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Abstract

Large-scale multi-label text classification
(LMTC) tasks often face long-tailed label distri-
butions, where many labels have few or even no
training instances. Although current methods
can exploit prior knowledge to handle these
few/zero-shot labels, they neglect the meta-
knowledge contained in the dataset that can
guide models to learn with few samples. In
this paper, for the first time, this problem is ad-
dressed from a meta-learning perspective. How-
ever, the simple extension of meta-learning
approaches to multi-label classification is sub-
optimal for LMTC tasks due to long-tailed label
distribution and coexisting of few- and zero-
shot scenarios. We propose a meta-learning
approach named META-LMTC. Specifically, it
constructs more faithful and more diverse tasks
according to well-designed sampling strategies
and directly incorporates the objective of adapt-
ing to new low-resource tasks into the meta-
learning phase. Extensive experiments show
that META-LMTC achieves state-of-the-art per-
formance against strong baselines and can still
enhance powerful BERTlike models.

1 Introduction

Large-scale multi-label text classification (LMTC)
is a fundamental and practical task in natural lan-
guage processing (Tsoumakas et al., 2010). LMTC
can be found in several domains, such as organiz-
ing documents in Wikipedia articles (Partalas et al.,
2015), annotating medical records with diagnostic
and procedure labels (Yan et al., 2010; Rios and
Kavuluru, 2018), assigning legislation with rele-
vant legal concepts (Chalkidis et al., 2019). Differ-
ent from multi-class classification, the LMTC task
aims to assign multiple labels from a large prede-
fined set (typically thousands) to each instance.

Due to the large predefined label set and lim-
ited annotated resources, LMTC tasks usually face
the challenges of long-tailed label distribution, i.e.,
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many labels have few or even no annotated sam-
ples. For example, in EURLEX15K (Chalkidis
et al., 2019), about 70% of seen labels have been
assigned to less than 20 documents (i.e., few-shot
labels); and more than 40% of the predefined labels
are not associated with any document (i.e., zero-
shot labels). To make matter worse, new labels
continually emerge as the field evolves. Though
few/zero-shot labels may not contribute heavily to
the overall performance, correct prediction of such
labels is crucial in some cases (Rios and Kavuluru,
2018). For instance, when assigning the diagnosis
labels to electronic health records, incorrect pre-
dictions of these labels either bring unnecessary
financial burdens or make patients ignore potential
health risks. These factors require models to utilize
few or no samples to accurately assign labels.

To cope with these few/zero-shot labels, current
models typically match texts to feature vectors for
each label obtained by exploiting prior label infor-
mation. Specifically, Rios and Kavuluru (2018)
utilizes label textual descriptors to generate a fea-
ture vector for each label. Also, it employs a 2-
layer graph convolutional neural network (Kipf and
Welling, 2017) to take advantage of the structured
knowledge of label spaces to enhance label repre-
sentations. Apart from that, Lu et al. (2020) finds
that label similarity graphs based on pre-trained
word embeddings and co-occurrence frequency are
also beneficial.

Nonetheless, these approaches neglect the poten-
tial meta-knowledge contained in the dataset that
can guide the models to learn with only a small
amount of samples. Meta-learning has been sug-
gested as an efficient strategy to acquire this knowl-
edge. To acquire meta-knowledge, meta-learning
constructs the tasks of few-shot learning scenar-
ios and aims to learn how to achieve maximum
performance by utilizing a limited amount of sam-
ples (Vinyals et al., 2016; Snell et al., 2017). Fol-
lowing the idea of meta-learning (Qian and Yu,
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Figure 1: Illustration of the idea of META-LMTC. The
left part shows models how to handle few/zero-shot
labels in the LMTC task; the right part shows the
simulated low-resource multi-label classification tasks,
where the numbers of instances in the support set and in
the query set are N = 3 and K = 2, respectively.

2019), for the first time, we propose to investigate
the problem of few/zero-shot labels in LMTC tasks
from a meta-learning perspective. Illustrated in
Fig. 1, we simulate some few/zero-shot scenarios,
which are faithful to the LMTC task and thereby
provide chances for models to learn how to adapt
fast and efficiently with a limited amount of data.

However, most meta-learning algorithms are de-
signed for multi-class classification under the few-
shot setting (Vinyals et al., 2016), and it is critical
for meta-learned models’ generalization to con-
struct faithful and diverse tasks (Snell et al., 2017;
Bansal et al., 2020). We argue that the simple
extension of these approaches to multi-label clas-
sification is sub-optimal for the LMTC tasks in
that (1) LMTC tasks need to cope with few- and
zero-shot scenarios, while existing methods only
consider few-shot ones, which is not faithful to
the LMTC tasks. (2) LMTC tasks often face the
challenge of long-tailed data distribution. However,
these algorithms are not designed for specific data
distribution and thereby makes the rare labels in
the training set less involved in the meta-learning
process, which reduces the diversity of the tasks.

To address the above two issues, we propose
an optimization-based meta-learning algorithm,
namely META-LMTC, which contains the meta-
learning phase and fine-tuning phase. We design a
task sampling strategy when considering the char-
acteristics of LMTC tasks (i.e., the coexistence of
few- and zero-shot scenarios, long-tailed data dis-
tribution). During the meta-learning phase, this
strategy not only constructs more faithful meta-
learning tasks (i.e., the zero- and few-shot scenarios
coexist) but also provides more diverse labels and

more various instances. Then the model acquires
meta-knowledge on these tasks through the alter-
nating meta-training process and meta-evaluation
process. During the fine-tuning phase, the meta-
learned model is fine-tuned on the original LMTC
dataset to further improve performance. In sum-
mary, our contributions are as following:

• We propose a meta-learning algorithm META-
LMTC for LMTC tasks. To our best knowl-
edge, we are the first study to address these
challenges in LMTC tasks from the meta-
learning point of view.

• Our method outperforms the current state-of-
the-art models on two LMTC benchmarks.
Further analysis reveals that our method can
still enhance powerful BERTlike models.

2 Related Work

Our work is a synthesis of two research directions:
large-scale multi-label text classification and meta-
learning. We review them in this section.

2.1 Large-Scale Multi-Label Text
Classification

The skewed label frequency distribution of LMTC
datasets poses few/zero-shot challenges for cur-
rent models. Leveraging prior knowledge about
labels has become a promising approach of tack-
ling these problems. Rios and Kavuluru (2018)
utilizes label descriptors and hierarchy to gener-
ate a representation for each label, with promising
results. To further enhance these rare label repre-
sentations, Lu et al. (2020) fuses pre-defined word
embeddings and label co-occurrence graphs. Ad-
ditionally, some studies find that a more powerful
text encoder can improve the performance of fre-
quent labels (Chalkidis et al., 2019, 2020; Li and
Yu, 2020). Different from these existing solutions,
we directly tackle the few/zero-shot label learning
challenges from a meta-learning perspective.

2.2 Meta-Learning
Meta-learning (a.k.a. learning-to-learn) aims to
learn a general model that can quickly adapt to a
new task given a limited amount of annotated in-
stances without suffering from overfitting (Geng
et al., 2019). Most recent approaches to meta-
learning focus on few-shot learning, which can
be broadly categorized into (i) metric- (Vinyals
et al., 2016; Snell et al., 2017) (ii) model- (Santoro
et al., 2016; Ravi and Larochelle, 2017) and (iii)
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optimization-based techniques (Finn et al., 2017;
Yoon et al., 2018). Meta-learning has been applied
in various circumstances, such as image classifi-
cation (Finn et al., 2019; Rajeswaran et al., 2019),
machine translation (Gu et al., 2018), dialogue sys-
tems (Mi et al., 2019; Qian and Yu, 2019), etc.

Different from the above studies on multi-class
classification under the few-shot setting, our work
focus on LMTC tasks, where one document may be
assigned multiple labels from a large predefined la-
bel set. In this work, we propose META-LMTC that
is more suitable for encouraging general and robust
representation in LMTC tasks. Unlike the few-shot
learning that only focuses on the performance of
novel classes, the LMTC tasks are concerned with
the performances of all labels (including few/zero
ones). To the best of our knowledge, we are the
first to frame LMTC as a meta-learning problem.

3 Perliminaries

3.1 Large-Scale Multi-Label Text
Classification

As mention before, LMTC tasks face a serious
long-tailed problem, often involve few/zero-shot
labels. Formally, we have two disjoint sets of seen
labels CS and unseen (i.e., zero-shot) labels CU .
According to the label frequency, CS can be further
divided into frequent labels CRS and few-shot labels
CFS such that CRS ∪ CFS = CS and CRS ∩ CFS = ∅.
Given a training set Dtr = {(xi,yi)}|D

tr|
i=1 , where

xi indicates the i-th document and yi ⊂ CS is the
corresponding labels of xi, our goal is to predict
correct labels ŷ ⊂ CS ∪ CU for each testing doc-
ument. Apart from training and testing set, some
prior knowledge of labels, such as label descrip-
tions, predefined label hierarchy is also available.

3.2 Model-Agnostic Meta-Learning

Model-Agnostic Meta-Learning (MAML) (Finn
et al., 2017) is an optimization-based meta-learning
framework. Its core idea is to leverage a set of aux-
iliary tasks to search for a good parameter initial-
ization from which learning a target task would re-
quire only a handful of training samples. Formally,
MAML first meta-learns the initialization of model
parameters θ0 with auxiliary tasks {T1, · · · , Ti}
and continue to learn the optimized parameters θ∗

for target task Tt (Gu et al., 2018):

θ∗ = Learn(Tt;MetaLearn(T1, · · · , Ti; θ0))

Notably, the original MAML is designed for few-
shot multi-class classification problems and does
not consider specific data distributions. However,
due to the coexistence of few- and zero-shot sce-
narios and long-tailed data distribution, a simple
extension of MAML for multi-label classification
problems can be sub-optimal to LMTC tasks.

4 Meta-Learning for LMTC

In this section, we first define LMTC tasks from
the meta-learning perspective. Then we present a
detailed description of the proposed META-LMTC.

4.1 Problem Statement
Previous studies formulate the LMTC tasks
as a traditional supervised learning process
Learn(TLMTC; θ0), where initial parameters θ0 are
obtained either randomly or pre-trained. Instead,
from meta-learning perspective, we aim to find a
better initialization θ∗0 with auxiliary low-resource
multi-label text classification tasks {T1, · · · , Ti},
i.e., θ∗0 = MetaLearn(T1, · · · , Ti; θ0). In each Ti,
a support set Dtr

Ti = {(xn,yn)}Nn=1 and a query
set Dval

Ti = {(xk,yk)}Kk=1 are sampled from the
LMTC training data Dtr with a specific strategy τ ,
where Dtr

Ti ∩Dval
Ti = ∅ and N , K are the number

of instances in the support set and query set. In ad-
dition, we let CtrTi =

⋃N
n=1 yn and CvalTi =

⋃K
k=1 yk

be the corresponding labels of support set and query
set in Ti. As far as we know, it is the first attempt
to cope with few/zero-shot labels in LMTC from
the perspective of meta-learning.

4.2 Overview of META-LMTC

Algo. 1 shows an overall procedure of META-LMTC,
which consist of a meta-learning phase and a fine-
tuning phase. We describe the meta-learning stage
in detail here. Suppose we are given a model fθ
with parameters θ and a task sampling strategy
τ which generates tasks Ti. For each task Ti =
(Dtr

Ti , D
val
Ti ), we first update the model parameters

using one-step gradient descent as

θ′i = θ − α∇θLθ(D
tr
Ti) (1)

where α is the local learning rate and L is the loss
function. After that, the loss of local parameters
on the corresponding query set is computed, i.e.,
Lθ′i

(Dval
Ti ). Finally, the global parameters are ob-

tained using the loss across multiple tasks, i.e.,

θ ← θ − β∇θ

∑
Dval

Ti

Lθ′i
(Dval

Ti ) (2)
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Algorithm 1 META-LMTC

Input: Dataset D, learning rates α, β and task sampling strat-
egy τ

Output: Model θ∗

1: Initialize parameters θ = θ0
2: // Meta-Learning Phase
3: while not done do
4: Simulate a batch of low-resource multi-label text clas-

sification tasks Ti using strategy τ
5: for all Ti = (Dtr

Ti
, Dval

Ti
) do

6: Compute local parameters θ′i with Eq. 1
7: end for
8: Update global model parameters θ with Eq. 2
9: end while

10: // Fine-tuning Phase
11: Fine-tune the model initialized with meta-learned param-

eter θ∗0 on the dataset D
12: Return the final model θ∗

where β is the global learning rate. In short, META-
LMTC explicitly simulates the low-resource LMTC
tasks, and directly incorporates the objective of
adapting to these tasks into the meta-learning opti-
mization phases. This encourages models to learn
meta knowledge, i.e., how to obtain maximal per-
formance on these rare/unseen labels with little
training data.

However, how to construct tasks is one of the
main challenges for meta-learning (Vinyals et al.,
2016). Snell et al. (2017) pointed out that a more
faithful training problem to the test environment
can lead to better performance and Bansal et al.
(2020) claimed that the diversity in tasks for meta-
learning is beneficial for models’ generalization
ability. Thus, the design of task sampling strategy
τ to make tasks faithful and diverse is a critical
problem to be solved.

4.3 LMTC Task Sampling Strategy

As mentioned before, a simple extension of meta-
learning algorithms for the multi-label classifica-
tion problem is sub-optimal for LMTC tasks in two
following issues: (1) LMTC tasks need to cope
with few- and zero-shot scenarios, while existing
methods are only considering few-shot scenarios
and thereby provide less faithful training condition;
(2) LMTC datasets often exhibit long-tailed distri-
bution. But meta-learning algorithms do not take
into account the specific data distribution. The con-
structed tasks by their naive task sampling strategy
just consider a limited amount of frequent labels
more and reduce the diversity of the tasks.

To address the issue (1), we design a simple yet
effective task sampling strategy, namely instance-
based one: a handful of samples are uniformly

Figure 2: The number of times each label and instance
occurring in the tasks sampled from EURLEX57K ac-
cording to the instance- or label-based sampling strategy.
Labels are sorted by the number of occurrences in the
training set in descending order. Instances are sorted in
descending order by the number of being sampled in
the label-based sampling algorithm. Some curves are
smoothed for clarity.

sampled from the original LMTC dataset D and
partitioned into two disjoint set, i.e., the support set
Dtr

Ti = {(xn,yn)|yn ⊂ CtrTi}
N
n=1 and the query set

Dval
Ti = {(xk,yk)|yk ⊂ CvalTi }

K
k=1. We have found

empirically that this strategy can construct more
faithful tasks in which few- and zero-shot scenarios
coexist, i.e., CvalTi ∩ C

tr
Ti ̸= ∅ and CvalTi − C

tr
Ti ̸= ∅,

with a high probability.1 However, this strategy is
still affected by the long-tailed label distribution
of LMTC, as shown in the upper part of Fig. 2:
the few-shot labels in the training set have fewer
chance to appear in the tasks and models are more
susceptible to meta-overfitting (Bansal et al., 2020)
to a handful of frequent labels.

To alleviate this issue (issue (2)), we provide
another strategy, namely label-based one: a label is
first sampled from the label space CS , and then an
instance annotated with this label is selected. We
repeat this process N +K times to construct Ti =
(Dtr

Ti , D
val
Ti ). The upper part of Fig. 2 shows that

the label-based one is fairer than the instance-based
one from the label dimension. On the other hand,

1We sampled 10,000 tasks on the MIMIC-III and EU-
RLEX57 datasets respectively using this strategy (where
N = 128 and K = 32). All of these sampled tasks pro-
vided both few- and zero-shot scenarios. Statistically, on
the MIMIC-III (or EURLEX57K) dataset, about 38.49% (or
46.50%) of the labels in the query set were unseen in the
support set.
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the lower part of Fig. 2 reveals that the instance-
based one shows no biases to instances, while the
label-based one pays too much attention to those
instances mostly annotated with few-shot labels.

Though both the instance- and the label-based
strategies provide more faithful tasks, they reduce
diversity in the tasks from either the label dimen-
sion or the instance dimension. To increase diver-
sity in tasks for meta-learning, we use a sampling
ratio p ∈ [0, 1] and each task Ti is constructed by
the instance-based strategy with probability p or
by the label-based one with probability 1− p. By
appropriately setting the value of p, META-LMTC

can provide more faithful and more diverse tasks
and thereby boost models’ performance.

5 Experiments

In this section, we conduct several experiments to
evaluate the efficacy of our method in LMTC tasks.
The experimental result shows that our method
can bring performance improvements to all of the
few/zero-shot LMTC base models.

5.1 Datasets

To evaluate our method, we use two bench-
marks, a medical dataset MIMIC-III 2 (Johnson
et al., 2016) and a EU legislation dataset, EU-
RLEX57K (Chalkidis et al., 2019). 3 MIMIC-III
contains approximately 58k English discharge sum-
maries from US hospitals. Each summary is anno-
tated with codes (labels) from 6,966 leaves of the
ICD-9 diagnosis hierarchy, with an average of 11
labels. Another benchmark EURLEX57K are the
LMTC dataset in the legal domain, which contains
57k English legislative documents. Each document
is annotated with an average of five concepts (la-
bels) from the 4,271 concepts of EUROVOC4.

Following Rios and Kavuluru (2018); Lu et al.
(2020), the labels are divided into frequent, few-
shot and zero-shot labels. Specifically, few-shot
labels are defined as those whose frequencies in the
training set are less than or equal to 5 for MIMIC-
III and 50 for EURLEX57K5. In addition, MIMIC-

2https://physionet.org/content/
mimiciii/1.4/

3According to the data maintainer (https://github.
com/MIT-LCP/mimic-code/issues/898), MIMIC-
II is no longer available. We cannot include it in experiments.

4http://eurovoc.europa.eu
550 seems too high for few-shot labels. But we follow

the setting of existing works to make the performance of
our implementations comparable to reported performances.
Furthermore, Fig. 3 shows that our method can bring even

Dataset MIMIC-III EURLEX57K

D
oc

# Train 46,562 45,000
# Dev 5,829 6,000
# Test 5,970 6,000
Avg # labels 11 5

L
ab

el # Frequent 3,282 746
# Few 3,344 3,362
# Zero 340 163

Table 1: Dataset statistics

III does not contain a standardized training/test
split. We create our split that ensures the same
patient does not appear in both the training and test
datasets. The ICD-9 diagnosis codes in MIMIC-III
are the labels to be assigned. Detailed statistics of
these datasets are shown in Table 1.

5.2 Evaluation Metrics

Because there are thousands of labels in LMTC
datasets, annotators or users would see a label un-
less it appears at the top of the ranking. Thus,
ranking metrics are usually adopted to measure the
usefulness of various systems (Rios and Kavuluru,
2018; Lu et al., 2020; Chalkidis et al., 2020). Fol-
lowing them, we report both recall at k (R@K)
and normalized discounted cumulative gain at k
(nDCG@K), where K is set to 10 for MIMIC-III
and 5 for EURLEX57K. Because our aim is high
performance on both frequent and few/zero-shot
labels, similar to the setup in Xian et al. (2019) and
Rios and Kavuluru (2018), we also report the har-
monic average across all R@K and all nDCG@K
scores for methods that can predict zero-shot labels.

5.3 Baselines

Following Lu et al. (2020), we compare the fol-
lowing baselines.

CNN (Kim, 2014) uses convolutional neural net-
works with max-pooling to extract text features,
which are then used to make the predictions for the
labels.

RCNN (Lai et al., 2015) uses recurrent neural
networks with a convolution layer to consider both
long-distance and local dependencies. It achieves
best the performances across competitive text en-
coders in Liu et al. (2019).

CAML (Mullenbach et al., 2018) is a model
designed for clinical notes and text documents. It

more improvement with a smaller threshold. Thus, we believe
that a smaller threshold would not affect the conclusions of
our experiments.

https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://github.com/MIT-LCP/mimic-code/issues/898
https://github.com/MIT-LCP/mimic-code/issues/898
http://eurovoc.europa.eu
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Frequent Few-shot Zero-shot Harmonic AverageMIMIC-III R@10 nDCG@10 R@10 nDCG@10 R@10 nDCG@10 R@10 nDCG@10

CNN 34.6 44.2 5.5 2.9 - - - -
RCNN 43.9 56.0 14.2 9.8 - - - -
CAML 41.2 53.3 5.9 3.9 - - - -

ZAGRU 49.0 61.3 26.9 17.7 34.7 22.2 34.7 25.5
+ SIMPLE-EXT 49.2 61.8 27.2 17.8 35.4 23.5 35.2 26.1
+ META-LMTC 49.7* 62.6* 29.1* 20.2* 38.8* 24.1 37.4* 28.0*

ZAGGRU 49.1 61.8 26.2 17.4 33.9 24.1 34.1 26.1
+ SIMPLE-EXT 49.4 62.0 27.8 18.7 36.0 24.4 35.7 27.1
+ META-LMTC 49.6* 62.3* 28.3* 19.7* 40.9* 25.2 37.5* 28.2*

AGRU-KAMG 49.5 62.4 28.9 19.1 34.3 23.0 35.7 26.8
+ SIMPLE-EXT 50.0 63.2 29.2 19.8 38.3 25.4 37.3 28.4
+ META-LMTC 50.2* 63.2* 32.7* 22.3* 43.3* 28.4* 40.8* 31.3*

Frequent Few-shot Zero-shot Harmonic AverageEURLEX57K R@5 nDCG@5 R@5 nDCG@5 R@5 nDCG@5 R@5 nDCG@5

CNN 71.8 78.2 56.5 50.8 - - - -
RCNN 68.8 75.3 53.3 47.6 - - - -
CAML 66.2 72.7 43.5 39.2 - - - -

ZAGRU 70.9 77.1 56.2 51.9 51.1 40.9 58.3 52.9
+ SIMPLE-EXT 73.2 79.6 60.3 55.8 53.9 41.2 61.5 54.8
+ META-LMTC 74.2* 80.6* 65.3* 60.0* 57.9* 45.3* 65.1* 58.7*

ZAGGRU 71.9 78.2 56.9 51.8 50.6 41.6 58.5 53.4
+ SIMPLE-EXT 72.1 78.6 57.7 53.2 52.2 40.2 59.6 53.2
+ META-LMTC 75.2* 81.6* 65.5* 60.6* 56.7* 45.7* 64.9* 59.2*

AGRU-KAMG 72.4 78.9 59.1 54.2 54.5 43.7 61.1 55.5
+ SIMPLE-EXT 72.8 79.2 60.7 55.4 53.4 42.7 61.3 55.5
+ META-LMTC 74.2* 80.6* 64.3* 59.4* 59.0* 46.3* 65.2* 59.0*

Table 2: Results (%) of experiments across all the methods for frequent, few-shot, and zero-shot label groups. The
first three methods are incapable of zero-shot learning. Bold figures are the best results for each metric among all
the methods considering the zero-shot problems. SIMPLE-EXT denotes the simple extension of MAML for the
multi-label classification problem. The corresponding p values for the ZAGRU, ZAGGRU, AGRU-KAMG equipped
with META-LMTC are 0.5, 0.67, 0.5 on the MIMIC-III and 0.67, 0.67, 0.33 on the EURLEX57K respectively.
Additionally, * indicates META-LMTC achieves significantly improvement on the base model (pairwise t-test at 0.05
significance level).

uses the label-wise attention mechanism, allowing
each label to focus on different parts of the text.6

ZAGGRU (Chalkidis et al., 2019) originally
proposed by Rios and Kavuluru (2018), applies
graph convolutions (GCNs) to the label hierar-
chy.7 Its GCNs can obtain better representations
for few/zero-shot labels benefit from the (better)
representations of frequent labels that are nearby
in the label hierarchy.

ZAGRU is an ablation method of ZAGGRU
proposed in Chalkidis et al. (2020). ZAGRU re-
places the stack of GCN layers in ZAGGRU into
a plain two-layer Multi-Layer Perceptron (MLP).

6The original model uses a CNN text encoder whereas we
use a Bi-GRU for better performance and fairness of compari-
son.

7According to Chalkidis et al. (2020), a Bi-GRU encoder
can obtain better performance than the CNN token encoder of
the original model. Thus, we use Bi-GRUs rather than CNNs
as the token encoder.

The model though is unaware of the label hierar-
chies yet produces a surprisingly competitive per-
formance of rare labels.

AGRU-KAMG (Lu et al., 2020) is the state-of-
the-art model of LMTC task, which can handle few-
and zero-shot labels. It utilizes the label graphs
based on the similarity among labels’ embeddings
and the label co-occurrence graphs besides the pre-
defined label hierarchy, which captures label rela-
tions from different views and thereby enhances
the quality of labels’ representations.

Among the above models, the first three use
randomly initialized label embedding for each la-
bel, which results in their incapability of coping
with unseen labels and poor generalization over
rare labels. Instead, the last three models use a
shared label encoder to obtain label representations,
which empowers them to handle few/zero-shot la-
bels. Because we focus on the models’ generaliza-



8639

tion over both frequent labels and few/zero-shot
labels, META-LMTC is only applied to the last three
models to verify its effectiveness and versatility. To
explore the necessity of a balanced task sampling
strategy, we also apply the simple extension of
MAML for the multi-label classification problem
(called SIMPLE-EXT8) to the same base models.

5.4 Implementation Details
We implement all the methods relying on the Py-
Torch library. We also use Higher (Grefenstette
et al., 2019) for our meta-learners. Additionally,
the binary cross-entropy loss is used as the loss
function during the meta-training and fine-tuning
phases. More details can be found in Appendix A.

5.5 Results
The experimental results of our methods and the
baselines on the MIMIC-III and EURLEX57K
datasets are shown in Table 2. We apply our
framework to the ZAGRU, ZAGGRU, and AGRU-
KAMG models. The performance of the mod-
els meta-trained by pure instance- and label-based
strategies is not reported here due to space limita-
tions but can be found in Appendix C.

As shown in the upper part of Table 2,
the AGRU-KAMG model meta-trained with our
method performs the best in every single evaluation
metric among all of the models on the MIMIC-III
dataset. Equipped with our method META-LMTC,
the state-of-the-art model, ARGU-KAMG, has
achieved relative improvements of 13.1% R@10
and 16.8% nDCG@10 on few-shot labels along
with 26.2% R@10 and 23.5% nDCG@10 on zero-
shot labels. In addition to the few/zero-shot labels,
performance on frequent ones can also benefit from
our method. We argue this is because our method
can obtain better initialization for these frequent
labels. It is worth noting that the performance of all
of the three base models is significantly improved
when equipped with META-LMTC, which verifies
its versatility.

The lower part of Table 2 presents the results
of our proposed methods and the baselines on the
EURLEX57K testing set. Similar to the experi-
mental results on the MIMIC-III dataset, our pro-
posed methods still bring great improvement to all

8Specifically, the support sets and the query sets are con-
structed like that of the instance-based task sampling strategy.
But when computing the loss on the query set, only seen
labels on the support sets are considered. In another word,
SIMPLE-EXT only constructs few-shot scenarios during the
meta-learning phases.

of the base models in each label group and out-
perform the baselines by a large margin. Specifi-
cally, by employing our method, the harmonic aver-
age nDCG@5 of ZAGRU, ZAGGRU, and AGRU-
KAMG is absolutely improved by 5.8% and 5.8%
and 3.5% respectively. This further confirms that
our method is capable of helping each model to
predict the labels more accurately.

Table 2 also shows the performance of the three
base models equipped with SIMPLE-EXT on the
dataset MIMIC-III and EURLEX57K. Although
this method can boost models’ performance, it is
not as effective as our method in that SIMPLE-EXT

neglects the zero-shot scenarios and long-tailed
label distributions of LMTC datasets.

5.6 Analysis

We explore the following questions further in the
section: Is META-LMTC also effective to the power-
ful BERTlike models? How does hyperparameters
choice affect this method? Which labels benefit
more from our method?

5.6.1 Apply to BERTlike Model
Most recently, Chalkidis et al. (2020) shows
BERTlike models (Devlin et al., 2019) equipped
with label-wise attention networks (BERT-LWAN)
has the best results among all methods on EU-
RLEX57K. But the BERT-LWAN relies solely on
trainable vectors to represent labels and thereby
cannot handle unseen labels. However, it is not
trivial to extend this model to zero-shot scenarios.
To cope with unseen labels, BERT-LWAN needs
to employ a shared label encoder to encode each
label’s text description as its representation. Due to
a large number of predefined label sets in LMTC
datasets, it is impractical to use BERT as the shared
label encoder.9

Fortunately, Sanh et al. (2019) presents a
smaller, faster and lighter model called Distil-
BERT while retaining 97% of BERT’s language
understanding capabilities. Thus, we employ this

9We also tried to simply average the word embeddings of
the label description, use a multi-layer perceptron or employ a
graph neural network as the shared label-encoder like ZAGRU,
ZAGGRU, and KAMG. But in this case, the model can not
converge, which may be caused by the huge gap of expression
ability between the text encoder and label encoder. We further
used the BERT as the shared label encoder, but the out-of-
memory issue was raised even using four 32G V100s. To solve
the issue, the gradient accumulation trick was applied, but it
needed more than ten days to converge; negative sampling
in the label space can accelerate the training process, but the
performance on frequent labels had a significant degradation.
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Harmonic Average
R@5 nDCG@5

Z-DistilBERT 70.14 66.15
+ META-LMTC 71.64 67.08

Table 3: Harmonic average metrics on EURLEX57K of
Z-DistilBERT with or without META-LMTC.

model as the shared label encoder and equip it with
LWAN and the gradient accumulation trick, which
is dubbed as Z-DistilBERT capable of zero-shot
learning. 10

Table 3 shows the difference in various metrics
on EURLEX57K using Z-DistilBERT with or with-
out META-LMTC. It clearly demonstrates the META-
LMTC can still bring significant improvement even
to the powerful BERTlike model, Z-DistilBERT.

5.6.2 Hyperparameter Studies
The META-LMTC improves the generalization abil-
ity of models by increasing the diversity of meta-
learning tasks and the task distribution depends on
the hyperparameter p. In this subsection, we inves-
tigate the influence of this hyperparameter on the
models’ performances.

Figure 3: The performance improvements of ZAG-
GRU+META-LMTC with different hyperparameter p
compared to the base model on the EURLEX57K.

Fig. 3 presents the difference between the perfor-
mance of ZAGGRU equipped with META-LMTC

and that of the base model. The hyperparameter p
is chosen from {0.00, 0.25, 0.50, 0.75, 1.00}. Note
that p = 0.00 is the pure label-based task sampling
strategy while p = 1.00 is the pure instance-based
one. It demonstrates that META-LMTC can con-
sistently boost the performance of the base model
with all different values of p. But the value of p
can significantly affect the performance of META-
LMTC. In general, the performance improves at
first and then decreases as the value of p increases.
As discussed before, pure task sampling strategies

10This model takes about 2.5 days to converge on EU-
RLEX57K. More details can be found in Appendix B.

are inferior because they ignore the long-tailed dis-
tribution of label frequency in LMTC datasets and
reduce the diversity of sampled tasks. Using other
base models, the experimental results also show a
similar trend, which can be found in Appendix D.

5.6.3 Performance Improvement Breakdown

Figure 4: Performance for AGRU-KAMG with and
without META-LMTC on the EURLEX57K dataset. The
green line denotes the improvement of AGRU-KAMG
with the addition of META-LMTC. Both models are
evaluated with nDCG@5 for label sets with different
maximum label frequencies (values on the x-axis).

To completely understand the source of the
performance boost, we resort to a detailed per-
formance improvement breakdown, presented in
Fig. 4. The green line in this figure indicates the
performance difference between applying or not
applying META-LMTC to the base model when con-
sidering labels with a frequency less than or equal
to a certain value. As can be seen, our method has
the greatest benefit for zero-shot labels and few-
shot labels whose frequencies are between 1 and
20. This reveals that META-LMTC does improve
the models’ ability to handle few/zero-shot labels.

6 Discussion

In this section, we report some experimental results
of evaluating few- and/or zero-shot labels in the
LMTC tasks in stricter settings.

6.1 Construction of the Zero-shot Label
Candidates

When evaluating models’ performance over unseen
labels, existing works just consider only the labels
appearing in the datasets (i.e., the validation or test-
ing test) but not all available labels. However, in
the realistic setting, we only know that the unseen
label appears in the predefined label set. For that,
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we consider all the available labels but not appear-
ing in the training set as zero-shot label candidates.
Because the number of zero-shot labels are dra-
matically increases, the performances of all mod-
els drop dramatically. For example, the R@5 and
nDCG@5 of the ZAGRU model drops from 54.5%
and 43.7% to 20.7% and 14.6% respectively in the
EURLEX57K dataset. But our method can still
bring performance enhancement to these base mod-
els. When equipped with META-LMTC, they rise to
23.8% (+3.1%) and 16.4% (+1.8%).

6.2 Evaluation Metrics of the Few/Zero-shot
Labels

In LMTC tasks, ranking-based metrics are often
adopted to evaluate the top K labels with the high-
est scores predicted by the model, e.g. R@K and
nDCG@K. In previous works, the value of K is
selected based on the average number of labels
per document. However, the average numbers
of few- and/or zero-shot labels in each dataset
are much lower than the selected K, which may
lead to inappropriate evaluation on these labels.
For example, the average numbers of few- and
zero-shot labels in the EURLEX57K dataset are
about 1.7 and 1.1 respectively (instead of 5), so we
set K=2 and K=1 for few- and zero-shot evalua-
tion. Under these settings, the performance of the
AGRU-KAMG model on the few-shot labels be-
comes 52.5% R@2 and 57.3% nDCG@2. As for
the zero-shot labels, AGRU-KAMG gets 24.1%
R@1 and 25.8% nDCG@1. Even though the
model’s performance shows an obvious difference,
our method can still bring steady improvement on
both few- and zero-shot labels, specifically 55.2%
R@2 (+2.7%) and 60.7% nDCG@2 (+3.4%) for
few-shot labels along with 26.9% R@1 (+2.8%)
and 28.3% nDCG@1 (+2.5%) for zero-shot ones.

7 Conclusion and Future Work

In this paper, we proposed an optimization-based
meta-learning framework, namely META-LMTC,
along with several task sampling strategies. We are
the first study to address the LMTC tasks from a
meta-learning perspective. Extensive experimental
results showed that our method is able to signif-
icantly improve the performance of all the base
models. The further analysis presented that our
method is also applicable to the strong BERTlike
model, and revealed the source of the performance
boost our method brings. As future work, we will

further explore the meta-learning approaches to
handle the generalized zero-shot learning problem
(GZSL) in the LMTC tasks.
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A Additional Implementation Details of
Main Experiments

We extract the vocabularies from both the docu-
ments in the training texts and the label descriptors.
Each document is truncated at the length of 512 at
the training and inference stage.

Hyperparameters are selected with the best
nDCG@K of the zero-shot labels on the valida-
tion set. The search space of each hyperparameter
is shown in Table 4.

For all the models implemented in experiments
of the two datasets, the one-layer Bi-GRU with
hidden dimension 100 is used to set up the RNN
encoders and 200 filters with kernel size 10 is for
the CNN encoders. The size of the GCNs’ hid-
den states is set to 200. Additionally, We used
200-dimensional word embeddings pretrained on
PubMed (Zhang et al., 2019) and GloVe (Pen-
nington et al., 2014) for the MIMIC-III and EU-
RLEX57K respectively. The dropout rate is set to
0.1 for the embedding layer and 0.5 for the last
hidden layer for all the implemented models.

In the meta-training phase, the SGD optimizer
with learning rate α = 3 × 10−3 is used for
each task’s local update in the MIMIC-III and
α = 1 × 10−3 in the EURLEX57K. The Adam
optimizer with learning rate β = 3× 10−4 is used
to update the global parameters in the MIMIC-III
and β = 1× 10−4 in the EURLEX57K. The size
of the support set and the query set is 128 and 32
respectively. Besides, the model’s global parame-
ters are updated once using the average loss of 4
sampled tasks. At last, the meta-model is saved for
the fine-tuning phase after being updated by 300
iterations, i.e., learning from 1200 sampled tasks.

In the training phase, the batch size of 64 is used
for both of the datasets. When training a model
from scratch, the learning rate is set to 1 × 10−3

for MIMIC-III and 3× 10−4 for EURLEX57K. If
fine-tuning a model that has been meta-trained, the
learning rate is 3× 10−4 and 1× 10−4 for MIMIC-
III and EURLEX57K respectively.

All experiments are run with one NVIDIA GPU
V100. In Table 5, we report the size of the models
and the elapsed training time.

B Implementation Details of
Z-DistilBERT

We implement the Z-DistilBERT model similar to
ZAGRU but replace both text encoder and label
encoder with DistilBERT. Due to the thousands

of labels in LMTC tasks, the memory overhead
will become unacceptable if all the labels are en-
coded at the same time. To overcome this issue,
we divide the labels into many blocks with small
sizes, e.g. 256 labels per block. For each block,
the loss of its labels and the gradients of the model
parameters are firstly computed. Then the gradient
of each parameter are accumulated and the com-
putation graph except for the text encoding part
will be freed manually. When all the blocks are
processed serially, model parameters are updated
with the accumulated gradients.

C Full Experiments Results

The experimental results of our methods and the
baselines on dataset MIMIC-III and EURLEX57K
are shown in Table 6. We apply our algorithm to
the ZAGRU, ZAGGRU, and AGRU-KAMG mod-
els based on the instance-based (META-LMTC-IS),
label-based (META-LMTC-LS), and final sampling
strategies (META-LMTC). The results show that all
the existing models can obtain significant improve-
ments in performance when being meta-trained
with our method, which illustrates the effective-
ness and versatility of our methods. Additionally,
the final strategy outperforms the pure instance- or
label-based ones in most of the metrics.

D Additional Hyperparameter Studies

Fig. 5 and Fig. 6 present the performance improve-
ments brought by META-LMTC to the ZAGRU
and KAMG models. The hyperparameter p is
chosen from {0.00, 0.25, 0.50, 0.75, 1.00}. Note
that p = 0.00 is the pure label-based one while
p = 1.00 is the pure instance-based task sampling
strategy. It demonstrates that with all different
value of p, META-LMTC can consistently boost the
performance of the base model. But the value of p
can significantly affect the performance of META-
LMTC. Generally speaking, pure task sampling
strategies are sub-optimal because they ignore the
long-tailed distribution of label frequency in LMTC
datasets and reduce the diversity of sampled tasks,
which does harm to the models’ performance.
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Models Train
hidden (filter) size feature dropout embedding dropout batch size learning rate
{100, 150, 200} {0,0.5} {0,0.1,0.2} {64,128} {1e-4,3e-4,1e-3}

Meta-train
Iterations local learning rate global learning rate support set size query set size

{100,200,300,400,500} {3e-4,1e-3,3e-3} {1e-4,3e-4,1e-3} {64,128} {32,64}

Table 4: Hyperparameter search space of the models, training and meta-training stage.

Methods Trainable Parameters Training Time (MIMIC-III/EURLEX57K)
CNN 29 1.5h/1h
RCNN 29 2h/1.5h
CAML 30 3h/2h
ZAGRU 28 2.5h/2.5h
ZAGRU+META-LMTC 28 3h/3h
ZAGGRU 29 2.5h/2.5h
ZAGGRU+META-LMTC 29 3h/3h
AGRU-KAMG 31 3h/3h
AGRU-KAMG+META-LMTC 31 3.5h/3.5h
Z-DistilBERT 66 71h/59h
Z-DistilBERT+META-LMTC 66 82h/67h

Table 5: Number of parameters in millions and training time for a single run reported for all examined methods on
the MIMIC-III and EURLEX57K datasets.

Figure 5: The performance improvements of ZA-
GRU+META-LMTC with different hyperparameter p
compared to the base model on the EURLEX57K.

Figure 6: The performance improvements of AGRU-
KAMG+META-LMTC with different hyperparameter p
compared to the base model on the EURLEX57K.
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Frequent Few-shot Zero-shot Harmonic AverageMIMIC-III R@10 nDCG@10 R@10 nDCG@10 R@10 nDCG@10 R@10 nDCG@10

CNN 34.6 44.2 5.5 2.9 - - - -
RCNN 43.9 56.0 14.2 9.8 - - - -
CAML 41.2 53.3 5.9 3.9 - - - -

ZAGRU 49.0 61.3 26.9 17.7 34.7 22.2 34.7 25.5
+ META-LMTC-IS 49.4 62.2 26.9 18.6 36.6 24.3 35.4 27.0
+ META-LMTC-LS 49.2 61.8 27.0 18.8 35.9 23.6 35.2 26.9
+ META-LMTC 49.7 62.6 29.1 20.2 38.8 24.1 37.4 28.0

ZAGGRU 49.1 61.8 26.2 17.4 33.9 24.1 34.1 26.1
+ META-LMTC-IS 49.6 62.4 27.2 17.9 36.7 24.5 35.6 26.6
+ META-LMTC-LS 49.2 61.9 27.8 19.2 36.2 24.5 35.8 27.5
+ META-LMTC 49.6 62.3 28.3 19.7 40.9 25.2 37.5 28.2

AGRU-KAMG 49.5 62.4 28.9 19.1 34.3 23.0 35.7 26.8
+ META-LMTC-IS 50.0 63.0 29.2 19.9 40.1 27.0 37.9 29.1
+ META-LMTC-LS 50.2 63.1 32.6 21.6 39.8 26.2 39.6 29.9
+ META-LMTC 50.2 63.2 32.7 22.3 43.3 28.4 40.8 31.3

Frequent Few-shot Zero-shot Harmonic AverageEURLEX57K R@5 nDCG@5 R@5 nDCG@5 R@5 nDCG@5 R@5 nDCG@5

CNN 71.8 78.2 56.5 50.8 - - - -
RCNN 68.8 75.3 53.3 47.6 - - - -
CAML 66.2 72.7 43.5 39.2 - - - -

ZAGRU 70.9 77.1 56.2 51.9 51.1 40.9 58.3 52.9
+ META-LMTC-IS 74.1 80.4 57.3 53.1 55.6 44.2 61.3 55.7
+ META-LMTC-LS 73.5 79.8 62.6 58.0 57.9 43.4 64.0 56.8
+ META-LMTC 74.2 80.6 65.3 60.0 57.9 45.3 65.1 58.7

ZAGGRU 71.9 78.2 56.9 51.8 50.6 41.6 58.5 53.4
+ META-LMTC-IS 75.2 81.6 58.6 53.7 55.6 41.5 62.1 54.6
+ META-LMTC-LS 73.0 79.5 62.0 56.2 56.2 41.8 63.0 55.3
+ META-LMTC 75.2 81.6 65.5 60.6 56.7 45.7 64.9 59.2

AGRU-KAMG 72.4 78.9 59.1 54.2 54.5 43.7 61.1 55.5
+ META-LMTC-IS 73.9 80.2 64.0 58.8 55.1 43.1 63.4 56.9
+ META-LMTC-LS 72.7 79.0 60.1 55.1 57.3 45.0 62.7 56.6
+ META-LMTC 74.2 80.6 64.3 59.4 59.0 46.3 65.2 59.0

Table 6: Results (%) of experiments across all the methods for frequent, few-shot, and zero-shot label groups. The
first three methods are incapable of zero-shot learning. Bold figures are the best results for each metric among all
the methods considering the zero-shot problems. The best results of each base model are shown underlined. The
corresponding p values for the ZAGRU, ZAGGRU, AGRU-KAMG equipped with META-LMTC are 0.5, 0.67, 0.5
on the MIMIC-III and 0.67, 0.67, 0.33 on the EURLEX57K, respectively.


