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Abstract
Change captioning is to use a natural language
sentence to describe the fine-grained disagree-
ment between two similar images. Viewpoint
change is the most typical distractor in this
task, because it changes the scale and location
of the objects and overwhelms the represen-
tation of real change. In this paper, we pro-
pose a Relation-embedded Representation Re-
construction Network (R3Net) to explicitly dis-
tinguish the real change from the large amount
of clutter and irrelevant changes. Specifi-
cally, a relation-embedded module is first de-
vised to explore potential changed objects in
the large amount of clutter. Then, based on
the semantic similarities of corresponding lo-
cations in the two images, a representation
reconstruction module (RRM) is designed to
learn the reconstruction representation and fur-
ther model the difference representation. Be-
sides, we introduce a syntactic skeleton predic-
tor (SSP) to enhance the semantic interaction
between change localization and caption gen-
eration. Extensive experiments show that the
proposed method achieves the state-of-the-art
results on two public datasets 1.

1 Introduction

Change captioning aims to generate a natural lan-
guage sentence to detail what has changed in a
pair of similar images. It has many practical ap-
plications, such as assisted surveillance, medical
imaging, and computer assisted tracking of changes
in media assets (Jhamtani and Berg-Kirkpatrick,
2018; Tu et al., 2021).

Different from single-image captioning (Kim
et al., 2019; Jiang et al., 2019; Fisch et al., 2020),
change captioning addresses two-image caption-
ing, which requires not only to understand both

* This work was done at VIPL research group, CAS.
† Corresponding author

1The code of this paper has been made publicly available
at https://github.com/tuyunbin/R3Net.

The tiny red metal block 

that is to the right of the 

matte cylinder moved.

<Before> <After> <Change Captions>

The black car has 

moved slightly down 

the road.

Figure 1: Two examples of change captioning about an
object move. The first example shows that the view-
point changes the scale and location of the objects in
the “after” image; the second example shows mostly
well-aligned a pair of images with underlying illumina-
tion changes from surveillance cameras.

image content, but also to describe their disagree-
ment. As the pioneer work, Jhamtani et al. (Jham-
tani and Berg-Kirkpatrick, 2018) described seman-
tic changes between mostly well-aligned image
pairs with underlying illumination changes from
surveillance cameras. However, they did not con-
sider viewpoint changes that often happen in a dy-
namic world, and image pairs cannot be mostly
well aligned in this case. Hence, feature shift be-
tween two unaligned images will adversely affect
the learning of difference representation. To make
this task more practical, recent works (Park et al.,
2019; Shi et al., 2020) proposed to address change
captioning in the presence of viewpoint changes.

Despite the progress, there are some limitations
for the above state-of-the-art methods when mod-
eling the difference representation. First, the ob-
ject information of each image is only learned at
feature-level, and this is difficult to discriminate
fine-grained difference when changed object is too
tiny and surrounded by the large amount of clut-
ter, as shown in Figure 1. Actually, when an ob-
ject moved, its semantic relations with surrounding
objects would change as well, and this can help
explore the fine-grained change. Thus, it is im-

https://github.com/tuyunbin/R3Net
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portant to model the difference representation at
both feature and relation levels. Second, directly
applying subtraction between a pair of unaligned
images (Park et al., 2019) may learn the difference
representation with much noise, because viewpoint
changes the scale and location of the objects. How-
ever, we can observe that those unchanged objects
are still in the approximate locations. Hence, it
is beneficial to reveal the unchanged representa-
tion and further model the difference representa-
tion based on the semantic similarities in the corre-
sponding locations of two images.

In this paper, we propose a Relation-embedded
Representation Reconstruction Network (R3Net)
to handle viewpoint changes and model the fine-
grained difference representation between two im-
ages in the process of representation reconstruc-
tion. Concretely, for “before” and “after” images,
the relation-embedded module respectively per-
forms semantic relation reasoning among object
features via the self-attention mechanism. This
can enhance the fine-grained representation ability
of original object features. To model the differ-
ence representation, a representation reconstruc-
tion module (RRM) is designed, where a “shadow”
representation (“after” or “before”) is used to re-
construct a “source” representation (“before” or
“after”). The RRM first leverages every location
in the “source” to stimulate the corresponding lo-
cations in the “shadow” to judge their semantic
similarities, i.e., “response signals”. Further, under
the guidance of the signals, the RRM picks out
the unchanged features from the “shadow” as the
“reconstruction” representation. The “difference”
representation is computed with the changed fea-
tures between the “source” and “reconstruction”.
Next, a dual change localizer is devised to use the
representation of difference as the query to local-
ize the changed object feature on the “before” and
“after”, respectively. Finally, the localized features
are fed into an attention-based caption decoder for
caption generation.

Besides, we introduce a Syntactic Skeleton Pre-
dictor (SSP) to enhance the semantic interaction
between change localization and caption genera-
tion. As observed in Figure 1, a caption mainly con-
sists of a set of nouns, adjectives, and verbs. These
words can convey main information of the changed
object and its surrounding references, called syn-
tactic skeletons. The skeletons, which are predicted
based on a global semantic representation derived

from the R3Net, can supervise the modeling of
difference representation and provide the decoder
with high-level semantic cues about change type.
This makes the learned difference representation
more relevant to the target words and enhances the
quality of generated sentences.

The main contributions of this paper are as fol-
lows: (1) We propose the R3Net to learn the fine-
grained change from the large amount of clutter and
overcome viewpoint changes by embedding seman-
tic relations into object features and performing
representation reconstruction with respect to the
two images. (2) The SSP is introduced to enhance
the semantic interaction between change localiza-
tion and caption generation via predicting a set of
syntactic skeletons based on a global semantic rep-
resentation derived from the R3Net. (3) Extensive
experiments show that the proposed method out-
performs the state-of-the-art approaches by a large
margin on two public datasets.

2 Related Work

Change Captioning. Captioning the change in the
existence of viewpoint changes is a novel task in
the vision-language community (Zhang et al., 2017;
Tu et al., 2017; Deng et al., 2021; Li et al., 2020;
Liu et al., 2020). As the first work, DUDA (Park
et al., 2019) directly applied subtraction between
two images to capture their semantic difference.
However, due to viewpoint changes, direct sub-
traction between an unaligned image pair cannot
reliably model the correct change (Shi et al., 2020).
Later, M-VAM (Shi et al., 2020) proposed to mea-
sure the feature similarity across different regions
in an image pair and find the most matched regions
as unchanged parts. However, since there are a lot
of similar objects, cross-region searching will face
the risk of matching the query region with a similar
but incorrect region, impacting subsequent change
localization. In contrast, in our representation re-
construction network, the prediction of unchanged
and changed features are based on the semantic
similarities of the corresponding locations in two
images. This can avoid the risk of reconstructing
“source” with incorrect parts from “shadow”.

Skeleton Prediction in Captioning. Syntac-
tic skeletons can provide the high-level semantic
cues (e.g., attribute, class) about objects, so they
are widely used in image/video captioning works.
These methods either used skeletons as main in-
formation to generate captions (Fang et al., 2015;
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Figure 2: The architecture of the proposed method, consisting of a relation-embedded representation reconstruction
network, a syntactic skeleton predictor, a dual change localizer and an attention-based caption decoder.

Gan et al., 2017; Dai et al., 2018) or leveraged
them to bridge the semantic gap between vision
and language (Gao et al., 2020; Tu et al., 2020).
Although the skeletons played different roles in the
above methods, the common point was that they
only represent basic information of objects in im-
ages or videos. Different from them, besides basic
information, we try to use skeletons to capture the
changed information among objects.

3 Methodology

As shown in Figure 2, the architecture of our
method consists of four main parts: (1) a relation-
embedded representation reconstruction network
(R3Net) to learn the fine-grained change in the pres-
ence of viewpoint changes; (2) a dual change lo-
calizer to focus on the specific change in a pair of
images; (3) a syntactic skeleton predictor (SSP)
to learn syntactic skeletons based on a global se-
mantic representation derived from the R3Net; (4)
an attention-based caption decoder to describe the
change under the guidance of the learned skeletons.

3.1 Relation-embedded Representation
Reconstruction Network

3.1.1 Relation-embedded Module
We first exploit a pre-trained CNN model to ex-
tract the object-level features Xbef and Xaft for a

pair of “before” and “after” images, where Xi ∈
RC×H×W and C, H, W indicate the number of
channels, height, and width. However, only utiliz-
ing these independent features is difficult to distin-
guish fine-grained change from the large amount
of clutter (similar objects). And related works
(Wu et al., 2019; Huang et al., 2020; Yin et al.,
2020) have shown that capturing semantic relations
among objects is useful for a thorough understand-
ing of an image.

Motivated by this, we devise a relation-
embedded (Remb) module based on the self-
attention mechanism (Vaswani et al., 2017) to im-
plicitly learn semantic relations among objects in
each image. Specifically, we first reshape Xi ∈
RC×H×W to Xi ∈ RN×C (N = HW ), where
i ∈ (bef, aft). Then, the semantic relations are
embedded into independent object features of each
image based on the scaled dot-product attention:

Remb(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (1)

where the quires, keys and values are the pro-
jections of the object features in Xi and i ∈
(bef, aft):

(Q,K, V ) =
(
XiW

Q
i , XiW

K
i , XiW

V
i

)
. (2)

Thus,Xbef andXaft are updated to X̂bef and X̂aft,
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respectively:

X̂bef = Remb (Xbef , Xbef , Xbef ) ,

X̂aft = Remb (Xaft, Xaft, Xaft) .
(3)

When the model fully understands each image con-
tent, it can better capture the fine-grained difference
between the image pair in the subsequent represen-
tation reconstruction.

3.1.2 Representation Reconstruction Module
The state-of-the-art method (Park et al., 2019) ap-
plied direct subtraction between a pair of unaligned
images, which is prone to capture the difference
with noise in the presence of viewpoint changes.

To distinguish semantic change from viewpoint
changes, a representation reconstruction module
(RRM) is proposed, where the inputs are a “source”
representation X̂p ∈ RN×C and a “shadow” rep-
resentation X̂s ∈ RN×C . Concretely, first, we
exploit each location of X̂p to stimulate the cor-
responding location of X̂s. The response degrees
of all locations in X̂s are regarded as the response
signals α that measure the semantic similarities
between corresponding locations in two images :

α = Sigmoid
(
X̂pWp + X̂sWs + bs

)
, (4)

where Wp, Ws ∈ RC×C and bs ∈ RC . Second, we
use X̂s to reconstruct X̂p under the guidance of the
response signals α:

X̃p = α� X̂s, (5)

where X̃p ∈ RN×C is the “reconstruction” rep-
resentation, which represent unchanged features
with respect to “source”. Finally, the “difference”
representation is captured by subtracting “recon-
struction” X̃p from “source” X̂p:

X̂diff = X̂p − X̃p. (6)

Since the predicted unchanged and changed fea-
tures in uni-directional reconstruction are only with
respect to one kind of “source” representation (e.g.,
“before”), the model cannot predict the changed fea-
ture when it is not in the “source”. For an efficient
model, it should capture all underlying changes
with respect to both images. To this end, we ex-
tend the RRM from uni-direction to bi-direction.
Specifically, we first use the “before” as “source”
to predict unchanged and changed features, and
then use the “after” as “source” to do so. Thus, the

“reconstruction” and “difference” w.r.t. the “before”
and “after” are formulated as:

X̃bef
p , X̂bef

diff = RRM
(
X̂bef

p , X̂aft
s

)
,

X̃aft
p , X̂aft

diff = RRM
(
X̂aft

p , X̂bef
s

)
.

(7)

Finally, we obtain a bi-directional difference repre-
sentation by a fully-connected layer:

X̂diff = ReLU
([
X̂bef

diff ; X̂
aft
diff

]
Wf + bf

)
.

(8)

3.2 Dual Change localizer
When the bi-directional difference representation
X̂diff is computed, we exploit it as the query to
localize the changed feature in X̂bef and X̂aft, re-
spectively. Specifically, the dual change localizer
first predicts two separate attention maps abef and
aaft:

X ′bef =
[
X̂bef ; X̂diff

]
, X ′aft =

[
X̂aft ; X̂diff

]
,

abef = σ (conv2 (ReLU (conv1 (X
′
bef )))) ,

aaft = σ (conv2 (ReLU (conv1 (X
′
aft )))) ,

(9)
where [;], conv, and σ denote concatenation, con-
volutional layer, and sigmoid activation function,
respectively. Then, the changed features lbef and
laft are localized via applying abef and aaft to
X̂bef and X̂aft:

lbef =
∑
H,W

abef � X̂bef , lbef ∈ RC ,

laft =
∑
H,W

aaft � X̂aft , laft ∈ RC .
(10)

Finally, we compute the local difference feature
w.r.t. both lbef and laft from two directions:

lb→a
diff = lbef − laft, la→b

diff = laft − lbef ,
lb↔a
diff = ReLU

(
Wd

[
lb→a
diff ; l

a→b
diff

]
+ bd

)
.

(11)

3.3 Syntactic Skeleton Predictor
A syntactic skeleton predictor (SSP) is introduced
to learn a set of syntactic skeletons based on the
outputs derived from the R3Net. The predicted
skeletons can provide the caption decoder with
high-level semantic cues about changed objects and
supervise the modeling of difference representation.
This aims to enhance the semantic interaction be-
tween change localization and caption generation.
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Inspired by (Gao et al., 2020; Gan et al., 2017),
we treat this problem as a multi-label classification
task. Suppose there areN training image pairs, and
yj = [yj1, . . . , yjK ] ∈ {0, 1}K is the label vector
of the j-th image pair, where yjk = 1 if the image
pair is annotated with the skeleton k, and yjk = 0
otherwise.

Specifically, first, we apply a mean-pooling layer
over the concatenated semantic representations of
X̂bef , X̂aft, and X̂diff to obtain a global semantic
representation Sj :

Sj =
1

H,W

∑
H,W

[
X̂bef ; X̂aft ; X̂diff

]
. (12)

Then, the probability scores pj of all syntactic
skeletons for j-th image pair is computed by:

pj = sigmoid (Ug ReLU(WgSj) + bg) , (13)

where pj = [pj1, . . . , pjK ] denotes the probability
scores of K skeletons in j-th image pair. To maxi-
mize the probability scores of syntactic skeletons,
we use the multi-label loss to optimize the SSP. It
can be formulated as:

Ls = − 1
N

∑N
j=1

∑K
k=1 (yjk log pjk+

(1− yjk) log (1− pjk)) ,
(14)

where N and K indicate the number of all train-
ing samples and annotated skeletons of an image
pair. The loss can be considered as the supervi-
sion signal to regularize the learning of difference
representation in the R3Net.

3.4 Skeleton-guided Caption generation
Since the predicted skeletons are the explicit seman-
tic concepts of the changed object and its surround-
ing references, the captions are generated under the
guidance of them. Specifically, first, the predicted
probability scores pj are embedded as a skeleton
feature E[pj ]:

E [pj ] = ReLU (Wq (Eqpj) + bq) , (15)

where Eq ∈ Rk×M is a skeleton embedding matrix
and M is the dimension of the skeleton feature.
Wq ∈ RM×M and bq ∈ RM are the parameters to
be learned. Then, we exploit a semantic attention
module to focus on the key semantic feature from
lbef , laft, and lb↔a

diff , which is relevant to the target
word:

l
(t)
dyn =

∑
i

β
(t)
i li, (16)

where i ∈ (bef, aft, diff). β(t)i is computed by
an attention LSTMa under the guidance of the pre-
dicted skeleton feature E[pj ]:

v = ReLU
(
Wa1

[
lbef ; l

b↔a
diff ; laft

]
+ ba1

)
,

u(t) =
[
v;E [pj ] ;h

(t−1)
c

]
,

h
(t)
a = LSTMa

(
h
(t)
a | u(t), h(0:t−1)a

)
,

β(t) ∼ Softmax
(
Wa2h

(t)
a + ba2

)
.

(17)
where Wa1 , ba1 ,Wa2 , and ba2 are learnable param-
eters. h

(∗)
a and h

(∗)
c are hidden states of the at-

tention module LSTMa and the caption decoder
LSTMc, respectively.

Finally, the caption generation process is also
guided by the predicted skeleton feature. We feed
it, attended visual feature, and the previous word
embedding to the caption decoder LSTMc to pre-
dict a series of distributions over the next word:

c(t) =
[
E [wt−1] ;E [pj ] ; l

(t)
dyn

]
,

h
(t)
c = LSTMc

(
h
(t)
c | c(t), h(0:t−1)c

)
,

wt ∼ Softmax
(
Wch

(t)
c + bc

)
,

(18)

where E is a word embedding matrix; Wc and bc
are learnable parameters.

3.5 Joint Training
We jointly train the caption decoder and SSP in an
end-to-end manner. For the SSP, the multi-label
loss is minimized by the Eq. (14). For the decoder,
given the target ground-truth words (w1, . . . , wm),
we minimize its negative log-likelihood loss:

Lcap(θc) = −
m∑
t=1

log p (wt | w<t; θc) , (19)

where θc are the parameters of the decoder and m
is the length of the caption. The final loss function
is optimized as follows:

L(θ) = Lcap + λ ∗ Ls, (20)

where the hyper-parameter λ is to seek a trade-off
between the decoder and SSP.

4 Experiments

4.1 Datasets and Evaluation Metrics
CLEVR-Change dataset (Park et al., 2019) is a
large-scale dataset with a set of basic geometry
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Table 1: Ablation studies on CLEVR-Change in terms of total performance.

Total
Method BLEU-4 METEOR ROUGE-L CIDEr SPICE
Baseline 53.1 37.6 70.8 115.6 31.3

RRM 53.5 39.2 72.3 119.2 32.5
R3Net 54.2 39.4 72.7 122.3 32.6

R3Net+SSP 54.7 39.8 73.1 123.0 32.6

Table 2: Ablation studies on CLEVR-Change in terms of two settings, where B-4, M, R, C, and
S are short for BLEU-4, METEOR, ROUGE-L, CIDEr, and SPICE, respectively.

Scene Change None-scene Change
Method B-4 M R C S B-4 M R C S
Baseline 51.0 33.3 65.7 102.4 28.0 61.0 49.9 75.8 114.3 34.5

RRM 51.8 35.7 69.0 110.1 30.4 60.0 49.6 75.6 115.0 34.5
R3Net 52.5 36.0 69.5 114.8 30.5 62.0 50.0 75.9 116.3 34.8

R3Net+SSP 52.7 36.2 69.8 116.6 30.3 61.9 50.5 76.4 116.4 34.8

objects, which consists of 79,606 image pairs and
493,735 captions. The change types can be catego-
rized into six cases, i.e., “Color”, “Texture”, “Add”,
“Drop”, ‘’Move” and “Distractors (e.g., viewpoint
change)”. We use the official split with 67,660 for
training, 3,976 for validation and 7,970 for testing.

Spot-the-Diff dataset (Jhamtani and Berg-
Kirkpatrick, 2018) contains 13,192 well-aligned
image pairs from surveillance cameras. Based on
the official split, the dataset is split into training,
validation, and testing with a ratio of 8:1:1.

Following the state-of-the-art methods (Park
et al., 2019; Shi et al., 2020; Tu et al., 2021), we
use five standard metrics to evaluate the quality
of generated sentences, i.e., BLEU-4 (Papineni
et al., 2002), METEOR (Banerjee and Lavie, 2005),
ROUGE-L (Lin, 2004), CIDEr (Vedantam et al.,
2015) and SPICE (Anderson et al., 2016). We get
all the results based on the Microsoft COCO evalu-
ation server (Chen et al., 2015).

4.2 Implementation Details
We use ResNet-101 (He et al., 2016) pre-trained
on the Imagenet dataset (Russakovsky et al., 2015)
to extract object features, with the dimension of
1024 × 14 × 14. We project these features into
a lower dimension of 256. The hidden size of
overall model is set to 512 and the number of at-
tention heads in relation-embedded module is set
to 4. The number of skeletons in an image pair
is set to 50. The dimension of words is set to
300. For the hyper-parameter λ, we empirically
set it as 0.1. In the training phase, we use Adam

optimizer (Kingma and Ba, 2014) with the learn-
ing rate of 1 × 10−3, and set the mini-batch size
as 128 and 64 on CLEVR-Change and Spot-the-
Diff. At inference, for fair comparison, we follow
the pioneer works (Park et al., 2019; Jhamtani and
Berg-Kirkpatrick, 2018) in the two datasets to use
greedy decoding strategy for caption generation.
Both training and inference are implemented with
PyTorch (Paszke et al., 2019) on a Tesla P100 GPU.

4.3 Ablation Studies
To figure out the contribution of each module of
the proposed network, we conduct the following
ablation studies on CLEVR-Change: (1) Base-
line which is based on DUDA (Park et al., 2019);
(2) RRM which is the representation reconstruc-
tion module; (3) R3Net which augments the RRM
with a relation-embedded module; (4) R3Net+SSP
which augments the R3Net with a syntactic skele-
ton predictor.

The evaluation on Total Performance. To-
tal performance is to simultaneously evaluate the
model under both scene change and none-scene
change. Experimental results are shown in Table
1. We can observe that each module and the full
method improve the total performance of Baseline.
This indicates that our method not only can cor-
rectly judge whether there is an semantic change
between a pair of images, but also can describe the
change in an accurate natural language sentence.

The evaluation on the settings of Scene
Change and None-scene Change. In the setting
of scene change, both object and viewpoint changes
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Table 3: Comparing with state-of-the-art methods on CLEVR-Change in Total Perfor-
mance. RL refers to the training strategy of reinforcement learning.

Total
Method RL B-4 M R C S

Capt-Dual (Park et al., 2019) × 43.5 32.7 - 108.5 23.4
DUDA (Park et al., 2019) × 47.3 33.9 - 112.3 24.5
M-VAM (Shi et al., 2020) × 50.3 37.0 69.7 114.9 30.5

M-VAM+RAF (Shi et al., 2020) X 51.3 37.8 70.4 115.8 30.7
R3Net+SSP × 54.7 39.8 73.1 123.0 32.6

Table 4: Comparing with state-of-the-art methods on CLEVR-Change in terms of two settings.

Scene Change None-scene Change
Method RL B-4 M C S B-4 M C S

Capt-Dual (Park et al., 2019) × 38.5 28.5 89.8 18.2 56.3 44.0 108.9 28.7
DUDA (Park et al., 2019) × 42.9 29.7 94.6 19.9 59.8 45.2 110.8 29.1

M-VAM+RAF (Shi et al., 2020) X - - - - - 66.4 122.6 33.4
R3Net+SSP × 52.7 36.2 116.6 30.3 61.9 50.5 116.4 34.8

happen. In the setting of none-scene change, there
are only distractors, such as viewpoint change and
illumination change. The experimental results are
shown in Table 2. Under the setting of scene
change, we can observe that 1) the RRM, R3Net,
and R3Net+SSP all significantly improve the Base-
line; 2) the R3Net is much better than the RRM; 3)
the best performance is achieved when augmenting
the R3Net with the SSP. The above observations
indicate that 1) compared to direct subtraction be-
tween a pair of unaligned images, it is effective
to capture difference representation via the R3Net,
because it can overcome the distraction of view-
point change; 2) learning semantic relations among
object features is important, because these rela-
tions can enrich the raw object features, helpful
for exploring fine-grained changes; 3) the SSP can
enhance the semantic interaction between change
localization and caption generation, and thus fur-
ther improve the quality of generated sentences.

Besides, under the setting of non-scene change,
we can observe that the RRM is worse than the
Baseline on some metrics. Our conjecture is that,
on one hand, due to the large amount of clutter and
only representing the image pair at feature-level,
the RRM cannot learn the exact semantic similari-
ties of corresponding locations in the two images,
performing worse on some metrics. On the other
hand, the Baseline learns a coarse difference repre-
sentation between two unaligned images by a direct
subtraction, so it is prone to learn a wrong change

type or simply judge nothing has changed. This
leads to the results that it performs worse than the
RRM with the total performance and scene change,
but achieves higher scores than the RRM on some
metrics with none-scene change. In fact, when em-
bedding semantic relations among object features,
the R3Net outperforms the Baseline in the both set-
tings. This further indicates that it is beneficial to
thoroughly understand image content via modeling
semantic relations among object features.

4.4 Performance Comparison

4.4.1 Results on CLEVR-Change Dataset

In this dataset, we compare with four state-of-the-
art methods, Capt-Dual (Park et al., 2019), DUDA
(Park et al., 2019), M-VAM (Shi et al., 2020), and
M-VAM+RAF (Shi et al., 2020), in four settings:
1) scene change; 2) none-scene change; 3) total
(scene and none-scene changes); 4) specific types
of scene change.

From Table 3 and Table 4, under two kinds of
settings and total performance, we can observe that
our method surpasses Capt-Dual and DUDA with
a large margin. Compared to M-VAM+RAF, the to-
tal performance of our method is much better than
it, which indicates our method is more robust. As
shown in Table 4, under the setting of none-scene
change, it outperforms our method on METEOR
and CIDEr. This could be a benefit of the reinforce-
ment learning, while also sharply increasing the
training time and computation complexity.
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Table 5: A Detailed breakdown of Change Captioning evaluation on CLEVR-Change by different
change types: “Color” (C), “Texture” (T), “Add” (A), “Drop” (D), and “Move” (M).

Method RL Metrics C T A D M
Capt-Dual (Park et al., 2019) × CIDEr 115.8 82.7 85.7 103.0 52.6

DUDA (Park et al., 2019) × CIDEr 120.4 86.7 108.3 103.4 56.4
M-VAM+RAF (Shi et al., 2020) X CIDEr 122.1 98.7 126.3 115.8 82.0

R3Net+SSP × CIDEr 139.2 123.5 122.7 121.9 88.1
Capt-Dual (Park et al., 2019) × METEOR 32.1 26.7 29.5 31.7 22.4

DUDA (Park et al., 2019) × METEOR 32.8 27.3 33.4 31.4 23.5
M-VAM+RAF (Shi et al., 2020) X METEOR 35.8 32.3 37.8 36.2 27.9

R3Net+SSP × METEOR 38.9 35.5 38.0 37.5 30.9
Capt-Dual (Park et al., 2019) × SPICE 19.8 17.6 16.9 21.9 14.7

DUDA (Park et al., 2019) × SPICE 21.2 18.3 22.4 22.2 15.4
M-VAM+RAF (Shi et al., 2020) X SPICE 28.0 26.7 30.8 32.3 22.5

R3Net+SSP × SPICE 31.6 30.8 32.3 31.7 25.4

Table 6: Comparing with state-of-the-art methods on
Spot-the-Diff.

Method RL M R C S
DDLA × 12.0 28.6 32.8 -
DUDA × 11.8 29.1 32.5 -
SDCM × 12.7 29.7 36.3 -
FCC × 12.9 29.9 36.8 -

static rel-att × 13.0 28.3 34.0 -
dynamic rel-att × 12.2 31.4 35.3 -

M-VAM × 12.4 31.3 38.1 14.0
M-VAM+RAF X 12.9 33.2 42.5 17.1

R3Net+SSP × 13.1 32.6 36.6 18.8

Table 5 is the specific change types. Among five
changes, the most challenging types are “ Texture”
and “Move”, because they are always confused
with irrelevant illumination or viewpoint changes.
Compared to the SOTA methods, our method
achieves excellent performances under both change
types. This shows that our method can better distin-
guish the attribute change or movement of objects
from the illumination or viewpoint change.

Hence, compared to the current SOTA methods
from different dimensions, the generalization abil-
ity of our method is much better. This benefits
from the merits that 1) the R3Net can learn the fine-
grained change and overcome viewpoint changes in
the process of representation reconstruction; 2) the
SSP can enhance the semantic interactions between
change localization and caption generation.

4.4.2 Results on Spot-the-Diff Dataset
The image pairs in this dataset are mostly well
aligned. We compare with eight SOTA meth-

<After><Before>

Ground Truth:

The blue metal ball is in 

a different location.

Predicted Syntactic Skeletons

small (0.782), sphere (0.767), ball (0.756), metal (0.692), 

object (0.663), rubber (0.648), changed (0.605), yellow (0.516), 

location (0.425), blue (0.383), different (0.342), moved (0.333), 

newly (0.100), placed (0.099)

𝐑𝟑𝐍𝐞𝐭 + SSP

The small blue metal 

sphere that is behind the 

small yellow rubber object 

is in a different location.

DUDA:

The small blue metal 

ball that is behind the 

tiny yellow rubber thing 

has been newly placed.

Figure 3: A example about “Move” case from the
test set of CLEVR-Change, which involves the cap-
tion generated by humans (Ground Truth), DUDA (cur-
rent SOTA method) and R3Net+SSP. We also visualize
the predicted syntactic skeletons and the localization
results on the “before” (blue) and “after” (red).

ods and most of them cannot consider han-
dling viewpoint changes: DDLA (Jhamtani and
Berg-Kirkpatrick, 2018), DUDA (Park et al.,
2019), SDCM (Oluwasanmi et al., 2019a), FCC
(Oluwasanmi et al., 2019b), static rel-att / dyan-
mic rel-att (Tan et al., 2019), and M-VAM / M-
VAM+RAF (Shi et al., 2020).

The results are shown in Table 6. We can observe
that when training without reinforcement learn-
ing, our method achieves the best performances
on METEOR, ROUGE-L and SPICE. Compared to
M-VAM+RAF trained by the reinforcement learn-



9327

Ground Truth

The rubber cylinder is 

in a different location.

<After><Before>

Ground Truth

The grey cylinder 

changed its location.

𝐑𝟑𝐍𝐞𝐭 + SSP

The small grey matter 

cylinder that is behind 

the big gray shiny 

thing moved.

<After><Before>

Predicted Syntactic Skeletons

location (0.847), changed (0.705), cylinder (0.690), big(0.689), 

different (0.674), shiny (0.615), rubber (0.568), matter (0.561), 

grey (0.558) , moved (0.554), small (0.552)

Predicted Syntactic Skeletons

cylinder (0.618), changed (0.610), location (0.515), 

different (0.466), moved (0.459), grey (0.354) , 

same (0.038), remains (0.035)

𝐑𝟑𝐍𝐞𝐭 + SSP

The scene remains 

the same.

Figure 4: Qualitative examples of R3Net+SSP. The left is a successful case that R3Net+SSP localizes the accurate
changed object and generates a correct sentence to describe the change. The right is a failure case that a slight
movement of the object is not correctly described.

ing strategy, our method still outperforms them on
METEOR and SPICE. Since there is no viewpoint
change in this dataset, the superiority mainly re-
sults from that the relation-embedded module can
enhance the fine-grained representation ability of
object features, and the syntactic skeleton predic-
tor can enhance the semantic interaction between
change localization and caption generation.

4.5 Qualitative Analysis

Figure 3 shows an example about the case of
“Move” from the test set of CLEVR-Change. We
can observe that DUDA localizes a wrong region
on the “before” and thus misidentifies “Move” as
“Add”. By contrast, the R3Net+SSP can accurately
locate the moved object on the “before” and “after”
images, which benefits from two merits. First, the
R3Net is able to localize the fine-grained change
in the presence of viewpoint changes. Second, the
SSP can predict the key skeletons based on the
representations of image pair and their difference
learned from the R3Net. For instance, the skeletons
of “changed” and “location” has the higher proba-
bility scores than “newly” and “placed”. This can
provide the decoder with high-level semantic cues
to generate the correct sentence.

Figure 4 illustrates two cases about “Move”. In
the left example, the R3Net+SSP successfully dis-
tinguishes the changed object (i.e., small grey cylin-
der) and predicts accurate skeletons with high prob-
ability scores. The right example is a failure case.
In general, we can observe that the grey cylinder
is localized and the main skeletons are predicted,

which indicates that the R3Net learns a reliable rep-
resentation of difference. However, the decoder
still generates the wrong sentence. The reason be-
hind the failure may be that the movement of this
cylinder is very slight and the decoder receives
the weak information of change (including skele-
tons). In our opinion, a possible solution for this
challenge is to model position information for ob-
ject features, which would enhance their position
representation ability and help localize the slight
movements.

5 Conclusion

In this paper, we propose a relation-embedded rep-
resentation reconstruction network (R3Net) and
a syntactic skeleton predictor (SSP) to address
change captioning in the presence of viewpoint
changes, where the R3Net can explicitly distin-
guish semantic changes from viewpoint changes
and the SSP is to enhance the semantic interaction
between change localization and caption genera-
tion. Extensive experiments show that the state-of-
the-art results are achieved on two public datasets,
CLEVR-Change and Spot-the-Diff.
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