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Abstract

While Masked Language Models (MLM) are
pre-trained on massive datasets, the additional
training with the MLM objective on domain
or task-specific data before fine-tuning for the
final task is known to improve the final perfor-
mance. This is usually referred to as the do-
main or task adaptation step. However, unlike
the initial pre-training, this step is performed
for each domain or task individually and is still
rather slow, requiring several GPU days com-
pared to several GPU hours required for the
final task fine-tuning.

We argue that the standard MLM objective
leads to inefficiency when it is used for the
adaptation step because it mostly learns to pre-
dict the most frequent words, which are not
necessarily related to a final task. We pro-
pose a technique for more efficient adaptation
that focuses on predicting words with large
weights of the Naive Bayes classifier trained
for the task at hand, which are likely more rel-
evant than the most frequent words. The pro-
posed method provides faster adaptation and
better final performance for sentiment analysis
compared to the standard approach.

1 Introduction

Pre-training of neural networks with a language
model (LM) or masked language model (MLM)
objective on large amounts of non-domain-specific
texts has given a significant boost of performance in
almost all natural language processing tasks. While
16GB of texts were shown to BERT (Devlin et al.,
2019) and ten times more to RoBERTa (Liu et al.,
2019) during pre-training, the further training of
these models with the MLM objective on domain-
specific texts before fine-tuning to the target task
was shown to further improve the final results (Sun
et al., 2019; Gururangan et al., 2020). This tech-
nique is called the domain or task adaptation, de-
pending on the degree of similarity of the data for

adaptation to the target dataset. While initial pre-
training is extremely expensive, it does not depend
on the final task and can be performed only once.
However, domain or task adaptation is done for
each domain or task individually and is still quite
resource-demanding, requiring hundreds of thou-
sands of training steps or several GPU days, unlike
final fine-tuning, which can often be done in a few
GPU hours (Sun et al., 2019).

In this work, we propose a method for more ef-
ficient MLM adaptation. We have noticed that the
standard MLM spends most of the training time on
learning to restore the most frequent words like de-
terminers or auxiliary verbs hidden (masked) from
its input. While such training examples may be
useful for learning English grammar, their dom-
ination during the adaptation phase seems to be
wasteful for many final tasks. Since the final task
and the dataset are already known in this phase, we
propose to undersample such examples in favor of
examples with targets related to the final task. This
relatedness is estimated using a Naive Bayes clas-
sifier. Hence, we call our modified objective Naive
Bayes Masked Language Model (NB-MLM). We
hypothesize that hiding from the model and asking
it to restore mostly features that are important for
the final task will likely result in faster adaptation.
Additionally, the absence of simple features and the
requirement to restore them may teach the model
to exploit more sophisticated and implicit features
relevant to the final task.

We evaluate the proposed method on two
datasets for sentiment analysis. It is one of the
most popular tasks in natural language process-
ing (Feldman, 2013) and an excellent playground
for the comparison of adaptation methods due to
the large amount of labeled and unlabeled user re-
views of different products available. In particular,
we consider the task of classifying the binary senti-
ment polarity of a given review. Our experiments
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Figure 1: Target tokens that the model is asked to predict most often for Uniform MLM and NB-MLM.

show that the NB-MLM objective can significantly
reduce adaptation time while achieving the same
final performance or help to improve performance
given the same amount of time for adaptation. 1

2 Related Work

Pre-training Transformer networks with the MLM
objective is proposed in (Devlin et al., 2019) for
the BERT model and is shown to outperform the
more traditional LM objective, though the similar
task of predicting a word from its left and right
context was used with different architectures ear-
lier (Mikolov et al., 2013; Melamud et al., 2016).
RoBERTa enhances BERT by pre-training longer
on ten times larger corpora, getting rid of the next
sentence prediction (NSP) task during pre-training,
and selecting different target words to be masked
and predicted in each epoch (dynamic masking).

Various approaches to further pre-training of
BERT on domain or task-specific data are com-
pared in (Sun et al., 2019), while Gururangan
et al. (2020) carry out a similar investigation
with RoBERTa. They try various options of data
sources for adaptation: texts only from the tar-
get dataset (called task adaptation or within-task
pre-training), larger datasets from the same do-
main (called domain adaptation or in-domain pre-
training), and datasets from different domains
(called cross-domain pre-training). They find the
task adaptation, which is a computationally cheap-
est option, to be a surprisingly good solution. In
their experiments, it often outperforms the domain
adaptation and is only marginally worse than com-

1The repository for this paper: https://github.
com/nvanva/nb-mlm

bining both methods. However, due to the large
amount of data used in domain adaptation, Guru-
rangan et al. (2020) train the MLM only for one or
very few epochs. We find that our method leverag-
ing large data more efficiently makes the domain
adaptation comparable to the task adaptation, and
their combination is significantly better than each
of them.

Our idea of employing Naive Bayes weights is in-
spired by the NB-SVM model (Wang and Manning,
2012; Mesnil et al., 2014), which scales bag-of-
ngrams vectors with Naive Bayes classifier weights
and then trains linear SVM or logistic regression
classifiers on them. It proved to be a very strong
baseline, often outperforming both linear and more
sophisticated models from that time.

3 MLM Objectives for Adaptation

Uniform MLM. For each input example, the
standard MLM objective, as proposed by Devlin
et al. (2019), samples 15% of the input positions
(subwords) for calculating the loss. The positions
are sampled from the uniform distribution without
replacement: P (pos) ∝ 1. Then 80% of the tokens
on sampled positions are masked (replaced with a
[MASK] token), 10% are replaced with some ran-
dom tokens from the uniform distribution over the
vocabulary, and 10% are left intact.

NB-MLM. As an alternative, we propose sam-
pling 15% of positions from a non-uniform distri-
bution that gives higher probabilities to positions
that contain subwords with high feature importance
fi(w): P (pos) ∝ exp(fi(wpos)/T ), where the
temperature T is the hyperparameter allowing to
balance between uniform sampling and determin-

https://github.com/nvanva/nb-mlm
https://github.com/nvanva/nb-mlm
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Figure 2: Task (left) and domain (right) adaptation with the standard Uniform MLM and the proposed NB-MLM
objectives. Test accuracy on IMDB (top) and Yelp (bottom) for the classifiers fine-tuned from different MLM
checkpoints saved during adaptation. Means and standard deviations over 6 runs are plotted for each model, except
for DAPT on IMDB, where there were 15 runs. Corresponding dev accuracies are in Appendix B.

istic selection of positions that contain the most
important features. For binary classification, the
feature importance is estimated using the Naive
Bayes classifier weights as follows:

fi(w) = |logP (w|1)− logP (w|0)|.

Thus, those features that are much more proba-
ble in one class than in another receive the highest
scores. Similar to the method proposed by Wang
and Manning (2012), the probabilities are esti-
mated by the multinomial Naive Bayes model with
additive smoothing (alpha = 0.1). Additionally,
the scores are set to zero for those features that
occurred in less than m examples to avoid the over-
representation of unreliable features. As an exam-
ple, Figure 1 shows the words that the model is
most frequently asked to predict during the task
adaptation on the IMDB movie reviews dataset
(T = 0.1, m = 5 for NB-MLM). Evidently, NB-
MLM learns to predict words relevant to sentiment

analysis more often than the standard MLM.
Along with the uniform and NB-based distribu-

tions, during the preliminary experiments, we tried
other options, which are described and compared
in Appendix D. However, only NB-MLM outper-
formed the uniform baseline.

4 Experiments and Results

During the preliminary experiments described in
Appendix A, we found that our method helps for
both BERT and RoBERTa models. However, the
latter model achieved significantly better perfor-
mance. Therefore, we describe the results for
RoBERTa in the rest of the paper.

For domain adaptation (denoted as DAPT), we
employed the Amazon Reviews dataset (McAuley
et al., 2015) with duplicates removed. We removed
reviews shorter than 500 characters and split the
rest into the training and validation sets of 21M
and 10K reviews correspondingly. The valida-
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Model IMDB Yelp P.
ERR macro-F1 ERR macro-F1

Our experiments with task and domain adaptation for RoBERTa-base
Uniform short DAPT 4.42** 95.58** 1.78 98.22
NB-MLM short DAPT 4.14** 95.86** 1.77 98.23
Uniform DAPT 4.19** 95.81** 1.73 98.27
NB-MLM DAPT 3.85** 96.15** 1.71 98.29
Uniform short all-TAPT 3.92 96.08 1.70 98.30
NB-MLM short all-TAPT 3.82 96.18 1.69 98.31
Uniform all-TAPT 3.74 96.26 1.59 98.41
NB-MLM all-TAPT 3.66 96.34 1.58 98.42
Uniform short DAPT+all-TAPT 3.96* 96.04* 1.69 98.31
NB-MLM short DAPT+all-TAPT 3.73* 96.27* 1.66 98.34
Uniform DAPT+all-TAPT 3.62 96.38 1.55 98.45
NB-MLM DAPT+all-TAPT 3.54 96.46 1.51 98.49
Previously published results of the task and domain adaptation for BERT-base and RoBERTa-base
BERT-base+ITPT (Sun et al., 2019) 4.37 - 1.92 -
BERT-base+IDPT (Sun et al., 2019) 4.88 - 1.87 -
RoBERTa-base+DAPT (Gururangan et al., 2020) - 95.4 - -
RoBERTa-base+TAPT (Gururangan et al., 2020) - 95.5 - -
RoBERTa-base+DAPT+TAPT (Gururangan et al., 2020) - 95.6 - -
RoBERTa-base+Curated-TAPT (Gururangan et al., 2020) - 95.7 - -
RoBERTa-base+DAPT+Curated-TAPT (Gururangan et al., 2020) - 95.8 - -
Large SOTA models (not directly comparable to our models)
BERT-large+ITPT (Sun et al., 2019) 4.21 - 1.81 -
XLNET-large (Yang et al., 2019) 3.20 - 1.37 -

Table 1: Comparison of NB-MLM to the standard Uniform MLM and to the previously published results. From
runs of each model with different random seeds, medians are taken. Adaptation scenarios where the difference
between NB-MLM and Uniform MLM is statistically significant according to the McNemar’s test are marked with
* (p-value < 0.05) or ** (p-value < 0.01). ITPT (within-task pre-training), TAPT (task-adaptive pre-training), and
Curated-TAPT (TAPT with extra unlabeled data from IMDB) denote further MLM pre-training on the target dataset
only, which is similar to our all-TAPT. IDPT (in-domain pre-training) and DAPT (domain-adaptive pre-training)
correspond to our DAPT. The best results for base and large models separately are in bold.

tion set was used to calculate perplexity during
MLM training. For task adaptation (denoted as
all-TAPT), we used all texts (without labels) from
the target dataset, i.e. IMDB (Maas et al., 2011)
or Yelp (Zhang et al., 2015) 2. For IMDB, we em-
ployed the split of Gururangan et al. (2020) to make
the results of our experiments directly comparable
with their results. We used the binary classification
version of Yelp (Zhang et al., 2015). For validation,
we randomly selected 5K positive and 5K negative
examples.

For domain and task adaptation, we used the
batch size of 1024, while classifiers were fine-tuned
with the batch size of 32. Based on our preliminary
experiments, we set the learning rate of 2e-4 for
the domain adaptation, 1e-4 for the task adaptation,
and 1e-5 for final fine-tuning. Following Gururan-
gan et al. (2020), we performed domain adapta-
tion for one epoch on the Amazon dataset (20K
steps, 38h on one V100 GPU) and task adapta-

2Using the whole target dataset for task adaptation has
shown the best results for both Uniform MLM and NB-MLM,
see Appendix C. This setup, when test examples (without
labels) are exploited during training, is known as transductive
learning.

tion for 100 epochs on IMDB (18h) and 24 epochs
on Yelp (14h). To show that NB-MLM can ob-
tain results similar to Uniform MLM in a much
shorter time, we also report the results of short
adaptation with the duration reduced to 4K steps
on Amazon, 20 epochs on IMDB, and 6 epochs on
Yelp. To estimate the variance of the results due to
the randomness in the order of training examples
and positions selected for masking and prediction,
we have trained each model with different random
seeds. For both Uniform MLM and NB-MLM,
we aggregated metrics from 15 runs for DAPT on
IMDB, 3 runs for DAPT+all-TAPT on both IMDB
and Yelp, and 6 runs for all other scenarios. The
classifiers were fine-tuned for 4 epochs on IMDB
and 2 epochs on Yelp 3. For task adaptation with
NB-MLM, we set T = 0.4, m = 50 based on
preliminary experiments (see Appendix A). For do-
main adaptation with NB-MLM, we set T = 0.1,
m = 10 on IMDB and T = 0.1, m = 50 af-
ter grid search from T = [0.05, 0.1, 0.2, 0.4, 0.8],
m = [10, 50]. Generally, for task adaptation with

3Longer fine-tuning resulted in a higher variance of metrics
and worse final performance due to strong over-fitting.
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many epochs of training on smaller datasets, larger
temperatures are required to avoid over-fitting due
to the same words masked in each example at each
epoch. For domain adaptation, only one epoch of
training is done on a large dataset, hence, smaller
temperatures perform better.

Figure 2 shows how the final classification ac-
curacy improves during the task and domain adap-
tation. Our NB-MLM model significantly helps
for domain adaptation on IMDB. For task adapta-
tion, the difference is much smaller and fits into
two standard deviations. Still, on average, the NB-
MLM seems to provide a consistent improvement
throughout the adaptation. For Yelp, the improve-
ments from NB-MLM are also small but consistent.

Table 1 compares our models and the previously
published results on the test sets. In order to apply
McNemar’s test for statistical significance, instead
of averaging across all runs of each model with
different random seeds, we have to take predictions
of a particular run. Thus, for each of our models,
we selected the run with the median performance
(for the even number of runs, the one just above the
median) and reported its performance in the table.

For IMDB, the domain adaptation with NB-
MLM obtains results similar to the Uniform MLM
in 5x fewer training steps and data (only 20% of
the data is seen during the first 4K steps). When
trained for one epoch, it improves the results by
more than 0.3%, which is also statistically signif-
icant. For task adaptation, the NB-MLM gives a
much smaller improvement. Similarly to the results
of Gururangan et al. (2020), in our experiments,
the task adaptation with the Uniform MLM outper-
forms the domain adaptation that employs much
more data by almost 0.5%. We suppose that this
is due to the small proportion of relevant exam-
ples sampled by the Uniform MLM, which require
many repetitions to learn from. Probably, training
domain adaptation for hundreds of epochs, simi-
larly to task adaptation, can fix this problem, but
this is not feasible for large datasets and moder-
ate computation resources. More efficient domain
adaptation with NB-MLM, which focuses on tar-
gets that are likely relevant for the final task, re-
duces this difference to 0.2%. Finally, using the
domain adaptation followed by the task adapta-
tion results in the best final performance. In this
scenario, NB-MLM gives 0.2% improvement for
short adaptation and 0.1% for long adaptation. For
Yelp, the metrics are higher, and the differences are

smaller but still consistent.

5 Conclusion

We proposed a technique for the more efficient do-
main and task adaptation of MLMs. It is especially
helpful for leveraging large data efficiently during
the domain adaptation, resulting in significantly
shorter adaptation time or better performance.
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A Preliminary Experiments with BERT and RoBERTa
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Figure 3: BERT (m = 100) and RoBERTa (m = 50) best error rates on the IMDB dev set from our split.

To verify our hypothesis, in the preliminary
experiments, we tried improving the results of
the ITPT (withIn-Task Pre-Training) method (Sun
et al., 2019). Since no code for this paper was
available at that time, we implemented this method
using the Transformers library (Wolf et al., 2020)4,
which closely followed the details and hyperpa-
rameters specified in the paper but adopted recom-
mendations from more recent models by not using
NSP prediction and exploiting dynamic masking.
Since no official development set is available for
the IMDB dataset (Maas et al., 2011) and the split
is not specified in the paper, for early stopping
during classifier fine-tuning and NB-MLM hyper-
parameters selection, we employed our own split 5.
Note that this split was used only for preliminary
experiments; later, we switched to the split of Gu-
rurangan et al. (2020). For adaptation, we used the
whole dataset, excluding half of the development
set to measure the validation perplexity.

Figure 3 (left) shows the final classification error
rate depending on the number of adaptation steps.
The best error rate on the development set across
10 epochs of the classifier fine-tuning is shown.

Evidently, NB-MLM outperforms MLM on aver-
age. Despite the variance of their difference being
rather high, we can see that after 60K adaptation
steps, NB-MLM with the best temperature robustly
shows equal or better results than the best result
of MLM across 150K adaptation steps, which is
almost 2.5x speedup. For comparison, Figure 3
(right) shows the results for RoBERTa using the
same split. Evidently, RoBERTa with NB-MLM
adaptation robustly outperforms MLM. For small
temperature T = 0.2 after 20K steps of adapta-
tion, we receive better results than MLM trained
more than 3 times longer. However, later the per-
formance drops significantly for the smallest tem-
perature. Inspecting perplexity during adaptation,
we found that the model begins to strongly overfit
after 20K steps, which is likely related to the same
positions for masking and prediction sampled at
each epoch. Larger temperature T = 0.4 provides
smaller benefits in the short run but gives more ro-
bust improvements and better final results. Overall,
after 20K steps, it gives the same performance as
the MLM trained for 75K steps, which is almost
4x speedup.

4https://github.com/huggingface/transformers
5https://github.com/nvanva/filimdb_evaluation/blob/master/FILIMDB.tar.gz

https://github.com/huggingface/transformers
https://github.com/nvanva/filimdb_evaluation/blob/master/FILIMDB.tar.gz
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B Results on the Development Sets

Model IMDB Yelp P.
ERR macro-F1 ERR macro-F1

Our experiments with task and domain adaptation for RoBERTa-base
Uniform short DAPT 4.3 95.7 1.6 98.4
NB-MLM short DAPT 3.7 96.3 1.5 98.5
Uniform DAPT 4.0 96.0 1.6 98.4
NB-MLM DAPT 3.5 96.5 1.6 98.4
Uniform short all-TAPT 3.6 96.4 1.5 98.5
NB-MLM short all-TAPT 3.7 96.3 1.5 98.5
Uniform all-TAPT 3.8 96.2 1.5 98.5
NB-MLM all-TAPT 3.5 96.5 1.4 98.6
Uniform short DAPT+all-TAPT 3.8 96.2 1.6 98.4
NB-MLM short DAPT+all-TAPT 3.5 96.5 1.6 98.4
Uniform DAPT+all-TAPT 3.4 96.6 1.5 98.5
NB-MLM DAPT+all-TAPT 3.4 96.6 1.5 98.5

Table 2: Validation metrics corresponding to the test metrics from Table 1 and used for early stopping. The results
are rounded to one decimal place due to logging issues.
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Figure 4: Task (left) and domain (right) adaptation with the standard Uniform MLM and the proposed NB-MLM
objectives. Means and standard deviations over best dev accuracies on IMDB (top) and Yelp (bottom) correspond-
ing to the test accuracies from Figure 2 and used for early stopping are shown. There were 15 runs for DAPT on
IMDB and 6 runs for other models.

In this section, we show the results on the de-
velopment sets corresponding to the results on the
test sets provided in the main text. Since these re-
sults were used to select hyperparameters and also
for early stopping during fine-tuning of the clas-
sifiers, they are less reliable to draw conclusions
about final classification performance and shall be
considered only together with the results on the

test sets. While general trends are the same, we
notice that for domain adaptation, the gap between
NB-MLM and Uniform MLM on the IMDB dev
set (figure 4, top right) is twice as large as on the
test set. This may be due to the large variance of
classification accuracy during fine-tuning and using
early-stopping on the development set.
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C Comparison of Various Subsets of IMDB for Task Adaptation
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Figure 5: Task adaptation of Uniform MLM (top) and NB-MLM (bottom) on different subsets of IMDB. Accuracy
on the IMDB dev (left) and test (right) sets. Means and standard deviations over 6 runs are shown for each model.

The all-TAPT method from our experiments em-
ploys examples (without labels) from all subsets
of the target dataset for MLM training during task
adaptation. For IMDB, this includes examples from
the train (20K), unlabeled (50K), dev (5K), and test
(25K) sets. We excluded only 1K examples from
the unlabeled set in order to calculate the validation
MLM loss on them. The scenario when test exam-
ples (without labels) are shown along with other
examples during training is known as transductive
learning. Alternatively, Gururangan et al. (2020)
performs task adaptation on the train set alone or
the concatenation of the train and the unlabeled
sets. They denote the latter as Curated-TAPT.

Figure 5 compares these alternatives for Uni-
form MLM and NB-MLM. For NB-MLM, we
selected optimal hyperparameters on the devel-
opment set individually for each alternative, re-
sulting in T = 0.4,m = 50 for all-TAPT and
train+dev+test, and T = 0.8,m = 50 for other

alternatives. In line with Gururangan et al. (2020),
we see that additional examples from the unlabeled
set significantly help for both models compared to
adaptation on the train set only. Adding dev and
test examples further improves their performance.

To understand if this improvement comes from
simply adding more examples or adding exactly
test examples, we additionally plot charts for task
adaptation on train+dev+test subsets. Adaptation
on train+dev+test (50K examples) is on par with
Curated-TAPT (70k examples from the train and
unlabeled subsets) while trained on approximately
1.5x fewer examples. However, adding the dev and
test sets robustly improves Curated-TAPT while in-
creasing the number of examples by the same factor.
This probably indicates that using test examples for
adaptation provides more benefits for performance
than simply adding a comparable amount of other
examples. Still, this question deserves more exper-
iments and is out of the scope of this work.
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D Alternatives for the Naive Bayes Weights
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Figure 6: Comparison with the frequency-based baseline on the IMDB dev (left) and test (right) sets for all-TAPT
(top) and DAPT (bottom).

The uniform distribution over positions is tradi-
tionally used to sample target subwords that are
masked and predicted during MLM pre-training
and adaptation. However, as Figure 1 shows, it
makes the model learning to predict mostly fre-
quent functional words such as articles, preposi-
tions, pronouns, etc. While it may teach the model
to extract some grammar-related features perfectly,
it may also prevent the model from learning more
specific features required for the final task due to
rare necessity in such features during MLM train-
ing and limited model capacity. To solve this prob-
lem, we may simply lower the probability of sam-
pling positions containing frequent words. Figure 6
compares the standard Uniform MLM and the pro-
posed NB-MLM to a frequency-based baseline. In
this baseline, we perform domain or task adaptation
similarly to NB-MLM, but sample positions from

P (pos) ∝ ( 1
freq(wpos)

)
1
n , where n plays the same

role as the temperature in NB-MLM, allowing to
balance between sampling positions from the uni-
form distribution and selecting positions contain-
ing the most infrequent words. Word frequencies
freq(w) are estimated from the training subset of
the IMDB dataset. We selected optimal values of
n on the IMDB development set for all-TAPT and
DAPT separately, resulting in n = 3.5 and n = 2.5
correspondingly. Evidently, the frequency-based
baseline is on par with the uniform baseline. There
are occasional improvements in the best validation
accuracy, but they do not convert into improve-
ments on the test set.

Next, we introduce another alternative, which is
based on the conditional pointwise mutual informa-
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tion between tokens and classes given context:

PMI(w, c|ctx) = log

(
P (w|c, ctx)
P (w|ctx)

)
.

Conceptually, it prefers to select tokens that are eas-
ier to predict based on the nearby context and class
of the example than from the context alone. We
supposed that learning to predict such tokens will
make the model extract class-related features from
the whole example rather than use only nearby con-
text. We define the nearby context as one preceding
token and one succeeding token and minimize PMI
over them while maximizing it over classes. This
means that we prefer selecting tokens, which are
not easily predicted from either preceding or suc-
ceeding tokens but are much better predicted, at
least for examples of one of the classes if that class

is known.

fi(wi) = max
c

min
ctx∈{wi−1,wi+1}

PMI(wi, c|ctx)

Similarly to NB-MLM, we estimated these weights
from the IMDB training set and set them to zero
for those tokens that appear in less than m exam-
ples. Then we apply temperature softmax to con-
vert these weights into a probability distribution
over positions. We selected the hyperparameters on
the development set, resulting in T = 0.1,m = 10.

Figure 7 shows that for all-TAPT on IMDB, the
weights based on conditional MI do not help to
improve the results of the Uniform MLM, unlike
NB weights. Based on these results, we did not
experiment with them for DAPT.
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Figure 7: Comparison with the weights based on conditional mutual information for all-TAPT on the IMDB dev
(left) and test (right) sets. Means and standard deviations over 6 runs are shown for each model.


