92.05
BiGRU 52.80 67.69 81.25 94.98 63.62 67.16 81.25 90.28 16.22 41.17 80.51 90.85 44.22 58.67 81.00 92.03
BiGRU+i 57.68 69.87 83.11 94.63 64.55 71.96 82.02 90.16 20.33 44.12 81.17 90.70 47.52 61.99 82.10 91.83
BiGRU+o 52.67 66.97 80.73 94.93 63.29 68.54 80.90 90.13 16.84 40.56 80.44 91.05 44.27 58.69 80.69 92.03
BiGRU+kd 53.49 67.23 80.99 95.04 63.90 67.23 81.36 90.70 17.85 41.44 80.16 91.40 45.08 58.63 80.84 92.38
BiGRU+pr 52.77 67.69 81.25 94.98 63.35 67.16 81.25 90.28 17.49 41.30 79.94 91.19 44.53 58.72 80.81 92.15

C
R

F

FSTRNN 74.61 74.76 85.94 94.09 76.08 75.92 82.92 90.07 51.77 52.83 80.77 91.78 67.49 67.83 83.21 91.98
BiRNN 55.04 70.75 82.06 94.30 62.96 67.04 82.82 89.93 17.19 40.47 80.21 90.21 45.07 59.42 81.70 91.48
BiRNN+i 58.25 69.37 83.84 94.02 65.75 71.40 82.68 89.59 22.18 45.26 81.90 92.24 48.73 62.01 82.81 91.95
BiRNN+o 55.26 67.88 83.77 94.32 61.47 67.21 82.42 90.13 16.81 40.63 79.96 90.45 44.51 58.58 82.05 91.64
BiRNN+kd 54.93 69.08 82.46 93.58 62.92 67.04 82.84 89.71 17.34 40.48 80.31 90.33 45.06 58.87 81.87 91.21
BiRNN+pr 56.16 68.02 82.77 93.58 62.96 67.04 82.84 89.64 17.30 40.23 80.47 90.74 45.47 58.43 82.03 91.32
FSTGRU 74.61 74.76 86.50 95.00 75.85 75.92 83.48 90.73 52.05 53.01 81.98 93.17 67.50 67.89 83.99 92.97
BiGRU 54.43 67.22 79.11 94.66 64.27 68.72 82.71 90.55 18.13 42.47 82.88 92.77 45.61 59.47 81.57 92.66
BiGRU+i 57.57 70.67 84.44 94.72 64.20 71.43 83.39 90.45 20.76 46.34 83.30 92.94 47.51 62.81 83.71 92.70
BiGRU+o 54.40 67.39 83.24 95.02 63.12 69.27 82.49 90.48 17.40 41.64 82.82 92.49 44.97 59.43 82.85 92.66
BiGRU+kd 53.31 68.14 82.17 95.22 62.12 68.72 82.52 90.52 17.06 42.47 83.38 92.70 44.17 59.78 82.69 92.81
BiGRU+pr 53.41 68.34 82.15 95.39 62.46 68.72 82.71 90.75 17.01 42.47 83.21 92.75 44.29 59.84 82.69 92.96

Table 5: Low- and rich-resource results (F1) with static word embeddings. Redder colors indicate better F1s.

4.2.2 With BERT
We show the zero-shot, low-resource, and rich-
resource performance of BERT-enhanced methods
on the SNIPS dataset in Table 4. We choose be-
tween the two initialization strategies of Ew, Ag-
gregate and Random, based on the development
set performance.

Zero-shot The experimental results show that
our methods can still approximate the REs well,
reaching 52.25 F1 (+0.27 compared to original
REs) without any training data.

Low-resource In the low-resource setting (10
and 50 training samples), our methods have minor
or even no improvement over the zero-shot setting.
On the other hand, the BERT-enhanced baselines
perform much better compared to the non-BERT
baselines, but they are still far behind our methods.

Rich-resource The experimental results on 10%
and 100% of training data show that both our meth-
ods and the baselines have a large performance gain
compared with the non-BERT setting (around +8%
and +4%). Our methods are still competitive with
the baselines, especially when using 100% of train-
ing data, which shows the ability of our methods
to utilize pretrained contextual word embeddings
such as BERT.

In addition to the SNIPS dataset, we also test our
methods with BERT on the ATIS dataset. While

our method again beats the baselines on the zero-
shot and 10-shot settings and is competitive on the
100% setting, it falls behind the baselines on the 50-
shot and 10% settings, especially when using CRF.
We speculate that the ATIS REs may not be very
compatible with BERT-enhanced models and hence
our model may require more training data to move
away from the RE-based initialization. We leave
more detailed analyses for future investigation.

5 Analysis

Ablation Study We conduct an ablation study on
the 100% training samples on the three datasets in
Table 6. The ablation results show that our various
enhancements indeed improve the model perfor-
mance, especially the tanh nonlinearity and exter-
nal word embeddings. The randomly initialized
FSTGRU+CRF performs surprisingly well, which
indicates that our model has a strong capacity to
learn from data and does not rely much on rules
with enough training data.

Utilizing Unlabeled Data We assume we do not
have unlabeled data in previous experiments. How-
ever, with clean unlabeled data, we can use REs
to produce pseudo-labels and use them to train
baselines. We compare the results of training Bi-
GRU+(none/i/o)+CRF using different amounts of
unlabeled data and FSTRNN without any training
on SNIPS (Fig 4). Results show that we need
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100% Training data ATIS ATIS-ZH SNIPS

FSTGRU+CRF 95.00 90.73 93.17
w/o CRF 94.63 90.50 90.92
w/o gates 94.09 90.07 91.78
w/o nonlinear 93.34 86.90 90.44
w/ ReLU nonlinear 94.29 89.17 89.16
w/o dummy states 94.61 90.22 92.09
w/o word embed. (η = 1) 94.56 90.00 90.42
randomly initialized 94.71 90.60 91.73

Table 6: Ablation Study

Figure 4: Training baselines with RE-labeled data on SNIPS.

around 1000 unlabeled data for +i and 3000 un-
labeled data for +o, +none to catch up the perfor-
mance of FSTRNN without training.

6 Related Work

Slot Filling Symbolic systems for slot filling are
mainly based on REs (Liu and Zhao, 2012; Larson
et al., 2020). Neural approaches usually treat slot
filling as a sequence labeling problem and solve
it using recurrent neural networks and conditional
random fields (Mesnil et al., 2014; Yao et al., 2014;
Liu and Lane, 2016). More recently, many studies
focus on the joint learning of slot filling and intent
detection (Goo et al., 2018; Chen et al., 2019b).

Combining Symbolic Rules with Neural Net-
works The majority of previous work uses the
output of rules as additional supervision or input
features to neural networks. Luo et al. (2018) use
RE outputs as additional input features or use them
to guide the attention or softmax logits of neural
models. Hu et al. (2016) combine knowledge distil-
lation (Hinton et al., 2015) with posterior regular-
ization to distill the results of first-order logic de-
duction into neural model. Li and Srikumar (2019)
use first-order logic to constrain the output of neu-
ral layers. Other methods use symbolic knowledge
in pretraining (Rosset et al., 2020; Tian et al., 2020)
or use symbolic rules to constrain text generation
(Lin et al., 2020; Li and Rush, 2020). Our method
is different from these methods in that we directly

neuralize the RE symbolic system, instead of hav-
ing separate symbolic and neural systems. There
are also previous works on combining FSTs with
neural networks. Rastogi et al. (2016) augment an
FST with neural context features extracted by BiL-
STMs and apply it to morphological reinflection.
Lin et al. (2019) use RNNs to score the accepting
paths of FSTs and apply their model to the string
transduction tasks. They train the model using im-
portance sampling and decode it using various ap-
proximation methods. The main difference of our
model from the above methods is that, instead of
combining an FST with RNNs, we directly convert
an FST into a trainable neural network.

Our work is inspired by Jiang et al. (2020) who
neuralize REs for text classification. Apart from
the difference in the output forms, our method dif-
fers from theirs mainly in that: (1) we target the
slot filling task and hence neuralize REs with cap-
turing groups; (2) we convert REs into an FST that
produces output sequences, while they convert REs
into a finite state automaton (FSA) that decides ac-
ceptance of strings; (3) the tensor parameter of an
FST has higher order than an FSA, which leads to
a more complicated procedure to reduce the com-
putational complexity; (4) our decoding algorithm
has to invoke both forward and backward processes,
while theirs requires only a forward process.

7 Conclusion and Future Work

In this work, we neuralize a symbolic RE system
for slot filling into a trainable neural network model.
The model approximates REs well initially and can
be trained to improve itself with labeled data. Ex-
periments in various settings show the advantages
of our method. To the best of our knowledge, we
are the first to neuralize REs into neural networks
for the slot filling task.

For future work, we want to explore the pos-
sibility of converting an FSTRNN back into REs
for better interpretability, and investigate more on
utilizing BERT.

We believe our methodology can be extended to
other tasks such as NER and QA. We also hope
our methods can provide insights into theoretical
analysis on the relations between neural models
and regular languages.
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A RE with capturing groups to FST
outputs BIO tags

This section shows the procedure of turning REs
with capturing groups into FST outputs correct BIO
tags step by step. By Theorem A.1, we first ignore
the capturing group and transformed the REs into
an NFA, and then we add output labels for transi-
tions based on capturing groups to make it an FST.
Since the method is very pivotal for practical appli-
cations, we provide handy tool-kits and examples
for writing REs and converting REs into FST in
https://github.com/jeffchy/RE2NN-SEQ.

Theorem A.1. Any FST with input vocabulary Σ
and output vocabulary Γ can be viewed as a NFA
with input vocabulary Σ× Γ where × denotes the
cartesian product.

Theorem A.2. If r is a regular expression with-
out capturing group, then it can be converted into
an nondeterministic finite automata with epsilon
transitions (ε-NFA) .

Theorem A.3. Any ε-NFA can be turned into an
NFA.

Theorem A.4. Any NFA can be turned into a de-
terministic finite automaton (DFA).

Step 1: Given a RE with k capturing groups with
group names l1, · · · , lk, we first inject the empty
string ε to split the sub-expressions that with and
without capturing groups. For example, the RE:
w∗� from

[
w∗�
]
〈 fr.city 〉 to w∗� becomes(

w∗� from
)
ε
([
w∗�
]
〈 fr.city 〉

)
ε
(
to w∗�

)
.

Step 2: We ignore the capturing groups and per-
form the Thompson’s construction on the whole
RE and get the ε-NFA (Theorem A.2). However,
during the construction, we mark the states and
edges of each sub-NFA corresponds to each cap-
turing group and denote them as S1, · · · ,Sk, and
E1, · · · , Ek, where Ek = {(si, sj)|si, sj ∈ Sk}.
We also use S0 and E0 to denote the states and
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edges outside the capturing groups. As we sep-
arate sub-expressions with ε, due to the concate-
nation rule of Thompson’s construction, we have
Si ∩ Sj = ∅, Ei ∩ Ej = ∅ for i 6= j and
0 ≤ i, j ≤ k.

Step 3: Assign l� as the output of edges in E0

whose input is not ε.

Step 4: Make sure for each sub-NFA, the start
state has no outgoing ε-edges and incoming edges.
Then assign BIO-tags to the new sub-NFA. We
show the algorithm details in Algorithm 5.

Algorithm 5: Step 4
1 input: sub-NFAs, 〈S1, E1, 〉 · · · , 〈Sk, Ek, 〉
2 for i← 1 to k do
3 Perform the ε-elimination to the i-th sub-NFA to

get the new states and edges S ′i, E′i.
4 Find the start state of the new sub-NFA. s0 ∈ S ′i .
5 Create a new state s′.
6 for sj ∈ S ′i do
7 if edge (sj , s0) ∈ E′i then
8 Remove edge (sj , s0);
9 Create edge (sj , s

′);
10 end
11 if edge (s0, sj) ∈ E′i then
12 Create edge (s′, sj);
13 end
14 end
15 Upon getting the updated sub-NFA, assign B-lk

to the outgoing edges from the start state and
I-lk to all other edges.

16 end

Step 5: We do the ε-elimination again to elim-
inate the εs in E0 and the εs we add to separate
the capturing groups at the beginning. Then we
convert it into a DFA (Theorom A.3) and minimize
it using the Hopcroft algorithm (Hopcroft, 1971).

As most steps are either trivial or based on a
provided theorem, we only prove the correctness
of the following lemma.

Lemma A.5. Given an NFA, Algorithm 5 produces
an equivalent NFA whose start state has no outgo-
ing ε-edges and incoming edges.

Proof. Given an NFA, the algorithm first performs
ε-elimination (line 4) to the NFA, by Theorem A.4,
the new NFA has no ε-edges and are equivalent to
the original one. Later steps (lines 5 to 14) will not
produce ε edges. Therefore the start state has no
outgoing ε-edges.

Then we prove that the algorithm from line 4 to
line 13 produces an equivalent NFA whose start
state has no incoming edges. We denote the origi-
nal NFA A and the converted NFA A′, and L(A)
denotes the language set of A. We prove that A is
equivalent to A′ by showing L(A) ⊂ L(A′) and
L(A′) ⊂ L(A). (1) L(A) ⊂ L(A′). The paths
that via the original incoming edges of the start
state will go through the new state because we
change the destinations of these incoming edges
from the start state to the new state (lines 8 and 9).
They will reach the final state because we copy all
outgoing edges of the start state to the new state.
(line 12). For the paths that do not go by these
incoming edges, they will not go through the new
state and reach the final states. (2) L(A′) ⊂ L(A).
Similarly, for the paths go through the new states
will go through the incoming edges of the start state
in the original NFA, and as the outgoing edges of
the start state and the new state are the same, it
must reach the final states in the A. For the paths
that do not go through the new state, we can re-
move the new state and corresponding edges. It is
the same as the A removing incoming edges of the
start state. Proved.

B FST to s-FST

We present the conversion algorithm below (Algo-
rithm 6).

C CP decomposition (CPD)

CPD is also known as tensor rank decomposition.
For a Nth-order tensor T ∈ Rd1×d2×···×dN can be
approximated as sum of R rank-1 tensors.

T ≈ T̂ =

R∑
i=1

f
(i)
1 ⊗ · · · ⊗ f

(i)
N

T̂(1) = (F2 � F3 � · · · � FN )F T
1

Fi =
[
f
(i)
1 · · ·f

(i)
N

]
,Fi ∈ Rdi×r

(5)

⊗ denotes the outer product, � denotes the Khatri-
Rao product and T̂(1) denotes the mode-1 unfolding
of tensor T̂ . If the rank R is large enough (e.g.
larger than the tensor rank of T ), the decomposition
can be exact.

We also apply the tricks mentioned in Jiang et al.
(2020)’s Appendix B to speed up the decomposi-
tion and normalize the decomposed matrices.
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Algorithm 6: FST to s-FST.
1 Input: T = 〈 Q,Σ,Γ, QI , QF ,Ω 〉 .
2 Output: a new FST T ′
3 for q ∈ Q do
4 Partition transitions to q based on their all possible output O and form k = |O| sets E1, · · ·Ek where

Ei = {〈qj , q, σ, oi〉 |qj ∈ Q, σ ∈ Σ, oi ∈ O}
5 Get the outgoing transitions of q, denote as EO

6 if k > 1 then
7 for j ← 2 to k do
8 create a new state q′;
9 for 〈qm, q, σm, oj〉 ∈ Ej do

10 remove transition 〈qm, q, σm, oj〉;
11 create transition 〈qm, q′, σm, oj〉;
12 for 〈q, qn, σn, on〉 ∈ EO do
13 if q 6= qn then
14 create transition 〈q′, qn, σn, on〉;
15 else if q = qn and oj = on then
16 create transition 〈q′, q′, σn, on〉;
17 end
18 end
19 end
20 end
21 end
22 end

D Gated Variants

We add an update gate zt, and a reset gate rt into
the forward and backward score computation of
FSTRNN and get FSTGRU

Take the forward score as an example. We com-
pute the zt and rt using vt and αt−1:

zt = σ(Wzvt +Uzαt−1 + bz)

fr = σ(Wrvt +Urαt−1 + br)
(6)

where σ is the sigmoid activation, and
Wz,Wr,Uz,Ur, bz, br are trainable param-
eters of gates. We apply these gates to the forward
score computation and Eqa 1 becomes:

α̂t−1 =(1− rt) ◦α0 + rt ◦αt−1

g =(α̂t−1 ·Df ) ◦ vt
αt =(g ·DT

t ) ◦ oT

αt =(1− zt) ◦αt−1 + zt ◦αt

(7)

We initialize Wz,Wr,Uz,Ur randomly using
Xavier normal (Glorot and Bengio, 2010), and bias
terms bz, br as a big integer (e.g. 10). Therefore,
we close the gates at the beginning to make our
model still approximate the FST, and after training,
the performance can be improved because of the
gating mechanism.

E Priority

We show how we resolve priority problems here
with an example. For the sentence I love action

movie, the following RE can capture movie and
action movie at the same time.

w?
� (movie|action movie)〈movie〉 w?

�

So the word action can be tagged as B-movie or
O, the word movie can be tagged as B-movie or
I-movie. Assume that we prefer longer captured
text, we can define the following priority: B-movie
> O, I-movie > O, I-movie > B-movie, here the
> operator means that the label on the left has
higher priority compared to label on the right and
these priority can be written into logic. For exam-
ple, the priority B-movie > O can be expressed as:
MATCH(O)∧¬MATCH(B-movie)⇒ LABEL(O) . We can
encode this logic into our model using soft logic.
Let La, La be proposition symbols whose soft truth
score are a, b, the soft version of ¬La is 1− a, and
the soft version of La ∧ Lb is max(0, a + b − 1).
So the soft version of is max(0, b− a), which can
be easily implemented using a L× L matrix and a
ReLU nonlinear. The priority layer is optional; as
in our experiments, conflicts seldom occur.

F Writing REs

We try to mimic the RE annotating procedure in
real applications. In industry, REs for slot filling
applications are written by RE experts with domain
knowledge (or with the help of a domain expert).

In our experiments, we ask an RE expert to write
RE rules for these datasets. As the expert does not
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have domain knowledge and is not familiar with
the data, we follow the method of (Luo et al., 2018)
to ‘teach’ the expert domain knowledge. More
specifically, we sample 40-shot of training data and
ask the expert to write REs to capture them. It
takes the expert around 6 hours to write rules for
ATIS, 8 hours for SNIPS. And 4 hours for ATIS-
ZH. Experts usually have domain knowledge in
reality. Hence the writing process can be further
accelerated, and less or even no examples are re-
quired. We also show examples of Written REs for
each dataset in Table 7.

G Number of trainable parameters

We set the word embedding dimD = 100, the rank
R = 150, the number of FST states K = 150, the
number of slot labels L = 50, and the number of
hidden states H = 100 to calculate the number of
trainable parameters of our method and baselines.
We show the results in Table 8.

H Hyper-parameter tuning

We tune the hyper-parameter of our methods and
baselines on the development set using grid search.
We report the grids in the following Table 9.

I Analysis on η

We show how the η influences the performance of
our model on SNIPS in zero-shot and rich resource
settings (Fig 5). The best η on zero-shot settings
is 0.9 instead of 1, which means integrating some
word information can improve the rule without any
training. After training with 100% of training data,
a small η (e.g. 0.1) performs best because word
embedding can help model learning with sufficient
data.

J Full results

We show the full results with BiLSTM and +io
baselines, and standard deviations of three datasets
in Table 10, Table 11 and Table 12.

Figure 5: η v.s. performance on the zero-shot and 100%
train settings in SNIPS dataset.
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RE examples

ATIS w∗� from
[
w∗�
]
〈 fr.city 〉 to w∗�

w∗� (arrive|arrives) w∗�
[
(monday|tuesday| · · · |sunday)

]
〈 arrive.day_name 〉 w∗�

ATIS-ZH w∗� 从
[
w∗�
]
〈 fr.city 〉 (到|抵达|飞往) w∗�

w∗�
[
(周一|周二| · · · |周日)

]
〈 arrive.day_name 〉 w∗� (到|抵达|飞往) w∗�

SNIPS w∗�
[
(stars|points)

]
〈 rating.units 〉 w∗�

w∗� (add|put) w∗� to
[
my
]
〈 playlist.owner 〉

[
w�{1,3}

]
〈 playlist 〉 playlist w∗�

Table 7: RE examples for three datasets. REs given for ATIS and ATIS-ZH are corresponded one to one. w�{1,3}
means any word can appear 1 to 3 times.

Model (Softmax) Formular # Parameter

FSTRNN DR+ 2KR+KL 67500
FSTGRU DR+ 4KR+ 2RR+KL 157500
BiRNN 2DH + 2HH +HL 45000
BiGRU 6DH + 6HH +HL 125000
BiLSTM 8DH + 8HH +HL 165000

Table 8: Number of trainable parameters

Model Hyper-parameter Grid

FSTRNN
learning rate [3e-4, 1e-3, 3e-3]
# dummy states [0, 30, 60, 90]
η [0.1, 0.3, 0.5, 0.7, 0.9]

BiLSTM
learning rate [1e-3, 2e-3, 5e-3, 1e-2]
# hidden states [100, 150, 200]

+kd temperature [1, 3, 5]
+kd, +pr weight for student loss [0.3, 0.8]
+pr annealing term [1.0, 0.98]

Table 9: Hyper-parameter tuning.
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Model
0 shot 10 shot 50 shot 10% 100%

mean std mean std mean std mean std mean std

Softmax

FSTRNN 73.07 0.79 74.59 0.73 74.94 0.38 85.43 1.06 93.82 0.12
FSTGRU 73.07 0.79 74.59 0.73 74.94 0.38 86.89 1.08 94.63 0.13
GRU 1.76 3.04 52.80 3.71 67.69 2.47 81.25 0.97 94.98 0.37
GRU+i 0.17 0.26 57.68 3.41 69.87 2.55 83.11 0.38 94.63 0.19
GRU+o 11.70 7.30 52.67 4.28 66.97 2.72 80.73 2.26 94.93 0.27
GRU+io 11.04 5.35 58.12 3.00 69.99 2.90 82.84 0.75 94.59 0.32
GRU+kd 1.76 3.04 53.49 2.85 67.23 3.05 80.99 1.00 95.04 0.39
GRU+pr 1.76 3.04 52.77 3.61 67.69 2.47 81.25 0.97 94.98 0.37
LSTM 0.31 0.36 56.22 0.25 66.34 3.81 80.49 1.26 94.46 0.11
LSTM+i 0.36 0.44 57.54 4.67 69.48 2.70 81.24 0.69 94.51 0.13
LSTM+o 12.93 6.53 53.40 3.23 67.12 3.13 80.09 1.70 94.57 0.27
LSTM+io 11.19 6.27 57.56 3.31 69.99 1.85 81.00 1.53 94.56 0.07
LSTM+kd 0.31 0.36 54.70 1.89 66.94 2.80 80.67 0.67 94.66 0.30
LSTM+pr 0.31 0.36 53.84 2.84 66.42 3.49 80.39 0.75 94.46 0.11
RNN 0.47 0.51 57.11 4.39 65.80 3.34 80.93 1.14 94.30 0.47
RNN+i 1.10 1.77 59.24 1.99 69.29 2.38 82.25 0.89 93.80 0.44
RNN+o 13.83 7.15 54.64 1.98 66.44 3.22 80.63 1.32 93.91 0.54
RNN+io 12.21 7.40 58.94 2.77 69.52 2.36 81.86 1.07 93.74 0.24
RNN+kd 0.47 0.51 54.21 3.31 65.45 3.17 81.44 0.72 94.18 0.47
RNN+pr 0.47 0.51 55.21 2.73 68.28 4.71 81.13 0.58 93.91 0.52

CRF

FSTRNN 73.10 0.88 74.61 0.49 74.76 0.60 85.94 0.67 94.74 0.39
FSTGRU 73.10 0.88 74.61 0.49 74.76 0.60 86.50 0.83 95.00 0.40
GRU 0.63 0.76 54.43 4.76 67.22 4.18 79.11 1.22 94.66 0.02
GRU+i 0.17 0.17 57.57 6.61 70.67 3.18 84.44 0.25 94.72 0.32
GRU+o 26.00 15.73 54.40 2.15 67.39 3.16 83.24 1.04 95.02 0.21
GRU+io 14.89 13.62 58.67 3.83 70.57 3.03 85.25 0.72 95.00 0.17
GRU+kd 0.63 0.76 53.31 4.44 68.14 2.40 82.17 0.88 95.22 0.29
GRU+pr 0.63 0.76 53.41 4.39 68.34 2.34 82.15 1.08 95.39 0.33
LSTM 0.18 0.15 52.19 2.60 65.75 3.89 80.27 0.61 94.91 0.11
LSTM+i 0.71 0.97 57.69 3.02 70.06 2.52 82.22 1.05 94.44 0.22
LSTM+o 28.95 14.06 54.90 3.05 66.76 4.39 81.96 0.50 95.08 0.14
LSTM+io 24.98 19.39 57.68 3.24 69.40 1.95 82.79 1.31 94.47 0.12
LSTM+kd 0.18 0.15 52.37 2.72 67.28 2.71 81.63 0.71 95.00 0.19
LSTM+pr 0.18 0.15 52.38 2.72 67.28 2.71 81.44 0.43 95.03 0.27
RNN 0.05 0.08 55.04 3.04 70.75 1.92 82.06 0.12 94.30 0.30
RNN+i 0.20 0.21 58.25 3.61 69.37 3.21 83.84 0.66 94.02 0.16
RNN+o 13.84 11.88 55.26 2.48 67.88 2.35 83.77 0.90 94.32 0.28
RNN+io 11.57 9.18 57.52 1.42 69.18 3.24 83.87 0.61 94.01 0.14
RNN+kd 0.05 0.08 54.93 2.95 69.08 1.33 82.46 1.57 93.58 0.00
RNN+pr 0.05 0.08 56.16 2.95 68.02 2.33 82.77 0.62 93.58 0.29

Table 10: Full ATIS results
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Model
0 shot 10 shot 50 shot 10% 100%

mean std mean std mean std mean std mean std

Softmax

FSTRNN 52.02 0.02 51.94 0.23 52.84 1.18 78.14 0.70 90.15 0.73
FSTGRU 52.02 0.06 52.05 0.00 52.83 1.36 80.50 0.69 90.92 0.43
GRU 0.69 0.79 16.22 2.52 41.17 4.11 80.51 0.35 90.85 0.26
GRU+i 0.48 0.35 20.33 2.87 44.12 3.16 81.17 0.76 90.70 0.57
GRU+o 10.49 2.73 16.84 2.38 40.56 3.90 80.44 0.59 91.05 0.95
GRU+io 9.83 3.85 20.60 2.91 45.75 2.90 81.14 0.61 90.83 0.33
GRU+kd 0.69 0.79 17.85 2.68 41.44 4.29 80.16 0.62 91.40 0.47
GRU+pr 0.69 0.79 17.49 2.47 41.30 4.41 79.94 0.65 91.19 0.31
LSTM 0.90 0.84 15.35 3.85 39.96 5.27 78.28 0.71 90.68 0.58
LSTM+i 1.09 1.17 20.08 3.31 43.22 3.11 79.75 0.79 91.22 0.58
LSTM+o 13.91 2.00 16.16 1.65 40.28 3.84 77.71 0.50 90.93 0.43
LSTM+io 13.65 2.69 20.61 3.17 44.53 2.93 80.05 1.61 91.51 0.65
LSTM+kd 0.90 0.84 18.11 4.33 40.61 4.65 79.63 1.18 91.65 0.49
LSTM+pr 0.90 0.84 17.15 4.04 39.95 5.09 78.88 0.33 90.99 0.36
RNN 0.88 0.86 17.03 2.38 39.37 4.59 77.58 0.34 87.62 0.26
RNN+i 0.48 0.18 21.60 2.36 43.68 3.77 79.45 0.69 88.47 0.78
RNN+o 7.58 3.35 16.87 2.68 39.75 4.06 76.75 0.73 87.95 0.65
RNN+io 7.15 2.92 21.51 1.80 44.04 3.39 78.76 0.51 89.29 0.59
RNN+kd 0.88 0.86 17.60 2.47 39.56 4.10 78.47 0.90 88.83 0.32
RNN+pr 0.88 0.86 17.85 3.18 39.56 4.49 77.50 1.32 88.13 0.62

CRF

FSTRNN 52.02 0.02 51.77 0.57 52.75 1.38 80.77 0.70 91.78 0.26
FSTGRU 52.02 0.02 52.05 0.00 53.01 1.54 81.98 0.75 93.17 0.67
GRU 0.28 0.11 18.13 2.89 42.47 4.59 82.88 0.65 92.77 0.36
GRU+i 0.58 0.39 20.76 2.98 46.34 3.11 83.30 1.31 92.94 0.67
GRU+o 11.76 4.94 17.40 2.58 41.64 5.16 82.82 0.97 92.49 0.31
GRU+io 10.13 5.19 19.73 3.60 46.69 3.08 83.33 1.15 92.83 0.48
GRU+kd 0.28 0.11 17.06 2.73 42.47 4.59 83.38 0.89 92.70 0.53
GRU+pr 0.28 0.11 17.01 2.74 42.47 4.59 83.21 1.03 92.75 0.72
LSTM 0.38 0.20 16.23 3.32 40.76 5.78 80.69 0.66 92.17 0.25
LSTM+i 0.55 0.58 20.75 3.41 46.03 4.72 82.17 0.65 92.68 0.33
LSTM+o 10.77 2.61 19.76 7.46 40.81 6.34 81.04 1.43 92.54 0.47
LSTM+io 11.46 6.27 20.67 7.21 44.56 4.39 82.35 0.41 93.09 0.57
LSTM+kd 0.38 0.20 16.54 3.12 40.76 5.78 82.17 1.00 92.42 0.54
LSTM+pr 0.38 0.20 16.23 3.32 40.76 5.78 82.18 1.03 92.66 0.47
RNN 0.31 0.36 17.19 2.76 40.47 4.33 80.21 0.68 90.21 0.54
RNN+i 0.97 0.90 22.18 2.37 45.26 3.65 81.90 0.34 92.24 0.55
RNN+o 9.09 4.74 16.81 2.92 40.63 4.68 79.96 1.20 90.45 0.23
RNN+io 7.74 2.27 21.47 3.28 45.22 3.87 81.35 1.04 90.84 0.73
RNN+kd 0.31 0.36 17.34 2.80 40.48 4.31 80.31 0.38 90.33 0.05
RNN+pr 0.31 0.36 17.30 2.59 40.23 4.63 80.47 0.41 90.74 0.60

Table 11: Full SNIPS results
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Model
0 shot 10 shot 50 shot 10% 100%

mean std mean std mean std mean std mean std

Softmax

FSTRNN 74.84 0.06 75.09 0.04 75.25 0.18 82.25 1.05 89.32 0.50
FSTGRU 74.87 0.06 75.85 0.49 76.19 0.45 82.80 1.13 90.50 0.31
GRU 1.91 3.48 63.62 3.39 67.16 5.79 81.25 0.95 90.28 0.30
GRU+i 0.29 0.48 64.55 1.43 71.96 1.31 82.02 0.85 90.16 0.55
GRU+o 22.88 17.38 63.29 5.74 68.54 4.96 80.90 0.84 90.13 0.45
GRU+io 20.01 15.93 65.37 2.09 71.54 2.16 82.23 0.74 90.17 0.15
GRU+kd 1.91 3.48 63.90 3.43 67.23 5.99 81.36 0.87 90.70 0.28
GRU+pr 1.91 3.48 63.35 3.32 67.16 5.79 81.25 0.95 90.28 0.30
LSTM 0.34 0.41 64.27 2.68 64.69 2.41 81.69 0.72 90.58 0.82
LSTM+i 0.74 0.75 65.11 2.62 70.72 1.98 82.87 0.51 89.97 0.32
LSTM+o 18.66 15.75 64.18 2.38 64.96 1.86 81.68 1.00 89.91 0.49
LSTM+io 19.79 15.76 65.09 1.60 70.60 3.05 82.82 0.91 89.95 0.46
LSTM+kd 0.34 0.41 63.73 4.50 65.89 1.77 81.62 0.66 91.15 0.22
LSTM+pr 0.34 0.41 64.27 2.68 64.69 2.41 81.69 0.72 90.41 0.49
RNN 0.58 0.84 63.56 2.42 65.07 4.53 81.90 1.10 89.89 0.48
RNN+i 0.71 1.15 65.72 2.27 70.84 1.04 81.64 1.35 89.64 0.38
RNN+o 20.61 15.94 64.89 2.73 65.79 3.51 81.29 1.31 89.24 0.27
RNN+io 21.24 16.63 65.54 2.00 70.92 2.04 81.68 1.29 89.59 0.32
RNN+kd 0.58 0.84 63.31 2.89 65.10 4.21 81.80 1.17 89.77 0.41
RNN+pr 0.58 0.84 63.56 2.42 65.07 4.53 81.90 1.10 89.73 0.53

CRF

FSTRNN 74.87 0.06 76.08 0.50 75.92 0.47 82.92 0.72 90.07 0.18
FSTGRU 74.87 0.06 75.85 0.50 75.92 0.47 83.48 0.67 90.73 0.51
GRU 0.61 0.45 64.27 1.73 68.72 3.87 82.71 0.40 90.55 0.19
GRU+i 0.28 0.49 64.20 1.92 71.43 2.94 83.39 0.64 90.45 0.84
GRU+o 19.05 10.74 63.12 3.06 69.27 4.98 82.49 1.21 90.48 0.38
GRU+io 20.11 12.81 64.23 2.92 71.62 2.63 82.65 0.81 90.91 0.76
GRU+kd 0.61 0.45 62.12 3.25 68.72 3.87 82.52 0.09 90.52 1.24
GRU+pr 0.61 0.45 62.46 2.39 68.72 3.87 82.71 0.40 90.75 0.42
LSTM 0.92 1.07 63.28 1.50 66.26 3.72 82.83 0.59 90.94 0.49
LSTM+i 0.11 0.08 63.05 2.35 70.88 2.24 83.49 0.15 89.54 0.64
LSTM+o 20.73 11.42 63.51 1.16 67.22 3.38 82.19 1.56 90.44 0.41
LSTM+io 22.06 13.23 63.97 2.10 70.53 3.45 83.59 1.04 90.68 0.08
LSTM+kd 0.92 1.07 63.32 1.51 66.26 3.72 83.05 0.31 91.29 0.79
LSTM+pr 0.92 1.07 63.28 1.50 66.26 3.72 83.10 0.24 90.43 0.92
RNN 0.30 0.28 62.96 3.12 67.04 3.40 82.82 0.69 89.93 0.58
RNN+i 0.71 0.91 65.75 1.87 71.40 2.84 82.68 0.74 89.59 0.64
RNN+o 17.91 9.46 61.47 2.12 67.21 4.42 82.42 0.94 90.13 0.66
RNN+io 14.80 12.25 65.47 2.02 71.82 1.83 82.06 0.93 89.96 0.10
RNN+kd 0.30 0.28 62.92 3.16 67.04 3.16 82.84 0.91 89.71 0.31
RNN+pr 0.30 0.28 62.96 3.12 67.04 3.40 82.84 0.91 89.64 0.17

Table 12: Full ATIS-ZH results


