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Abstract

Data augmentation has attracted a lot of re-
search attention in the deep learning era for
its ability in alleviating data sparseness. The
lack of labeled data for unseen evaluation
databases is exactly the major challenge for
cross-domain text-to-SQL parsing. Previous
works either require human intervention to
guarantee the quality of generated data, or
fail to handle complex SQL queries. This pa-
per presents a simple yet effective data aug-
mentation framework. First, given a database,
we automatically produce a large number of
SQL queries based on an abstract syntax tree
grammar. For better distribution matching,
we require that at least 80% of SQL pat-
terns in the training data are covered by gen-
erated queries. Second, we propose a hi-
erarchical SQL-to-question generation model
to obtain high-quality natural language ques-
tions, which is the major contribution of this
work. Finally, we design a simple sampling
strategy that can greatly improve training effi-
ciency given large amounts of generated data.
Experiments on three cross-domain datasets,
i.e., WikiSQL and Spider in English, and
DuSQL in Chinese, show that our proposed
data augmentation framework can consistently
improve performance over strong baselines,
and the hierarchical generation component is
the key for the improvement.

1 Introduction

Given a natural language (NL) question and a rela-
tional database (DB), the text-to-SQL parsing task
aims to produce a legal and executable SQL query
to get the correct answer (Date and Darwen, 1997),
as depicted in Figure 1. A DB usually consists of
multiple tables interconnected via foreign keys.

Early research on text-to-SQL parsing mainly
focuses on the in-domain setting (Li and Jagadish,
2014; Iyer et al., 2017; Yaghmazadeh et al., 2017),

*Work done during an internship at Baidu Inc.

Figure 1: An example of the text-to-SQL parsing task.

where all question/SQL pairs of train/dev/test sets
are generated against the same DB. In order to
deal with the more realistic setting where DBs
in the evaluation phase are unseen in the train-
ing data, researchers propose several cross-domain
datasets, such as WikiSQL (Zhong et al., 2017)
and Spider (Yu et al., 2018b) in English, and
DuSQL (Wang et al., 2020b) in Chinese. All three
datasets adopt the DB-level data splitting, meaning
that a DB and all its corresponding question/SQL
pairs can appear in only one of the train/dev/test
sets.

Cross-domain text-to-SQL parsing has two ma-
jor challenges. First, unseen DBs usually introduce
new schemas, such as new table/column names
and unknown semantics of inter-table relationships.
Therefore, it is crucial for a parsing model to have
strong generalization ability. The second challenge
is that the scale of labeled data is quite small for
such a complex task, since it is extremely diffi-
cult to construct DBs and manually annotate cor-
responding question/SQL pairs. For example, the
Spider dataset has only 200 DBs and 10K ques-
tion/SQL pairs in total.

To deal with the first challenge, many previous
works focus on how to better encode the matching
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Figure 2: An overview of our approach containing 3 stages: SQL query generation based on ASTG (Section §2.1),
question hierarchical generation according to SQL structure (Section §2.2), model training via data augmentation
(Section §2.4).

among questions and DB schemas, and achieve
promising performance gains (Sun et al., 2018; Guo
et al., 2019; Wang et al., 2020a).

To handle the second challenge of lacking in la-
beled data, and inspired by the success of vanilla
pretraining models with masked language model
loss (Devlin et al., 2019), researchers propose
task-specific pretraining models for semantic pars-
ing (Yin et al., 2020; Herzig et al., 2020; Yu et al.,
2020; Shi et al., 2020). The basic idea is to learn
joint representations of structured data (i.e., ta-
bles) and corresponding contextual texts by design-
ing delicate objective losses with large amounts
of collected data that is related to the target task.
These customized models have achieved good per-
formance on English datasets. However, pretrain-
ing is slow and expensive as the models are trained
on millions of web tables and related contexts. In
addition, these approaches are currently only ex-
perimented on English since it is difficult to collect
such data for pretraining.

This work follows another research line, i.e.,
data augmentation, which addresses both chal-
lenges discussed above in a resource-cheap way.
The idea of data augmentation is automatically
generating noisy labeled data using some delib-
erately designed method, and the technique has
been successfully applied to a wide range of NLP
tasks (Barzilay and McKeown, 2001; Jia and Liang,
2016). In our cross-domain text-to-SQL task, we
can directly generate labeled data over unseen DBs
as extra training data. The key of data augmen-
tation is how to improve the quality of generated
data. As two prior works, Yu et al. (2018a) manu-
ally align question tokens and DB elements in the
corresponding SQL query, in order to obtain rela-
tively high-quality question/SQL pairs, while Guo

et al. (2018) utilize a flat Seq2Seq model to directly
translate SQL queries to NL questions, which may
only work for simple queries (see Section §4 for
detailed discussion).

This work proposes a data augmentation frame-
work with hierarchical SQL-to-question genera-
tion in order to obtain higher-quality question/SQL
pairs. The framework consists of two steps. First,
given a DB, we use an abstract syntax tree grammar
(ASTG) to automatically generate SQL queries.
For better distribution matching, we require the
generated queries to cover at least 80% of SQL
patterns in the original training data. Second, we
design a hierarchical SQL-to-question generation
model to obtain NL questions. The basic idea is:
1) decomposing a SQL query into clauses accord-
ing to its syntax tree structure; 2) translating each
clause into a subquestion; 3) concatenating sub-
questions into a full question according to the exe-
cution order of the SQL query. Finally, we design
a simple sampling strategy to improve training effi-
ciency with augmented data. In summary, we make
the following contributions.

• We present a simple and resource-cheap data aug-
mentation framework for cross-domain text-to-
SQL parsing with no human intervention.1

• As the key component for our framework, we pro-
pose a hierarchical SQL-to-question generation
model to obtain more reliable NL questions.

• In order to improve training efficiency, we pro-
pose a simple sampling strategy to utilize gener-
ated data, which is of relatively larger scale than
original training data.

1We release the code at https://github.com/
PaddlePaddle/Research/tree/master/NLP/
Text2SQL-DA-HIER.

https://github.com/PaddlePaddle/Research/tree/master/NLP/Text2SQL-DA-HIER
https://github.com/PaddlePaddle/Research/tree/master/NLP/Text2SQL-DA-HIER
https://github.com/PaddlePaddle/Research/tree/master/NLP/Text2SQL-DA-HIER


8976

Figure 3: Examples of segment-level mapping between
SQL queries and corresponding questions from the Spi-
der dataset. In each example, the second SQL query is
the equivalent of the first.

• We conduct experiments and analysis on three
datasets in both English and Chinese, i.e., Wik-
iSQL, Spider, and DuSQL, showing that our pro-
posed framework can consistently improve per-
formance over strong baselines.

2 Proposed Data Augmentation
Approach

Given a DB, the goal of data augmentation is to
automatically generate high-quality question/SQL
pairs as extra training data. The key for its suc-
cess lies in two aspects. First, the generated SQL
queries should have similar distribution with the
original data. Second, generated NL questions
reflect the meaning of the corresponding SQL
queries, especially for complex queries.

Our proposed framework adopts a two-step gen-
eration process, as shown in Figure 2. We first gen-
erate SQL queries at different complexity levels
based on an ASTG, and then translate SQL queries
into NL questions using our proposed hierarchical
generation model.

2.1 SQL Query Generation

Being a program language, all SQL queries can be
represented as nested tree structures, as depicted in
Figure 2-B according to some context-free gram-
mar. In fact, most text-to-SQL parsers proposed
recently adopt the abstract syntax tree representa-
tion at the decoding stage (Yin and Neubig, 2018;
Yu et al., 2018a; Guo et al., 2019; Wang et al.,
2020a). Following those works, we design a gen-
eral ASTG that can cover all SQL patterns in our
adopted benchmark datasets. Due to space limita-
tion, Figure 2 shows a fraction of the production
rules.

According to our ASTG, the SQL query in Fig-

ure 2-B can be generated using the production rules:
“SQLs → SQL”, “SQL → Select Order”, “Select →
SELECT A”, “Order → ORDER_BY C Dir”, etc.

By assembling production rules from our ASTG,
we can generate any sketch tree. As shown in Fig-
ure 2-B, a sketch tree means that DB-related leaf
nodes (marked in red) are removed, and its flat
form corresponds to a pattern, shown at the bot-
tom. In our work, we generate sketch trees from
simple to complex. Under a certain complexity
level, i.e., tree breadth and depth, we first generate
all possible sketch trees, and then apply them to
new DBs to produce full trees (i.e., SQL queries)
by filling DB-related items, such as table names,
column names, and cell values.

In order to better match the query distribution
of real text-to-SQL training data and to limit the
number of generated SQL queries as well, we stop
sketch tree generation when the generated ones
cover more than 80% of patterns in the original
training data2. The SQL queries are generated in
a way that simpler SQL patterns come first, and
80% of the remaining patterns are usually high-
frequency patterns. This limitation aims to con-
trol the complexity of generated questions, since
very complex questions are rare in the training data.
Please kindly note that our simple ASTG-based
generation procedure can produce a lot of patterns
unseen in the original data, because our generation
is at production rule level. This is advantageous
from the data variety perspective.

Moreover, given a DB, we only keep executable
SQL queries for correctness check.

2.2 Hierarchical SQL-to-Question
Generation

Given an SQL query, especially a complex one, it is
difficult to generate an NL question that represents
exactly same meaning. In their data augmentation
work, Guo et al. (2018) use a vanilla Seq2Seq
model to translate SQL queries into NL questions
and obtain performance boost on WikiSQL con-
sisting of simple queries. However, as shown in
Table 2, we find performance consistently drops
on all datasets over our strong baselines, which is
largely due to the quality issue of generated NL
questions, as illustrated in Table 3.

This work proposes a hierarchical SQL-to-

2As discussed in the logic form-based semantic parsing
work of Herzig and Berant (2019), distribution mismatch is
mainly caused by insufficient coverage of logical form tem-
plates.
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question generation model to produce higher-
quality NL questions. The idea is motivated by
our observation that there is a strong segment-level
mapping between SQL queries and corresponding
questions, as shown in Figure 3. For example, the
SQL query of the first example can be decomposed
into two segments, i.e., the SELECT clause and the
WHERE clause. The two clauses naturally corre-
spond to the two question segments, i.e., “What are
the names of the heads” and “heads who are born
outside the California state” respectively.

Following the observation, our hierarchical SQL-
to-question generation consists of three steps: 1)
decomposing the given SQL query into several
clauses; 2) translating every clause into a subques-
tion; 3) combining subquestions into a full NL ques-
tion. Next we describe each step in detail.

Step 1: SQL clause decomposition. We de-
compose an SQL query into multiple clauses based
on SQL keywords. Usually a clause contains only
one keyword. In some cases multiple keywords are
put into the same clause according to semantics.
More formally speaking, multiple keywords are
combined into one single clause based on two per-
spectives of consideration: 1) SQL syntax, and 2)
alignment between SQL queries and NL questions,
as illustrated by the last two examples in Figure 3.

From the perspective of SQL syntax, HAVING
and GROUP_BY, are naturally bundled together,
and thus are put into one clause, as shown in the
third example of Figure 3. LIMIT and ORDER_BY
are similarly handled.

From the second perspective, some keywords
are not explicitly expressed in NL questions. In
other words, there is a mismatch between intents
expressed in NL questions and the implementa-
tion details in SQL queries. To better align them,
we follow IRNet (Guo et al., 2019) and combine
GROUP_BY with either SELECT or ORDER_BY.

For a nested SQL query, e.g., the second example
in Figure 3, it is more reasonable to put the outside
WHERE and the inside SELECT into one clause,
since they together express a complete operation
semantically.

Based on our decomposition method, an unseen
SQL pattern always consists of common clause
patterns in the training data.

Step 2: clause-to-subquestion translation.
Compared with a full SQL query, a clause has a
flat structure and involves simple semantics corre-
sponding to a single SQL operation. Thus, it is

much easier to translate clauses to subquestions
compared with direct SQL-to-question translation.
We use a standard copy-based Seq2Seq model (Gu
et al., 2016) for clause-to-subquestion generation.
The details are presented in Section §2.3.

Step 3: question composition. As shown in
Figure 3, we compose a full question by concate-
nating all subquestions in a certain order. We ex-
periment with two ordering strategies, i.e., the ex-
ecution order of corresponding clauses3, and the
sequential order of corresponding clauses in the
full SQL query. Preliminary experiments show that
the former performs slightly better, which is thus
adopted in our framework. Please note that direct
concatenation may lead to redundant words from
adjacent subquestions. We use several heuristic
rules to handle this. Taking the third multi-SQL
query in Figure 3 for example, since the two SE-
LECT clauses are translated into nearly the same
subquestion, we only keep one in the final NL ques-
tion.

Discussion on quality of generated NL ques-
tions. Our reviewers suggest to evaluate natural-
ness and truth of generated NL questions. Due to
time limitation, we did not perform strict manual
evaluation. So far, our approach mainly considers
the informativeness aspect of generated NL ques-
tions. We leave such evaluation and analysis as
future work, which will certainly help us better
understand our proposed approach.

2.3 Clause-to-subquestion Translation Model

We adopt the standard Seq2Seq model with
copy mechanism (Gu et al., 2016) for clause-to-
subquestion translation, which is also used in our
baseline, i.e., flat SQL-to-question translation, with
the same hyper-parameter settings.

In the input layer, we represent every SQL to-
ken by concatenating two embeddings, i.e., word
(token as string) embedding, and token type (col-
umn/table/value/others) embedding, each having a
dimension size of 150. We use default values for
other hyper-parameters.

Training data construction. We construct
clause/subquestion pairs for training the translation
model from the original training data, consisting of
two steps. The first step decomposes a SQL query

3The execution order used in our work is: WHERE ->
GROUP BY -> HAVING -> SELECT, ORDER_BY -> LIMIT.
For the SQL query with a nested part, we firstly generate the
question for the nested part and use it as a fragment of the
whole question, also known as the bottom-up way.
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into clauses using the same way illustrated above.
The second step aims to decompose an NL ques-

tion into clause-corresponding subquestions. In
other words, this step finds a subquestion (i.e.,
a segment of the question) for each clause. We
first build alignments between tokens in the SQL
query and the corresponding NL question based
on simple string matching. The string-matching
method4 is very similar to the schema linking
step in IRNet (Guo et al., 2019) and RATSQL
(Wang et al., 2020a). Then for each clause, we
define the corresponding subquestion as the short-
est question segment that contains all DB elements
in the clause. Finally, we discard low-confidence
clause/subquestion pairs to reduce noises, such as
subquestions having large overlap with others. We
keep overlapping subquestions, unless one subques-
tion fully contains another. In that case, we only
keep the shorter subquestion.

We find that a portion of collected clauses
have multiple subquestion translations. For ex-
ample, the clause “ORDER_BY age ASC” are
translated as both “in ascending order of the age”
and “from youngest to oldest”. We follow Hou
et al. (2018) and use them as two independent
clause/subquestion pairs for training.

2.4 Three Strategies for Utilizing Generated
Data

Given a set of DBs, the generated question/SQL
pairs are usually of larger scale than the original
training data (see Table 1), which may greatly in-
crease training time. In this work, we compare the
following three strategies for parser training.

• The pre-training strategy first pre-trains the
model with only generated data, and then fine-
tunes the model with labeled training data.

• The directly merging strategy trains the model
with all generated data and labeled training data
in each epoch.

• The sampling strategy first randomly samples
a number of generated data and trains the model
on both sampled and labeled data in each epoch.
The sampling size is set to be the same with the
size of the labeled training data.

4We extract all question n-grams (1 ≤ n ≤ 6) to match
DB elements (i.e., columns, tables, and values) in the corre-
sponding SQL query, so as to get alignments between question
n-grams and DB elements.

Dataset Labeled Data Generated Data
WikiSQL 61,297 98,206
Spider 8,625 58,691
DuSQL 18,602 45,942

Table 1: Data statistics in the number of question/SQL
pairs. The column of labeled data shows the number of
training pairs.

3 Experiments

Datasets. We adopt three widely-used cross-
domain text-to-SQL parsing datasets to evaluate
the effectiveness of different approaches, i.e., Wik-
iSQL5 and Spider6 in English, and DuSQL7 in Chi-
nese. All datasets follow their original data split-
ting. WikiSQL focuses on single-table DBs and
simple SQL queries that contain only one SELECT
clause with one WHERE clause. In contrast, Spider
and DuSQL are much more difficult in the sense
each DB contains many tables and SQL queries
may contain advanced operations such as cluster-
ing, sorting, calculation (only for DuSQL) and have
nested or multi-SQL structures.

For each dataset, we generate a large number
of question/SQL pairs against the evaluation DBs.
Table 1 shows the size of the generated data. It
is noteworthy that since the Spider test data is not
publicly released, we generate data and evaluate
different approaches against the Spider-dev DBs
and question/SQL pairs.

Baseline parsers. We choose four popular open-
source parsers to verify our proposed frameowrk.

WikiSQL: SQLova. The SQLova parser
(Hwang et al., 2019) achieves competitive perfor-
mance on WikiSQL without using execution guid-
ance and extra knowledge (e.g., DB content and
other datasets). The encoder obtains table-aware
representations by applying BERT to concatenated
sequence of question and table schema, and the
decoder generates SQL queries as slot filling in the
SELECT/WHERE clauses. HydraNet (Lyu et al.,
2020) reported the state-of-the-art (SOTA) perfor-
mance on WikiSQL but did not release their code.

Spider: IRNet and RATSQL. IRNet (Guo
et al., 2019) is an efficient yet highly competitive
parser for handling complex SQL queries on Spi-
der, consisting of two novel components: 1) linking
DB schemas with questions via string matching; 2)

5https://github.com/salesforce/WikiSQL
6https://yale-lily.github.io/spider
7https://aistudio.baidu.com/aistudio/

competition/detail/47

https://github.com/salesforce/WikiSQL
https://yale-lily.github.io/spider
https://aistudio.baidu.com/aistudio/competition/detail/47
https://aistudio.baidu.com/aistudio/competition/detail/47
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a grammar-based decoder to generate SemQL trees
as intermediate representations of SQLs. RATSQL
(Wang et al., 2020a) is the current SOTA parser on
Spider. The key contribution is utilizing a relation-
aware transformer encoder to better model the con-
nections between DB schemas and NL questions.
However, training RATSQL is very expensive. It
takes about 7 days to train a basic BERT-enhanced
RATSQL model on a V100 GPU card, which is
about 10 times slower than IRNet.

With limited computational resource, we mainly
use IRNet for model ablation and efficiency com-
parison. Meanwhile, we report main results on
RATSQL to learn the effect of our proposed frame-
work on more powerful parsers.

Another detail about RATSQL to be noticed is
that we use the released Version 2 (V2). They
reported higher performance with V38 by better
hyper-parameter settings and even longer training
time. However, they did not release their configu-
rations.

DuSQL: IRNet-Ext. IRNet-Ext proposed by
Wang et al. (2020b) is an extended version of IR-
Net to accommodate the characteristics of Chinese
dataset DuSQL. In this work, we further enhance
IRNet-Ext with BERT. Basically, we concatenate
the NL question and DB schema as the input, and
perform encoding with BERT (instead of BiLSTM
in the original parser).

Evaluation metrics. We use the exact matching
(EM) accuracy as the main metric, meaning the per-
centage of questions whose predicted SQL query
is equivalent to the gold SQL query, regardless of
clause and component ordering. We also use com-
ponent matching (CM) F1 score to evaluate the
clause-level performance for in-depth analysis. Be-
sides, we report execution (exec) accuracy on Wik-
iSQL, meaning the percentage of questions whose
predicted SQL query obtains the correct answer.

Hyper-parameter settings. For each parser, we
use default parameter settings in their released code.
All these parsers are enhanced with vanilla (in
contrast to task-specific) pretraining models, i.e.,
BERT (Devlin et al., 2019), including IRNet-Ext.

In order to avoid the effect of performance vi-
brations9, we run each model for 5 times with

8The comparison of V2 and V3 is discussed at https:
//github.com/microsoft/rat-sql/issues/12.

9Please see issues proposed at the github of RATSQL
model, such as https://github.com/microsoft/
rat-sql/issues/10.

WikiSQL
Models EM [Exec]
HydraNet (Lyu2020) 83.8 [89.2]
SQLova (Hwang2019) 80.7 [86.2]
STAMP (Guo2018) 60.7 [74.4]

+ Aug (FLAT) 63.7 (+3.0) [75.5]
SQLova (ours) 80.1±0.40 [85.7]

+ Aug (FLAT) 79.7±0.50 (−0.4) [85.4]
+ Aug (HIER) 81.2±0.09 (+1.1) [86.5]

Spider
Models EM
IRNet (Guo2019) 60.6
RATSQL V3 (Wang2020a) 69.6
RATSQL V2 (Wang2020a) 65.8
SyntaxSQLNet (Yu2018a) 22.1

+ Aug (PATTERN) 28.7 (+6.6)
IRNet (ours) 59.7±0.41

+ Aug (FLAT) 58.8±0.56 (−0.9)
+ Aug (HIER) 61.8±0.32 (+2.1)

RATSQL V2 (ours) 65.4±0.60

+ Aug (HIER) 68.2±0.42 (+2.8)

DuSQL
Models EM
IRNet-Ext (Wang2020b) 50.1
IRNet-Ext + BERT (ours) 53.7±0.60

+ Aug (FLAT) 53.4±0.67 (−0.3)
+ Aug (HIER) 60.5±0.40 (+6.8)

Table 2: Main results. We run each model for 5 times,
and report the average and variance (as subscripts).
+Aug means the model is enhanced with data augmen-
tation, and PATTERN, FLAT, and HIER refer to the
three data augmentation approaches.

different random initialization seeds, and report
the averaged EM accuracy (mean) and the vari-

ance (
√∑n

i=1(xi−x̄)2

n−1 ). We only run each RATSQL
model for 3 times due to its prohibitively high re-
quirement on computational resource.

3.1 Main Results

Table 2 shows the main results. For each dataset,
the first major row shows previously reported re-
sults, and the second major row gives results of our
base parsers without and with data augmentation.

To compare previous data augmentation meth-
ods, we also re-implement the flat one-stage gen-
eration approach (FLAT) proposed by Guo et al.
(2018). We do not implement the pattern-based
data augmentation approach (PATTERN) of Yu
et al. (2018a) due to its requirement of human in-
tervention. Moreover, their large performance im-
provement is obtained over a very weak baseline.

Performance of our baseline parsers. On Wik-
iSQL, the averaged performance of our SQLova
parser is lower than their reported performance by
about 0.7. On Spider, the performance of our IR-

https://github.com/microsoft/rat-sql/issues/12
https://github.com/microsoft/rat-sql/issues/12
https://github.com/microsoft/rat-sql/issues/10
https://github.com/microsoft/rat-sql/issues/10
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SQL SELECT draw_size FROM matches
WHERE loser_age > 10

FLAT what are the percentage of draw size in matches
with loser higher than 10?

HIER with losers who are older than 10,
find the draw size of the matches.

SQL SELECT horsepower FROM cars_data
WHERE edispl <= 10
ORDER_BY year DESC

FLAT list all horsepower year
in descending order of year.

HIER with edispl no higher than 10,
show the horsepower of the cars,
made from most recently to oldest.

Table 3: Case study on FLAT vs. HIER on a simple
SQL query (first) and a complex one (second) from Spi-
der.

Net parser is lower than their reported value by
0.9. However, please kindly note that we use de-
fault configurations of SQLova and IRNet, and our
best results among five runs on both WikiSQL and
Spider are very close to theirs.

As discussed earlier, HydraNet and RATSQL v3
achieve higher performance, but they do not release
their code or configurations.

In summary, we can conclude that our baseline
parsers achieve competitive results on all three
datasets. We believe that it would be more rea-
sonable to report the mean and variance of perfor-
mance.

Comparison of different data augmentation
methods. According to our results in the second
major row of each dataset, data augmentation with
FLAT leads to consistent performance degradation,
which is contradictory to the results on WikiSQL
reported by Guo et al. (2018). We suspect the
reason is that our BERT-enhanced baseline parser
is much stronger than their adopted parser. To
verify this, we run SQLova without BERT and find
similar performance gains from 61.0% to 64.0%
via the FLAT data augmentation. Using HIER, the
performance can further increase to 66.1%. Due to
time and resource limitation, we do not run similar
experiments on the other two datasets.

In contrast to FLAT, our proposed HIER ap-
proach achieves consistent improvement over the
strong BERT-enhanced parsers. In particular, it is
very interesting to see that the parsers have lower
performance variance compared with the baselines.
We will give more insights on the effectiveness
of the hierarchical generation approach in Section
§3.2. Again, to save computational resource, we
did not run RATSQL with the FLAT data augmen-

tation approach.
Looking closer into the improvements on the

three datasets, we can see that our HIER data aug-
mentation obtains the least performance increase
on WikiSQL, possibly due to the higher baseline
performance with relatively large-scale labeled data
consisting of simple SQL queries. The most gain is
obtained on DuSQL. We suspect the reason is two-
fold. First, the baseline performance is the lowest,
which is similar to the results obtained by Yu et al.
(2018a) on Spider with data augmentation. Sec-
ond, during the construction of DuSQL, Wang et al.
(2020b) first automatically generate question/SQL
pairs and then perform manual correction and para-
phrasing, leading to certain resemblance between
their labeled data and our generated data.

In summary, we can conclude that our proposed
augmentation approach with hierarchical SQL-to-
question generation is more effective than previ-
ous methods, and can substantially improve per-
formance over strong baselines, especially over
complex datasets. In the future, we would like to
apply our approach to other text-to-SQL datasets
and languages.

3.2 Analysis

Case study. To intuitively understand the advan-
tages of HIER over FLAT, we present two typical
examples in Table 3. The FLAT approach fails to
understand the column name “loser_age” in the
WHERE clause of the first SQL query, and over-
looks the WHERE clause completely in the sec-
ond query. In contrast, our HIER approach basi-
cally captures semantics of both two SQL queries,
though the generated questions seem a little bit un-
natural due to the ordering issue. Under our hierar-
chical generation approach, clause-to-subquestion
translation is much simpler than direct SQL-to-
question translation, hence leading to relatively
high-quality NL questions.

Component-level analysis. To understand fine-
grained impact of our proposed augmentation
framework, we report CM F1 scores over five
types of SQL clauses in Table 4. We observe that
the main advantage of data augmentation on Wik-
iSQL comes from the prediction of WHERE clause,
which is also the main challenge of simple datasets.
The performance of SELECT clause is near the up-
per bound, where most of the evaluation errors are
due to wrong annotations by humans (Hwang et al.,
2019). For Spider, performances of all clauses are
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Datasets Models SELECT WHERE GROUP_BY HAVING ORDER_BY

WikiSQL SQLova 88.1 90.2 – – –
+ Aug 87.8 (−0.3) 91.6 (+1.4) – – –

Spider

IRNet 87.7 68.0 80.8 75.5 76.3
+ Aug 88.5 (+0.8) 70.1 (+2.1) 81.0 (+0.2) 77.2 (+1.7) 80.0 (+4.5)

RATSQL 85.5 72.6 79.3 76.7 79.4
+ Aug 87.7 (+2.2) 75.4 (+2.8) 82.5 (+3.2) 79.4 (+2.7) 80.9 (+1.5)

DuSQL IRNet-Ext 78.5 82.4 93.8 92.1 93.4
+ Aug 79.8 (+1.3) 86.6 (+4.2) 95.0 (+1.2) 93.3 (+1.1) 93.5 (+0.1)

Table 4: CM F1 scores over five types of SQL clauses. The type division is borrowed from Yu et al.(2018b).

Models Seen patterns Unseen patterns
IRNet 63.5 48.8
IRNet + Aug 64.7 (+1.2) 53.7 (+4.9)
RATSQL 66.6 52.3
RATSQL + Aug 73.0 (+6.4) 55.4 (+3.1)

Table 5: EM accuracy over seen and unseen patterns on
Spider.

improved. Looking into the Spider dataset, we find
that our generated subquestions are of high qual-
ity in the terms of diversity and semantics, e.g.,
“age” translated as “from youngest to oldest”, and
“year” as “recent”. It is interesting to see that per-
formances of the right-side three types of complex
clauses are much higher on DuSQL than on Spi-
der, and also much higher than that of the basic
SELECT/WHERE clauses on DuSQL itself. As
discussed earlier in Section §3.1, we suspect this is
because the complex clauses on DuSQL are more
regularly distributed and thus more predictable due
to their data construction method.

Analysis on SQL patterns. One potential ad-
vantage of ASTG-based SQL generation is the abil-
ity to generate new SQL patterns that do not appear
in the training data. To verify this, we adopt the
more complex Spider, since its evaluation data con-
tains a lot (20%) of low-frequency SQL patterns
unseen in the training data. We divide the ques-
tion/SQL pairs into two categories according to the
corresponding SQL pattern, and report EM accu-
racy in Table 5. It is clear that our augmentation
approach gains improvement both on seen and un-
seen patterns. The gains on unseen patterns show
that with generated data as extra training data, the
model possesses better generalization ability.

Impact of augmented data size. We study how
the number of augmented pairs affects the accuracy
of parsing models. We conduct this experiment
on the Spider dataset using IRNet model based on
the directly merging training strategy. In the ex-
periment, we randomly sample question/SQL pairs

Size 100% 200% 300% all
Acc 59.1 59.4 59.3 61.8

(±1.18) (±0.75) (±0.69) (±0.26)

Table 6: The impact of augmented data size on Spider
using IRNet model. The numbers in brackets represent
the variance of three runs.

Strategies EM Accuracy Total Training Time
Baseline 59.5 6.9 hours
Pre-training 60.0 36.1 hours
Directly merging 61.8 34.9 hours
Sampling 61.7 10.4 hours

Table 7: Comparison of three training strategies on Spi-
der using IRNet model. The size of augmented data
is about 6.7 times that of the original training data, as
shown in Table 1.

from all the generated data based on multiples of
the size of the original training data. Results are
given in Table 6. It is not surprising that more aug-
mented data brings higher accuracy which is con-
sistent with the observations in Guo et al. (2018).
Interestingly, we find that more augmented data
brings more stable benefits.

Comparison on training strategies. Table 7
compares the three training strategies for utilizing
generated data, which are discussed in Section §2.4.
All experiments are run on one V100 GPU card.
The pre-training strategy only slightly improves
performance over the baseline, indicating that it
fails to make full use of the generated data. The
directly merging strategy and the sampling strategy
achieve nearly the same large improvement. How-
ever, the sampling strategy is much more efficient.

4 Related Work

Data augmentation for NLP. As an effective way
to address the sparseness of labeled data, data
augmentation has been widely and successfully
adopted in the computer vision field (Szegedy et al.,
2015). Similarly in the NLP field, a wide range of
tasks employ data augmentation to accommodate
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the capability and need of deep learning models in
consuming big data, e.g., text-classification (Wei
and Zou, 2019), low-resource dependency parsing
(Şahin and Steedman, 2018), machine translation
(Fadaee et al., 2017), etc. Concretely, the first kind
of typical techniques tries to generate new data by
manipulating the original instance via word/phrase
replacement (Wang and Yang, 2015; Jia and Liang,
2016), random deletion (Wei and Zou, 2019), or
position swap (Şahin and Steedman, 2018; Fadaee
et al., 2017). The second kind creates completely
new instances via generative models (Yoo et al.,
2019), while the third kind uses heuristic patterns
to construct new instances (Yu et al., 2018a).

Data augmentation for semantic parsing.
Given an NL question and a knowledge base, se-
mantic parsing aims to generate a semantically
equivalent formal representation, such as SQL
query, logic form (LF), or task-oriented dialogue
slots. Based on LF-based representation, Jia and
Liang (2016) train a synchronous context free gram-
mar model on labeled data for generating new ques-
tion/LF pairs simultaneously. Hou et al. (2018) fo-
cus on the slot filling task. They train a Seq2Seq
model on semantically similar utterance pairs, and
generate new and diverse utterances for each origi-
nal one.

Data augmentation for text-to-SQL parsing.
Iyer et al. (2017) focus on in-domain text-to-SQL
parsing. They automatically translate NL ques-
tions into SQL queries, and ask human experts to
correct unreliable SQL queries. On Spider, Yu
et al. (2018a) collect many high-frequency SQL
patterns and also convert corresponding questions
into patterns by removing the concrete database-
related tokens. They keep 50 high-quality ques-
tion/SQL pattern pairs via manual check, and use
them to generate new question/SQL pairs for a
given table.10 However, their approach only con-
siders SQL patterns concerning single table, and
the need for human intervention seems expensive.
Guo et al. (2018) use a pattern-based approach
to generate SQL queries and utilize a copy-based
Seq2Seq model to directly translate SQL queries
into NL questions. In contrast, this work proposes
to use an ASTG for better SQL query generation

10More specifically, given a pair of question and SQL query,
they first manually align question tokens and DB elements, and
replace the aligned terms with some special, generic symbols,
resulting in question/SQL templates. Then given a new ta-
ble, they generate question/SQL pairs by filling question/SQL
templates with table elements.

and a hierarchical SQL-to-question generation ap-
proach to obtain higher-quality NL questions.

5 Conclusions

This paper presents a simple yet effective automatic
data augmentation framework for cross-domain
text-to-SQL parsing. With two-step processing,
i.e., ASTG-based SQL query generation and hier-
archical SQL-to-question generation, our frame-
work is able to produce high-quality question/SQL
pairs on given DBs. Results on three widely used
datasets, i.e., WikiSQL, Spider, and DuSQL show
that: 1) the hierarchical generation component is
the key for performance boost, due to the more reli-
able clause-to-subquestion translation, and in con-
trast, previously proposed direct SQL-to-question
generation leads to performance drop over strong
baselines; 2) our proposed framework can consis-
tently boost performance on different types of SQL
clauses and patterns; 3) the sampling strategy is su-
perior to the other two strategies for training parsers
with both labeled and generated data, especially in
the terms of training efficiency.
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