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Abstract

Unsupervised text style transfer aims to alter
the underlying style of the text to a desired
value while keeping its style-independent se-
mantics, without the support of parallel training
corpora. Existing methods struggle to achieve
both high style conversion rate and low con-
tent loss, exhibiting the over-transfer and under-
transfer problems. We attribute these problems
to the conflicting driving forces of the style con-
version goal and content preservation goal. In
this paper, we propose a collaborative learning
framework for unsupervised text style trans-
fer using a pair of bidirectional decoders, one
decoding from left to right while the other de-
coding from right to left. In our collaborative
learning mechanism, each decoder is regular-
ized by knowledge from its peer which has a
different knowledge acquisition process. The
difference is guaranteed by their opposite de-
coding directions and a distinguishability con-
straint. As a result, mutual knowledge dis-
tillation drives both decoders to a better opti-
mum and alleviates the over-transfer and under-
transfer problems. Experimental results on two
benchmark datasets show that our framework
achieves strong empirical results on both style
compatibility and content preservation.

1 Introduction

Text style transfer is to transform an input text of a
source style to a target style (i.e., style conversion
goal) without loss of its style-independent infor-
mation (i.e., content preservation goal). Concen-
trating on different stylistic attributes, text style
transfer has attracted much attention from vari-
ous natural language processing applications, such
as personalized machine translation (Rabinovich
et al., 2017), text formalization (Zhang et al., 2020),
and sentiment translation (Xu et al., 2018). Unfor-
tunately, the parallel corpora with aligned input
and output are usually unavailable, challenging the
models to learn in an unsupervised manner.

Input The dish is fresh and yummy.
Expected Output The dish is old and disgusting.
Over-Transfer The staff are rude!
Under-Transfer The dish is old and yummy.

Table 1: The over-transferred and the under-transferred
results for an exemplar input in the postive→negative
sentiment transfer task.

One research line to address the unsupervised
text style transfer task is to first disentangle the
style-independent semantics (content) from the
style-dependent semantics (style), and then pro-
duce the output based on the disentangled content
and the target style. The disentanglement is en-
forced either implicitly (Hu et al., 2017; Shen et al.,
2017; Fu et al., 2018; John et al., 2019), or explicitly
(Li et al., 2018; Wu et al., 2019b; Xu et al., 2018;
Madaan et al., 2020). Nevertheless, such disentan-
glement has been discovered to be hardly met in
practice (Elazar and Goldberg, 2018). Putting aside
the disentanglement step, another research line
learns a direct mapping from input to output, where
the model is optimized by pseudo-parallel data
created by online back-translation (Lample et al.,
2019; Zhang et al., 2018c; Luo et al., 2019; Pant
et al., 2020), or jointly predicting the word-level
style relevance (Zhou et al., 2020). For both the
disentanglement and non-disentanglement based re-
search lines, objectives like self-reconstruction and
style classification have been extensively proven as
effective in guiding the training process.

Despite the great progress, existing methods still
struggle to achieve both high style conversion rate
and low content loss. Such limitation is widely
embodied by the over-transfer and under-transfer
problems: Over-Transfer (OT) refers to the con-
tent deviation patterns that some style-independent
semantics are altered; while Under-Transfer (UT)
refers to the lazy copying patterns that some style-
dependent semantics are unchanged. Table 1 illus-
trates the OT and UT problems in a sentiment trans-
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fer scenario. For the given input, the OT output
achieves the positive-to-negative sentiment conver-
sion but undesirably changes the focused aspect
from dish to staff ; in contrast, the UT output pre-
serves this sentiment-independent content but fails
to convert yummy to words with negative sentiment.

The OT and UT problems are the product of
the conflicting driving forces of the style conver-
sion goal and content preservation goal. Specifi-
cally, objectives for the style conversion goal (e.g.,
the style classification loss) encourage generating
new words reflecting the target style; while objec-
tives for the content preservation goal (e.g., the
self-reconstruction loss) encourage copying from
source words. Without supervision from ground-
truth, the model struggles between these two con-
flicting forces and tends to put their probability
mass on choices in both directions to achieve both
goals. As a result, the model can make unconfident
predictions and present the OT and UT problems
when biasing in the wrong direction. Furthermore,
the specific design of different methods may further
exacerbate the OT / UT problems1.

In this paper, we draw inspiration from multi-
agent learning to address the OT and UT prob-
lems. Under the widely adopted encoder-decoder
architecture, we jointly learn a pair of Collabora-
tive Bidirectional Decoders (CBD), one decoding
from left to right (L2R) and the other decoding
from right to left (R2L). Our collaborative learning
mechanism regularizes each decoder by distilling
knowledge from its peer. Essentially, OT and UT
problems are incorrectly predicted words in the
decoding procedure. In a similar spirit of pseudo-
labeling (Lee, 2013) and consistency regulariza-
tion (Laine and Aila, 2017) in Semi-Supervised
Learning (SSL), the mutual knowledge distillation
provides a direct optimization direction for data
lacking ground-truth, gradually improving both de-
coders to reduce OT and UT errors and get more
peaked on reasonable predictions. Specifically, con-
sistent predictions will be reinforced, while the
inconsistent predictions lead to more uncertainty
over candidate predictions and provide a chance
for achieving consistency in subsequent training.
However, this is only plausible under the consis-

1The disentanglement based methods can produce imper-
fect disentangled representations with content information
eliminated or with style information kept, corresponding to OT
or PT problems. The back-translation in non-disentanglement
based methods can strengthen the UT patterns occurring in
pseudo data by iteratively feeding them to the model.

tency assumption that consistent knowledge can
represent the ground-truth with a high probabil-
ity. As with the Co-Training framework (Blum
and Mitchell, 1998; Qiao et al., 2018) in SSL, to
guarantee the rationality of the consistency assump-
tion, we require the two decoders to have different
knowledge acquisition processes. In addition to
their opposite decoding directions, we introduce a
distinguishability constraint to ensure their differ-
ence. In particular, an additional discriminator is
employed to distinguish the softmax probabilities
from the two decoders.

Our contributions can be summarized as: (1) We
address the over-transfer and under-transfer prob-
lems in unsupervised text style transfer from the
perspective of multi-agent learning with a pair of
bidirectional decoders. (2) We propose a collabo-
rative learning mechanism with mutual knowledge
distillation and a distinguishability constraint to
optimize the bidirectional decoders, so as to contin-
uously promote the model’s capability. (3) Experi-
mental results and in-depth analysis on two bench-
mark datasets verify the strength of our model on
persuing both the style conversion goal and the
content preservation goal.

2 Related Work

2.1 Unsupervised Text Style Transfer

One main branch of approaches tries to learn a
style-agnostic representation by disentangling the
content and style. Fu et al. (2018) and John et al.
(2019) align the latent content space with adver-
sarial objectives to eliminate the style informa-
tion. Shen et al. (2017) directly aligns the trans-
ferred samples with the real samples from the tar-
get style with adversarial discriminators. Yang et al.
(2018) achieves the alignment with language mod-
els instead of the binary discriminators to provide
token-level supervision. Prabhumoye et al. (2018)
assumes the style-agnostic representation can be
achieved by translating the input text to another
language. With all the content reduced to a latent
vector, such implicit disentanglement based meth-
ods are prone to semantic loss. To address this limi-
tation, Li et al. (2018), Xu et al. (2018), and Zhang
et al. (2018b) remove the style indicators based
on term frequencies or attention scores, and treat
the remaining words as the disentangled content
for stylization. Focusing on politeness transfer,
Madaan et al. (2020) generalizes this explicit disen-
tanglement step by allowing inserting placeholders
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without removing other content, where the place-
holders are further replaced with stylistically rele-
vant words.

Alternatively, recent methods skip the disentan-
glement step and directly optimize the mapping
function from input to output. Motivated by the un-
supervised machine translation approaches, Zhang
et al. (2018c) and Lample et al. (2019) train the
model with pseudo-parallel data dynamically cre-
ated by back-translation. Luo et al. (2019) further
proposes to use the reinforcement learning tech-
nique with the style conversion reward and the con-
tent preservation reward. Zhou et al. (2020) binds
the output generation with word-level style rele-
vance prediction. Standing outside the sequence-to-
sequence models, Wu et al. (2019a) considers style
transfer as a text editing task and learns where and
how to operate the input via hierarchical reinforce-
ment learning. Meanwhile, some works (Sudhakar
et al., 2019; Wu et al., 2019b; Dai et al., 2019)
advance the field by replacing the Recurrent Neu-
ral Networks (RNN) based architectures with the
Transformer architecture for its superiority in cap-
turing long-term dependencies.

2.2 Multi-Agent Learning

Multi-agent learning improves model performance
by incorporating multiple interactive agents. Most
related to our work is the bidirectional decod-
ing models (Zhang et al., 2018a, 2019; Zhou
et al., 2019) in Neural Machine Translation (NMT),
which jointly train an L2R translator and an R2L
one. Zhang et al. (2019) minimizes the KL diver-
gence between the two translators to fuse the good
prefixes of L2R decoding and the good suffixes
of R2L decoding. Bi et al. (2019) further explores
more than two agents where each agent learns the
knowledge from a dynamic ensemble model. Mu-
tual learning has also been set up between an NMT
agent and a Statistical Machine Translation (SMT)
agent to integrate NMT’s fluency and SMT’s ro-
bustness to noisy data (Ren et al., 2019). In ad-
dition to focusing on different tasks, our model
differentiates by including a distinguishability con-
straint. Unlike NMT, the task of unsupervised text
style transfer is not well-constrained due to both
the lack of ground-truth and the conflicting forces
from the two goals of style transfer. The distin-
guishability constraint is important to prevent the
decoders from collapsing to one bad local optimum
and reinforcing incorrect but consistent patterns.

3 Our Approach

Consider a training corpus M = {(xi, si)}Ni=1,
where xi is a text sequence, and si ∈ S is its style
with S denoting all possible style types. The objec-
tive of text style transfer is to learn a conditional
probability distribution P (x̃|x, s̃) to transform a
given x to x̃ with a target style s̃. The output x̃ is
expected to retain the style-independent informa-
tion in x. Here, we stick to the encoder-decoder
based sequence-to-sequence architecture, where an
encoder E first encodes x to latent vectors E(x),
and a decoderD then produces x̃ by sampling from
its parameterized distribution D(x̃|E(x), s̃).

In this paper, we propose a framework with one
encoder E and a pair of bidirectional decoders: an
L2R decoder Dl producing the output sequence
from left to right, and an R2L decoder Dr go-
ing in the opposite direction. The two decoders
interact with each other in a collaborative learn-
ing mechanism. This collaborative learning mech-
anism is integrated with a basic framework that
follows the non-disentanglement based research
line and has three widely used objectives, i.e., self-
reconstruction, back-translation, and style classifi-
cation. In the following, we first briefly introduce
the basic framework extended for our two-decoder
scenario (Section 3.1), then elaborate our collabora-
tive learning mechanism (Section 3.2), and present
the training algorithm at last (Section 3.3).

3.1 Basic Style Transfer Framework

We adapt the objectives of self-reconstruction,
back-translation, and style classification to our
CBD framework. Let θE ,θDl , and θDr denote the
parameters of E,Dl,Dr, and θ = [θE , θDl , θDr ].

3.1.1 Self-Reconstruction

Self-reconstruction can warmly start the learning
for non-parallel corpora and teach the model to
preserve the content. Given an input x and its style
s, if the target style s̃ = s, the model is optimized to
reconstruct x under both decoders, i.e., minimizing
the self-reconstruction loss:

Lrec(θ) =− logDl(x|E(x?), s)

− logDr(x|E(x?), s) (1)

where x? is a noisy version of x (by random word
permutation and word removal) to avoid trivial so-
lutions as in Shen et al. (2017).
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3.1.2 Back-Translation
Through dynamically creating pseudo-parallel data,
back-translation provides guidance for the transfer
between different styles with increasing reliability
as training proceeds. Given an input x and its style
s, suppose we designate a target style s̃ 6= s and
get x̃l ∼ Dl(x̃|E(x), s̃) and x̃r ∼ Dr(x̃|E(x), s̃).
The model is optimized to restore x if we feed x̃l

or x̃r as the input and s as the target style, i.e.,
minimizing the back-translation loss:

Lback(θ) =− logDl(x|E(x̃l), s)

− logDr(x|E(x̃r), s) (2)

This back-translation objective penalizes solutions
that produce the same outputs for a given target
style regardless of the inputs, thus alleviating the
content deviation patterns in the OT problem.

3.1.3 Style Classification
Style classification enforces the style conversion
goal by using a style classifier C (with param-
eters θC) to justify the style type of the trans-
ferred outputs. Given an input x and the target
style s̃, suppose we get x̃l ∼ Dl(x̃|E(x), s̃) and
x̃r ∼ Dr(x̃|E(x), s̃). The model is optimized to
ensure x̃l and x̃r to be categorized to the style type
s̃ by C, i.e., minimizing the style classification loss:

Lsty(θ) = − logC(s̃|x̃l)− logC(s̃|x̃r) (3)

3.2 Collaborative Learning
As discussed in Section 1, the OT / UT problems
are actually the wrongly predicted words under the
lack of ground-truth and the conflicting forces of
the style conversion goal and content preservation
goal. To provide more supervision, we establish a
mutual knowledge distillation scheme between
the two decoders. Since the two decoders are con-
ditionally independent given the encoder’s outputs
and the target style, we expect them to have in-
herently different knowledge acquisition processes.
Then distilling the knowledge from one to the other
can regularize each decoder by encouraging con-
sistent predictions. Meanwhile, we explicitly en-
sure the two decoders’ inherent difference by a
distinguishability constraint which employs a
discriminator to distinguish their behaviors. To-
gether with the opposite decoding direction, this
constraint keeps the mutual knowledge distillation
from rapidly pushing both decoders towards one
bad local optimum where incorrect but consistent
patterns are reinforced.

3.2.1 Mutual Knowledge Distillation
We regularize Dl and Dr via two-way knowledge
distillation: both try to learn each other’s knowl-
edge on producing the transferred output. Consider
the knowledge distillation from Dr to Dl. Follow-
ing the knowledge distillation framework (Hinton
et al., 2015), given an input x and the target style s̃,
Dl is optimized to decrease the KL divergence be-
tween its probability distribution over all possible
outcomes with that of Dr, i.e., minimizing:

Lmkd(θDl) = KL(Dr(x̃|E(x), s̃)‖Dl(x̃|E(x), s̃))

Eliminating the negative entropy term which is
irrelevant toDl from the KL divergence,Lmkd(θDl)
can be reformulated as∑

t∈T (x,s̃)

−Dr(t|E(x), s̃) logDl(t|E(x), s̃)

where T (x, s̃) denotes all the possible trans-
ferred outcomes. However, exact computation
for Lmkd(θDl) is intractable with the summation
over the exponential search space T (x, s̃). Follow-
ing Kim and Rush (2016), we approximate the tar-
get distributionDr(x̃|E(x), s̃) as 1[x̃ = tr], where
tr = argmaxt∈T (x,s̃)D

r(t|E(x), s̃) denotes the
mode of the target distribution. As the maximiza-
tion problem is still intractable, tr is further approx-
imated by a sequence tr∗ using greedy decoding or
beam search on Dr. As a result, we arrive at

Lmkd(θDl) = − logDl(tr∗|E(x), s̃) (4)

This resulted objective function is equivalent to
optimizing Dl with pseudo-parallel data generated
using Dr. Similarly, for the knowledge distillation
from Dl to Dr, Dr is optimized to minimize:

Lmkd(θDr) = − logDr(tl∗|E(x), s̃) (5)

3.2.2 The Distinguishability Constraint
The distinguishability constraint penalizes the
cases where the two decoders lose their specialty in
knowledge acquisition and collapse to each other.
To this end, we jointly train a discriminator F (with
parameters θF ) to discriminate the behavior of the
two decoders. Specifically, we represent the be-
havior of a decoder by the sequence of softmax
probabilities associated with its transferred output.

Let F (b) denote the probabilty of behavior b
coming from Dl instead of Dr. Given an in-
put x and the target style s̃, suppose we get
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Algorithm 1 Training algorithm of CBD.

1: Input: non-parallel training corpus M =
{(xi, si)}Ni=1

2: Initialize θC by pretraining a style classifier on
M; initialize θE ,θDl ,θDr ,θF randomly

3: for each iteration j = 1, 2, . . . , L do
4: Sample an text-style pair (x, s) ∼M
5: Sample a target style s̃ ∼ S with s̃ 6= s
6: Generate x̃l ∼ Dl(x̃|E(x), s̃)
7: Generate x̃r ∼ Dr(x̃|E(x), s̃)
8: Compute L(θ, θF ) by Eq 7
9: Update θ,θF by optimizing L(θ, θF )

10: Compute Lsty−c(θC) by Eq 8
11: Update θC by optimizing Lsty−c(θC)
12: end for

x̃l ∼ Dl(x̃|E(x), s̃) and x̃r ∼ Dr(x̃|E(x), s̃), and
o(x̃l) and o(x̃r) denote their softmax probability
sequences. The decoders and F are optimized to
ensure that o(x̃l) and o(x̃r) can be correctly classi-
fied by F , i.e., minimizing

Ldis(θDl , θDr , θF ) =− logF (o(x̃l))

− log(1− F (o(x̃r))) (6)

Note that the distinguishability constraint is
not incompatible with mutual knowledge distil-
lation: while mutual knowledge distillation fo-
cuses on the consistency between the joint proba-
bilities of two decoders, i.e., Dl(x̃|E(x), s̃) and
Dr(x̃|E(x), s̃), the distinguishability constraint
focuses on the difference between their factor
sequences, i.e., {Dl(x̃t|E(x), s̃, x̃t−11 )}Tt=1 and
{Dr(x̃t|E(x), s̃, x̃Tt+1)}Tt=1 , where T denotes the
sequence length.

3.3 Model Training

Integrating the collaborative learning mechanism
with the basic framework, we formulate the full
objective function for CBD as minimizing

L(θ, θF ) = Lrec(θ) + Lback(θ) + αLsty(θ)

+ βLmkd(θDl , θDr) + γLdis(θDl , θDr , θF ) (7)

where Lmkd(θDl , θDr) = Lmkd(θDl)+Lmkd(θDr),
and α, β and γ are hyperparameters.

The style classifier C is pretrained on M and
further updated in our training stage with the spirit
of adversarial learning2 (Goodfellow et al., 2014),

2The transfer model (incl. the encoder and the decoders),
acting as the generator from the adversarial learning field,

which has been shown to stabilize the learning of
CBD in our preliminary experiments. For an input
x and its style s, we enforce C to correctly pre-
dict s as the style for x; while for the outputs x̃l

and x̃r produced by Dl and Dr under target style
s̃, we enforce C to be uncertain between s and s̃
by assigning a uniform distribution over the two
styles (which represents the highest uncertainty).
Formally, Eq 8 is minimized.

Lsty-c(θC) =−
∑

x̃∈{x̃l,x̃r}

∑
s′∈{s,s̃}

1

2
logC(s′|x̃)

− 2 logC(s|x) (8)

The training algorithm is summarized in Algo-
rithm 1. The x̃l and x̃r in step 6 and 7 of Algo-
rithm 1 are generated by greedy decoding, and they
further act as tl∗ and tr∗ in Eq 5 and 4. Greedy de-
coding is also used during inference. Note that the
discreteness of text generation hinders the gradi-
ent backpropagation from Lsty to θ. We tackle this
problem by approximating each discrete word with
the softmax distribution given by the decoder.

4 Experiments

4.1 Experimental Settings
Datasets. We evaluate CBD on a sentiment trans-
fer dataset YELP (Li et al., 2018) and a formality
transfer dataset GYAFC (Rao and Tetreault, 2018).
The YELP dataset is composed of business reviews
from Yelp, with each review annotated as positive
or negative. The GYAFC dataset is composed of
sentences from Yahoo Answers, with each sentence
annotated as formal or informal. Data statistics and
preprocessing details are provided in Appendix A.

Implementation Details. The encoder and two
decoders are implemented by single-layer Gated
Recurrent Units (GRU) networks, while the
style classifier and the discriminator employ the
TextCNN architecture (Kim, 2014). In decoding,
we follow Lample et al. (2019) and input the tar-
get style to the decoders as a special start token,
which is then mapped to an embedding vector as
the ordinary tokens. During inference, we pro-
duce two outputs for each sample (one from the
Dl and the other from Dr) then select the output
with larger log-probability (assigned by its origin

tries to produce a result making C predict its style as the
given target style. With the first term in Eq 8, C acts as
the discriminator from the adversarial learning field and is
encouraged to be uncertain on the transferred results.
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YELP GYAFC
ACC BLEU PPL G2 H2 ACC BLEU PPL G2 H2

CrossAligned (Shen et al., 2017) 74.9 9.1 43.5 26.1 16.2 67.7 3.6 25.8 15.6 6.8
StyleEmbedding (Fu et al., 2018) 8.4 21.1 44.1 13.3 12.0 24.5 7.9 60.4 13.9 11.9
MultiDecoder (Fu et al., 2018) 48.3 14.5 80.4 26.5 22.3 18.8 12.3 71.5 15.2 14.9
BackTrans (Prabhumoye et al., 2018) 95.4 2.5 19.7 15.4 4.9 65.6 0.9 57.2 7.7 1.8

CycledRL (Xu et al., 2018) 53.5 18.6 264.1 31.5 27.6 81.6 2.0 80.8 12.8 3.9
TemplateBased (Li et al., 2018) 84.9 22.6 181.7 43.8 35.7 52.1 35.2 87.5 42.8 42.0
RetrieveOnly (Li et al., 2018) 95.7 1.7 47.2 12.8 3.3 90.9 0.4 36.7 6.0 0.8
DeleteOnly (Li et al., 2018) 85.7 14.8 59.6 35.6 25.2 21.6 29.2 82.8 25.1 24.8
Del-Ret-Gen (Li et al., 2018) 89.7 16.0 56.3 37.9 27.2 50.3 21.2 69.2 32.7 29.8

UnsuperMT (Zhang et al., 2018c) 96.9 22.8 52.2 47.0 36.9 61.1 33.4 45.7 45.2 43.2
DualRL (Luo et al., 2019) 89.2 28.0 44.6 50.0 42.6 74.8 41.9 79.9 56.0 53.7
PointOperate (Wu et al., 2019a) 90.5 29.7 43.0 51.8 44.7 37.0 44.9 50.4 40.8 40.6
WordStyleRel (Zhou et al., 2020) 88.7 30.4 42.8 51.9 45.3 78.1 46.0 45.8 59.9 57.9

CBD 96.9 30.2 42.1 54.1 46.0 84.9 47.1 40.3 63.2 60.6

Table 2: Automatic evaluation results on the YELP dataset and the GYAFC dataset. G2: the geometric mean of
ACC and BLEU. H2: the harmonic mean of ACC and BLEU.

decoder) as the final transferred result. We set
α = 0.1, β = 0.1 and γ = 0.01 in Eq 7. More
details are provided in the Appendix B.

Baselines. We compare CBD with: (1) im-
plicit disentanglement based methods including
CrossAligned (Shen et al., 2017), StyleEmbed-
ding (Fu et al., 2018), MultiDecoder (Fu et al.,
2018), and BackTrans (Prabhumoye et al., 2018);
(2) explicit disentanglement based methods includ-
ing CycledRL (Xu et al., 2018), TemplateBased (Li
et al., 2018), RetrieveOnly (Li et al., 2018), Dele-
teOnly (Li et al., 2018), and Del-Ret-Gen (Li et al.,
2018); (3) non-disentanglement based methods in-
cluding UnsuperMT (Zhang et al., 2018c), Du-
alRL (Luo et al., 2019), PointOperate (Wu et al.,
2019a), and WordStyleRel (Zhou et al., 2020).

4.2 Evaluation Measures

Following our baselines, we adopt both automatic
evaluation and human evaluation to assess mod-
els on three aspects: style compatibility, content
preservation, and fluency.

Automatic Evaluation. For style compatibility:
A style classifier Ceval with the same architecture
as C is independently learned on M. We mea-
sure the style compatibility by the prediction accu-
racy (ACC) of Ceval on each model’s output, using
the target styles as ground-truth labels. For con-
tent preservation: Each test sample has been asso-
ciated with one human reference on YELP3 and

3As Luo et al. (2019) provides three additional references
for each sample, we report BLEU scores based on this four-
reference version in Appendix D.

four human references on GYAFC. We measure
the content preservation by the BLEU score (us-
ing multi-bleu.perl4) between the model’s
outputs and human references. For fluency: A
language model LM with a single-layer GRU ar-
chitecture is learned on all text sequences fromM.
We measure the fluency by the Perplexity (PPL) of
LM on the model’s outputs.

Human Evaluation. We invite three human an-
notators to evaluate different models’ outputs for
200 test samples on each dataset. The annotators
score each transfer result from 1 (the lowest qual-
ity) to 5 (the highest quality) in terms of style com-
patibility, content preservation, and fluency. More
details are provided in Appendix C.

4.3 Results and Analysis

Automatic Evaluation Results. Table 2 shows
the automatic evaluation results on YELP and
GYAFC. Overall, the non-disentanglement based
methods demonstrate better performance than the
implicit / explicit disentanglement based methods
which tend to sacrifice content preservation for
style compatibility, i.e., the OT problem. On YELP,
our CBD performs the best on style compatibility,
and is comparable to the best on content preser-
vation. While it achieves second-best on fluency,
the BackTrans model with the best fluency suf-
fers from severe content loss with a low BLEU
score. On GYAFC, our CBD performs the best on

4https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
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YELP GYAFC Uspecial Urandom
Style Content Fluency Style Content Fluency

CrossAligned (Shen et al., 2017) 3.6 2.5 3.2 1.6 1.3 3.5 21.8 15.4
Del-Ret-Gen (Li et al., 2018) 3.7 3.4 3.6 1.5 2.5 2.4 36.6 21.3
DualRL (Luo et al., 2019) 4.2 4.2 4.1 3.0 3.6 3.8 29.6 21.5
WordStyleRel (Zhou et al., 2020) 3.7 4.4 4.0 3.3 3.9 4.1 74.9 35.7

CBD 4.4 4.4 4.2 3.5 4.1 4.2 27.0 16.5

Table 3: Middle blocks: Human evaluation results on the YELP dataset and the GYAFC dataset. Right block:
Percentage of UT results of different models on the YELP dataset, where a transferred result is regarded as an UT
result if it still keeps the original sentiment parts.

YELP: negative→ positive GYAFC: formal→ informal

Input prime rib was fatty and not cooked per requested . approach her , say hello , and ask if she is single .

CrossAligned prime rib was tender and really cooked us . ask her and then if it is too long .
Del-Ret-Gen prime rib was fatty , tender , flavorful and requested . you her , you say her , and ask if she is you .
DualRL prime rib was fatty and always cooked per requested . approach her er
WordStyleRel prime rib was delicious and not cooked per requested . approach her , say hello , and ask if she is single

CBD prime rib was good and cooked per requested . approach her , say hi and ask if she s single

Table 4: Ouputs of different models on exemplary sentences from YELP and GYAFC.

content preservation and the second-best on style
compatibility and the third on fluency. Still, the
RetrieveOnly model with the best style compatibil-
ity and second-best fluency, and the CrossAligned
model with the best fluency, are both limited on
the remaining metrics. Table 2 also reports the
geometric mean and harmonic mean of ACC and
BLEU, i.e., the G2 and H2 scores, on which our
CBD outperforms all the baselines. Hence, we con-
clude that CBD achieves a better balance on style
compatibility, content preservation, and fluency.

Human Evaluation Results. The middle blocks
of Table 3 show the human evaluation results on
YELP and GYAFC. Due to the high evaluation
cost, we only compare CBD with a subset of our
baselines which achieve better balance on the three
metrics for both datasets than other baselines in
their category. On both datasets, our CBD achieves
the best results on all three aspects. And consistent
with the automatic results, the non-disentanglement
based methods outperform the disentanglement
based methods.

Qualitative Results. Table 4 shows the transfer
results of different methods for exemplar sentences
on YELP and GYAFC. We can see that CBD can
produce fluent outputs, clearly expressing the target
style without loss of other semantics. In contrast,
other approaches present OT / UT problems or pro-
duce influent sentences. Specifically, the disentan-

glement based CrossAligned and Del-Ret-Gen are
more prone to OT: the underlying semantics of not
cooked per requested from the negative→ positive
example on YELP and the meaning of the formal
→ informal example on GYAFC are poorly pre-
served. The non-disentanglement based DualRL
and WordStyleRel are more prone to UT: on YELP,
the negative fatty or not cooked per requested are
unchanged; on GYAFC, the changes are more lim-
ited than our CBD. More qualitative results and
analysis are provided in Appendix E.

Discussions on the OT / UT Problems. Besides
the qualitative results, models’ strengths towards
the OT problem are indicated by the content preser-
vation scores, i.e., BLEU in Table 2 and Content
in Table 3. Thus we conclude CBD can alleviate
the OT problem especially faced by disentangle-
ment based methods. However, the UT problem
is only partially indicated by the style compati-
bility scores, as failures on style conversion can
also be caused by irrational modification on style
indicators such as indicator removal. From the
style compatibility scores, we can only conjecture
CBD shows improvement over baselines on the UT
problem. For better justification, we prepare two
subsets of YELP: Uspecial containing 200 carefully
selected samples with more than one style indicator
(e.g., the input in Table 1), and Urandom containing
200 random samples. Three human annotators are
invited to label if a given transferred result has the
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UT problem. The right block of Table 3 presents
the ratio of UT cases for different models. All mod-
els have more UT cases on Uspecial, suggesting the
UT problem occurs more often in inputs with more
than one style indicator since partial transfer re-
sults can fool the style classifier. CBD outperforms
all baselines except for CrossAligned. However,
CrossAligned has serious OT problems by deviat-
ing the semantics to achieve the target style, which
can be demonstrated by its content preservation
scores from Tables 2 and Table 3.

Limitation. Despite the improvement over base-
lines, the UT problem is still quite challenging for
our model compared to the OT problem, especially
when the style is expressed in less frequent man-
ners. For a negative→ positive sample on YELP:
they only received one star because you have to pro-
vide a rating., our model generates: they received
one star because you have to provide a great rating..
This can be attributed to the lack of common-sense
knowledge. More failure cases and analysis are
provided in Appendix F.

4.4 Ablation Study
To better validate the effectiveness of the proposed
CBD, we compare the following ablated variants:

(1) L2R + {Lbasic};
(2) R2L + {Lbasic};
(3) L2R + R2L+ {Lbasic};
(4) L2R + R2L + {Lbasic, Lmkd};
(5) L2R + R2L + {Lbasic, Lmkd, Ldis}
(6) L2R + L2R + {Lbasic, Lmkd, Ldis};
(7) R2L + R2L + {Lbasic, Lmkd, Ldis}

where the variant (5) corresponds to our CBD
model, and Lbasic = {Lrec,Lback,Lsty}.

Table 5 shows the automatic evaluation results
of these variants on YELP. We have the follow-
ing observations: First, the comparison between
(3) and (1)/(2) shows that, shallow interactions by
the shared encoder cannot give the two-decoder
setting a clear advantage over the one-decoder set-
ting. Second, the comparison between (4) and (3)
shows that, mutual knowledge distillation can pro-
mote style compatibility and content preservation
while sacrificing fluency a little. Third, the com-
parison between (5) and (4) shows that, involving
the distinguishability constraint can achieve further
improvement on all aspects. Fourth, the compar-
ison between (5) and (6)/(7) shows that, settings

with two unidirectional decoders underperform the
bidirectional setting for all aspects. We conclude
that, with comparable fluency, CBD (variant (5)) is
advantageous over the other variants in achieving
both the style conversion goal and content preser-
vation goal.

To provide a deeper insight, Table 5 presents
the per-word entropy5 of each variant. The en-
tropy measures the uncertainty of the model’s pre-
dictions. We can see that variants (4)(5) show
lower per-word entropy values than (1)(2). As ex-
plained in Section 1, the single-decoder models
can unconfidently struggle between new word gen-
eration and source word copying. However, the
mutual knowledge distillation in (4)(5) provides
additional supervision to the decoders by gradually
reinforcing consistent patterns and thus improves
their confidence in prediction. For unsupervised
tasks, lower entropy values are preferred as it rep-
resents the model’s capability to filter the large pro-
portion of wrong choices (Graça et al., 2009; Niu
et al., 2012). Figure 1 in Appendix G illustrates
the probability distributions of different variants
when predicting specific words. Consistent with
the per-word entropy values, CBD shows more
peaked distributions than the single-decoder vari-
ants. Note that the per-word entropy value of (6)
is higher than CBD while that of (7) is lower than
CBD. This is possible: as the two unidirectional
decoders have more close per-word distributions,
if the distribution themselves are less peaked then
the posterior distributions after mutual knowledge
distillation can also be less peaked (as in (6)); on
the other hand, if the distribution themselves are
more peaked then so are the posterior distributions
(as in (7)). This can be implied by the per-word
entropy values of (1) and (2) where (1) has a higher
entropy value than (2).

Computational Overhead. With an extra de-
coder and the introduced mutual knowledge distil-
lation process plus the distinguishability constraint,
on a single Nvidia’s GTX 1080Ti GPU, the train-
ing speed of CBD is about 0.5 times the single-
decoder setting while the inference speed is about
0.55 times the single-decoder setting. However, as
the two decoders make inference independently, the
gap diminishes (the speed ratio is 0.9:1) when we
clearly assign the two decoders to different CUDA

5For x̃ ∼ D(x̃|E(x), s̃) where D is the decoder, the per-
word entropy refers to: 1

|x̃|
∑|x̃|

t=1 H(D(·|E(x), s̃, x̃t−1
1 )),

where H is the Shannon Entropy. The per-word entropy value
for a model is averaged on its outputs for all test samples.
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No. ACC BLEU PPL Per-Word Entropy

(1) 92.5 25.5 41.6 0.8642
(2) 93.2 26.3 41.0 0.8389
(3) 93.2 26.6 40.8 0.8045
(4) 95.3* 29.6† 42.4 0.5509
(5) 96.9* 30.2† 42.1 0.5394
(6) 94.7* 27.2† 42.5 0.5846
(7) 94.9* 27.8† 43.0 0.5127

Table 5: Automatic evaluation results and per-word
entropy values for different variants of our CBD on
YELP. *(†): result significantly better than (1)(2) with
p<0.1(0.05).

streams during inference. Multiple GPUs can also
be utilized to parallelize the inference of the two
decoders.

To summarize, as the style conversion goal and
content preservation goal push the model towards
conflicting directions when lacking ground-truth,
single-decoder models try to focus on both direc-
tions and thus have high uncertainty in decoding
and show OT or UT problems. By collaborative
learning with two bidirectional decoders, the pro-
posed CBD model breaks this uncertainty: it gives
more direct guidance by reinforcing the consistent
predictions of two distinguishable decoders, so that
the higher-entropy predictions are redistributed to-
wards the correct direction. As a result, the OT and
UT problems are alleviated. See Appendix G for
additional quantitative and qualitative results for
different variants.

5 Conclusion

In this paper, we address the unsupervised text
style transfer task from a novel multi-agent learn-
ing perspective. To overcome the over-transfer
and under-transfer problems, we introduce a pair
of collaborative bidirectional decoders. Our col-
laborative learning mechanism performs mutual
knowledge distillation on the two decoders and
guarantees the rationality of this distillation pro-
cess by a distinguishability constraint together
with their opposite decoding directions. Quanti-
tative and qualitative results on two benchmark
datasets validate the strength of our framework
over various single-decoder baselines in achiev-
ing both the style conversion goal and the con-
tent preservation goal. Our code will be made
publicly available at https://github.com/
sunlight-ym/CBD_style_transfer.
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A Dataset Details

We provide the statistics of the YELP dataset6

and the GYAFC dataset7 in Table 6. For the sen-
timent transfer dataset YELP, we use the same
train/dev/test split from Li et al. (2018). For the for-
mality transfer dataset GYAFC, we use the subset
in the Family & Relationship domain. Although
the dataset is a parallel corpus with aligned formal
and informal pairs, following Luo et al. (2019);
Zhou et al. (2020), we ignore the alignment infor-
mation to cater to the unsupervised task. We use
the same train/dev/test split from Luo et al. (2019);
Zhou et al. (2020).

The YELP dataset has already been tokenized
and lowercased. We tokenize and lowercase the

6https://github.com/lijuncen/
Sentiment-and-Style-Transfer/tree/
master/data/yelp

7https://github.com/raosudha89/
GYAFC-corpus
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sentences in GYAFC with spacy8. For both
datasets, we construct a vocabulary to keep the
10K most frequent words in the dataset. Out-of-
vocabulary words are mapped to a special token
<unk>.

B Additional Implementation Details

The encoder adopts a single-layer bidirectional
Gated Recurrent Units (GRU) network, with 256
hidden units in each direction. The L2R decoder
and the R2L decoder both employ an attention-
based single-layer unidirectional GRU network
with 512 hidden units. The word embeddings are
shared between the encoder and the two decoders,
with a size of 128.

Our implementation is based on PyTorch (ver-
sion 1.3.1) in Ubuntu 16.04. Models are trained
on a single Nvidia’s GTX 1080Ti GPU with 11
Gbps GDDR5X memory. We use a batch size of
64 and train the model for 100K iterations. The
Adam algorithm (Kingma and Ba, 2015) is utilized
to optimize the model with a learning rate of 0.001.

The hyperparameters α, β, and γ in Eq 7 are
tuned on the development set. Specifically, we
search α, β, and γ over the values in {0.001, 0.01,
0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0}. Each value
is evaluated based on three trials with different
seeds which are integers uniformly sampled from
[1, 999]. We have consistent observations on both
datasets: (a) For α, {0.05, 0.1, 0.2} have similar
performances, while smaller (larger) values will
increase BLEU (ACC) but significantly decrease
ACC (BLEU). (b) For β, the performance, espe-
cially BLEU, increases as β goes from 0.001 to 0.1.
The ACC will be clearly degraded when β = 0.2.
When β ≥ 0.5, the model quickly produces empty
outputs from both decoders as a trivial solution
for mutual learning which seems to dominate the
training. (c) For γ, the benefits are most signifi-
cant when γ = 0.01. The model becomes unstable
when further increasing γ, e.g., the outputs may
become quite influent with repeated tokens. As a
result, we set α = 0.1, β = 0.1, and γ = 0.01.

Following Lample et al. (2019), the gradients
of the back-tranlation loss (Eq 2) will not be back-
propagated to the generation pass for x̃l and x̃r.

C Human Evaluation Details

Each of the three human annotators fulfills the
following requirements: (a) the annotator is well-

8https://spacy.io/

Dataset Style Train Dev Test

YELP Positive 270K 2000 500
Negative 180K 2000 500

GYAFC Formal 51K 2247 500
Informal 51K 2788 500

Table 6: Dataset statistics.

Models BLEU

CrossAligned (Shen et al., 2017) 17.9
StyleEmbedding (Fu et al., 2018) 42.3
MultiDecoder (Fu et al., 2018) 27.9
BackTrans (Prabhumoye et al., 2018) 5.0

CycledRL (Xu et al., 2018) 37.0
TemplateBased (Li et al., 2018) 45.5
RetrieveOnly (Li et al., 2018) 2.9
DeleteOnly (Li et al., 2018) 29.0
Del-Ret-Gen (Li et al., 2018) 31.1

UnsuperMT (Zhang et al., 2018c) 44.5
DualRL (Luo et al., 2019) 55.2
PointOperate (Wu et al., 2019a) 59.2
WordStyleRel (Zhou et al., 2020) 60.4

CBD 59.7

Table 7: BLEU scores (evaluated with four references
for each sample) of different models on the YELP
dataset.

educated on English linguistics; (b) the annotator
uses English social media sites frequently; and (c)
the annotator is not one of the authors.

Following Li et al. (2018), for each test sample
and the target style, each annotator was shown the
outputs of all evaluated models. Different models’
outputs are randomly permuted. Before evaluation,
for each dataset and each transfer direction, annota-
tors are trained by: (a) instructions on the desirable
properties of the text style transfer task; (b) the
detailed interpretation for each level (1-5) of the
three aspects: style compatibility, content preserva-
tion, and fluency; and (c) four exemplary transfer
outputs on a source sentence associated with scores
assigned by authors and a short explanation for the
scores.

We measure the inter-annotator consistency of
the human evaluation results by the Fleiss’ kappa
score. Specifically, the Fleiss’ kappa score is 0.782
on YELP and 0.791 on GYAFC.

D BLEU Scores Using Four References
on YELP

Table 7 provides the BLEU scores of different mod-
els calculated with four references for each test
sample (provided by Luo et al. (2019)) on YELP.

https://spacy.io/


9262

Consistent with the results in Table 2, our CBD is
only slightly worse than the WordStyleRel model
and outperforms all other baselines.

E Additional Qualitative Results

To better illustrate the improvement of our CBD
over the baselines against the over-transfer and
the under-transfer problems, we present additional
qualitative examples from YELP and GYAFC
in Table 8 and Table 9, respectively. The re-
sults show consistent patterns with those in Ta-
ble 4. Specifically, the disentanglement based
methods, especially the implicit disentanglement
based CrossAligned model, suffer from serious
over-transfer problem by losing original content
or adding new content; on the other hand, the
non-disentanglement based baselines tend to under-
transfer by keeping part of the original sentiment
semantics on YELP and by making limited transfor-
mations on GYAFC. In contrast, our CBD demon-
strates better robustness towards both the over-
transfer and the under-transfer problems.

F Failure Cases

We also present two more undesirable transfer re-
sults of our CBD for each dataset in Table 10.
These failed cases mainly under-transfer the source
sentences, showing the imperfection of our model
towards the under-transfer problem in the following
situations: (a) the style information is expressed in
less frequent manners (compared to those indicated
by adjectives) such as “with lots to see and try”; (b)
the style information is expressed by words which
can represent different styles in different context:
for example, “hot” has been used to indicate both
positive and negative sentiment in the training cor-
pus; (c) partial changes can also be regarded as
reasonable results for inherently continuous style
types such as the formality transfer: for the formal
→ informal example on GYAFC, the outputs of
our CBD are still limited by only removing the
comma, while more changes like changing “you”
to “u” or removing the period can be further ap-
plied to achieve a more informal style. Besides,
there are incorrect transfer results such as changing
“ur” to “your” instead of “you are” for the infor-
mal→ formal example, which might be plausible
for some cases while not plausible for the given
context. Based on the above observations, we con-
clude the limitations of our CBD include: first, it
cannot fully utilize the structure and/or context of

the source sentence to make the transfer; second, it
cannot control how much style information is trans-
ferred for inherently continuous style types. We
leave exploration for these issues in future work.
In this paper, we focus on problems brought by the
conflicting driving forces of the style conversion
goal and the content preservation goal.

G Detailed Ablation Study

In this section, we provide more details for our
ablation study on the YELP dataset to validate the
effectivenss of the CBD model.

G.1 Qualitative Results of Different Ablated
Variants

To provide more insights into different ablated vari-
ants, Table 11 demonstrates the transferred results
of variants (1)-(7) on eight samples from YELP.
We can observe that the single-decoder variants (1)
and (2) easily suffer from over-transfer (e.g., los-
ing the “walmart” in the third negative→ positive
sample) or under-transfer problems (e.g., keeping
“was even better” in the last positive → negative
sample). The variant (3) can only perform better
for some cases by setting up a shallow connected
two-decoder scheme. With mutual knowledge dis-
tillation, variant (4) is much less prone to the over-
transfer and under-transfer problems. However,
it can emphasize the consistency between the de-
coders too strongly and may still lead to suboptimal
results (e.g., totally under-transfer the last negative
→ positive sample). By incorporating a distin-
guishability constraint, our CBD, i.e., variant (5),
can alleviate both problems. In contrast, (6) and
(7) with two unidirectional decoders, perform even
worse than (4) for most cases. This further implies
that the inherent difference is quite limited for uni-
directional decoders, therefore, the two decoders
may have similar bad patterns which are further re-
inforced during training: take the third positive→
negative case for example, both (1) and (6) suffer
from the over-transfer problem while both (2) and
(7) suffer from the under-transfer problem.

As shown in Table 5, the per-word entropy val-
ues of two-decoder settings are lower than those of
single-decoder settings. To better illustrate this,
Figure 1 presents the top-5 predicted words to-
gether with their probabilities of variants (1), (2),
(5), and (7) when they predict (a) the word after
“would” and (b) the word after “dentistry” given
the third positive→ negative input from Table 11.
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YELP: negative→ positive YELP: positive→ negative

Input it was over fried and very hard . my dr pepper ribs were excellent and very tender .

CrossAligned it was very tasty and very hard . my husband ordered bacon were chicken and very
greasy and mushy .

Del-Ret-Gen the food was very good fried and very hard . my dr pepper ribs left very tender .
DualRL it was cooked fried and very sweet . my dr pepper ribs were mediocre and very tender .
WordStyleRel it was over fried and very good . my dr pepper ribs were bland and very tender .
CBD it was perfectly fried and very good . my dr pepper ribs were terrible and very tasteless .

YELP: negative→ positive YELP: positive→ negative

Input always rude in their tone and always have i ’m a regular drive-through customer at this
shitty customer service ! location .

CrossAligned always authentic all other and and they are i ’m a better fan and at this location for possible .
the food !

Del-Ret-Gen i always enjoy going in always their kristen horrible experience i ’m a regular drive-through
and always have shitty customer service ! customer at this location never again .

DualRL always friendly in their best price and always i ’m a regular regular customer at this location .
have loved customer service !

WordStyleRel always friendly in their tone and always i ’m a horrible drive-through customer at this
have the customer service ! location .

CBD always nice in their tone and always have i ’m not a regular drive-through customer at this
great customer service ! location .

YELP: negative→ positive YELP: positive→ negative

Input so , no treatment and no medication to help the service was great and would gladly go back .
me deal with my condition .

CrossAligned so , her and and my hair and gave me up and the service was better and would never go back
happy . back .

Del-Ret-Gen so service was great , no treatment and no to would gladly anyone back go back .
help me with no treatment .

DualRL so , great treatment and great help me deal the service was horrible and would gladly go back .
with my condition .

WordStyleRel so , great treatment and no medication to help the service was horrible and would gladly go back .
me deal with my condition .

CBD so , great treatment and great medication to the service was horrible and would not go back .
help me deal with my condition .

Table 8: Additional results of different models on exemplary sentences from YELP.
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GYAFC: formal→ informal GYAFC: informal→ formal

Input make sure it is your decision . do nt try to figure it out that s jus the way it is .

CrossAligned think it is not a friend . try to tell him and it is not the same thing too .
Del-Ret-Gen make sure your not it is your decision . do not you try to you it out thats you the way it is .
DualRL make sure it is your decision er do not try to figure it out the way it is .
WordStyleRel make sure it is your life simply try to figure it out . a the way it is .
CBD make sure its your decision do not try to figure it out , that is simply the way it is .

Input do not approach her and let her know that its all about her , and no it should nt be something
you find her looks very attractive . that happends on a first date .

CrossAligned just tell him if you dont get out with him it is possible and that is not a good thing and she is a
and dont just be happy good man .

Del-Ret-Gen approach her and let her know that you find i would like her to call , and everyone has something
her looks ! ! that you on a first date .

DualRL dont approach her and let her know that you it is all about her , and no it be something that upsets
find her looks very screwed ... a first .

WordStyleRel do n’t approach her and let her know that “ all about her , and no it shouldnt be something that
you find her looks very attractive catches on a first date .

CBD do nt approach her and let her know that u it is all about her , and no , it should not be something
find her looks very hot that you have experienced on a first date .

Input it is a turn off if she sits on your best friend’s no u should nt leave them... just teach them what to
lap when drunk . do to please u better...

CrossAligned it depends on a good thing if she looks cheat i need to send her and do not know what you like to
on a do .

Del-Ret-Gen you off if she you on your best friend’s you no, u does not leave u .
when you ’t you.

DualRL im a turn off if she sits on your best friend’s no, you leave them just teach them what to do.
understanding when she ’s drunk .

WordStyleRel it is a turn off if she sits on your best friend’s perhaps you must leave them. just teach them what
lap when drunk to do to please you better.

CBD its a turn off if she sits on ur best friend’s lap no, you should not leave them. just teach them what
when drunk to do to please you better.

Table 9: Additional results of different models on exemplary sentences from GYAFC.

YELP: negative→ positive YELP: positive→ negative

Input but it was disgusting and hot in there . it is a cool place , with lots to see and try .

CrossAligned but it was attentive and nice every time . it is a long place , run down to fix to use home .
Del-Ret-Gen the food is good but they have the best hot in there . it is my waste of time , with lots to try and see .
DualRL but it was delicious and hot in there . it is a frustrating place , with lots to see and try .
WordStyleRel but it was delicious and hot in there . it is a horrible place , with lots to see and try .

CBD but it was fantastic and hot in there . it is a depressing place , with lots to see and try .

GYAFC: formal→ informal GYAFC: informal→ formal

Input if a man cares about you , then he will call . it all depends on when ur ready .

CrossAligned if your a girl , then then then she will not . it depends on what type of you ?
Del-Ret-Gen if a man you is about it ... you will call . it all depends on when ur open .
DualRL if a man cares about you er it all depends on when ready .
WordStyleRel if a man cares about you , then he will call u it all depends on when your ready .

CBD if a man cares about you then he will call . it all depends on when your ready .

Table 10: Failure cases of our CBD on YELP and GYAFC. We also include the results of our baselines for
comparison.
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YELP: negative→ positive YELP: positive→ negative

Input sketchy sketchy sketchy pizza delivery ! the food is great here and very authentic .

(1) diverse diverse delivery and the pizza ! the food is n’t here very authentic .
(2) cute sketchy pizza spot delivery ! i was cold here and nearly frozen .
(3) cool cool pizza delivery ! the food is horrible here and very overpriced .
(4) impressive impressive pizza delivery ! the food is horrible here and very sloppy .
(5) cute cute cute pizza delivery ! the food is horrible here and very bland .
(6) amazing sketchy pizza delivery ! the food is n’t here very authentic .
(7) amazing amazing amazing pizza delivery ! sat down here and @num degrees .

Input i have not received such an attitude toward a the food is good and from what i can tell is rather
customer before . authentic .

(1) i have always received such an amazing customer the food is not what from what i can tell is rather
service before . overpriced .

(2) i have always received such a team toward a however , and from what i can tell was rather
customer before . frozen .

(3) i have received such an excellent customer vibe the food is not from what i can tell is rather
toward a customer before . overpriced .

(4) i have always received such happy hour toward a too bad and from what i can tell is rather sloppy .
customer before .

(5) i have always received such an excellent attitude the food is bad and from what i can tell is rather
toward a customer before . bland .

(6) i have always received such an exceptional attitude the food is not what i can tell from is rather
toward a customer before . authentic .

(7) i have always received such fantastic toward a @num and from what i can tell is not authentic .
customer before .

Input this is the worst walmart neighborhood market i would recommend dentistry of old town scottsdale
out of any of them . to everyone .

(1) this is the best neighborhood neighborhood market i would not recommend any old dentistry to town
out of them . scottsdale to everyone .

(2) this is the best craft neighborhood market out of i would recommend dentistry of old town of
any of them . scottsdale tonight .

(3) this is my favorite neighborhood market out of any @num yr old dentistry of old scottsdale to anyone .
of them .

(4) this is the best neighborhood market out of any of i would not recommend dentistry of old town
them . scottsdale to everyone .

(5) this is the best walmart neighborhood market out i would not recommend dentistry of old town
of any of them . scottsdale to everyone .

(6) this is the best neighborhood market out of any i would not recommend old town or scottsdale to
of them . anyone .

(7) this is the best neighborhood market out of any i would suggest dentistry of old town scottsdale to
of them . everyone .

Input bottom line they over promise and under deliver . well the food was great and the price of it was even
better .

(1) bottom line over they promise and under deliver . apparently the food was n’t great and the price of it
was even better .

(2) bottom line they over promise and deliver . well the food was cold and the price of it was even
better .

(3) top line they are over promise and they deliver . well the food was horrible and the price of it was
even better .

(4) bottom line they over promise and under deliver . well the food was horrible and the price of it was
even better .

(5) bottom line they promise and perfectly deliver . well the food was horrible and the price of it was not
even better .

(6) bottom line they cute promise and under deliver . well the food was n’t the price of it was even worse .
(7) bottom line well they promise and under deliver . well the food was horrible and the price of it was

even better .

Table 11: Results of different ablated variants on exemplary sentences from YELP.
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Figure 1: The top-5 words’ probabilities of variants (1), (2), (5) and (7) when they predict (a) the word after “would”
and (b) the word after “dentistry” given the third positive→ negative input from Table 11.

No. Style Content Fluency Uspecial Urandom BLEU(Dl, Dr) Facc

(4) 4.3 4.3 4.2 29.2 18.0 72.6 N/A

(5) CBD 4.4 4.4 4.2 27.0 16.5 72.4 55.2

Table 12: Second block: Human evaluation results of variants (4) and (5) on YELP. Third block: Percentage of
under-transfer results of variants (4) and (5) on YELP. Fourth block: BLEU scores between the L2R decoder and
R2L decoder of variants (4) and (5), and the accuracy of the discriminator of variant (5) on YELP.

Variants (5) and (7) demonstrate more peaked dis-
tributions over the words, which conforms to the
lower entropy values. However, the most probable
word of variant (7) in Figure 1a, i.e., “suggest”,
is an incorrect prediction expressing the opposite
of the target style. This further shows two unidi-
rectional decoders may amplify the bad patterns
learned by the inherently similar decoders.

G.2 Effect of the Distinguishability Constraint

Based on the quantitative and qualitative results,
variant (4) without the distinguishability constraint
shows stronger performance which is quite close
to CBD (variant (5)) than other ablated variants.
To better explore the effect of distinguishability
constraint, we incorporate variant (4) in human
evaluation. As shown in Table 12, CBD can im-
prove variant (4) on style compatibility (partially
reflecting the under-transfer problem) and content
preservation (reflecting the over-transfer problem).
Furthermore, Table 12 also reports their percent-
ages of under-transfer cases on Uspecial and Urandom.
Still, CBD achieves a clear advantage. Hence, we
conclude that incorporation of the distinguishabil-
ity constraint leads to better capabilities, though
limited, to address the over-transfer and the under-
transfer problems.

Another question is how divergent the two de-

coders are at the end of training. Table 12 presents
the BLEU scores between the outputs of the L2R
decoder and the R2L decoder for variant (4) and
CBD. We can observe that the BLEU scores of the
two variants are comparable, both exhibiting a high
similarity. Moreover, the discriminator cannot well
distinguish behaviors of the two decoders. There
is no wonder for this as the other loss functions
dominate the learning process. Obviously, we can
decrease the BLEU score and increase the accuracy
of the discriminator by assigning a larger value
to γ, i.e., the weight of the distinguishability con-
straint. However, this focuses on the wrong point
and can only lead to worse results where influence
from other objectives gets weakened and at least
one decoder tends to produce unreasonable out-
puts to maximize their difference. Our explanation
is that the distinguishability constraint behaves as
an assistant or a regularizer for mutual knowledge
distillation. While it is less significant for the per-
formance than the mutual learning, it constrains the
model to update in a more cautious way to avoid
their collapsing and reinforcing incorrect but con-
sistent patterns (e.g., keeping “was even better” in
the last positive→ negative sample in Table 11).


