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Abstract

Previous works have shown that contextual
information can improve the performance of
neural machine translation (NMT). However,
most existing document-level NMT methods
only consider a few number of previous sen-
tences. How to make use of the whole
document as global contexts is still a chal-
lenge. To address this issue, we hypothe-
size that a document can be represented as
a graph that connects relevant contexts re-
gardless of their distances. We employ sev-
eral types of relations, including adjacency,
syntactic dependency, lexical consistency, and
coreference, to construct the document graph.
Then, we incorporate both source and target
graphs into the conventional Transformer ar-
chitecture with graph convolutional networks.
Experiments on various NMT benchmarks,
including IWSLT English–French, Chinese-
English, WMT English–German and Opensub-
title English–Russian, demonstrate that using
document graphs can significantly improve the
translation quality. Extensive analysis verifies
that the document graph is beneficial for cap-
turing discourse phenomena.

1 Introduction

Although neural machine translation (NMT) has
achieved great success on sentence-level translation
tasks, many studies pointed out that translation
mistakes become more noticeable at the document-
level (Wang et al., 2017; Tiedemann and Scherrer,
2017; Zhang et al., 2018; Miculicich et al., 2018;
Kuang et al., 2018; Voita et al., 2018; Läubli et al.,
2018; Tu et al., 2018; Voita et al., 2019b; Kim et al.,
2019; Yang et al., 2019). They proved that these
mistakes can be alleviated by feeding the contexts
into context-agnostic NMT models.

Previous works have explored various methods
to integrate context information into NMT models.

∗Work was done when Mingzhou Xu was interning at
Noah’s Ark Lab.
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Figure 1: The structure of graph. Solid lines in blue de-
pict adjacency relations. Dash lines in green denote de-
pendency relations. Lexical consistency is represented
as dashed lines in red. The brown line means a corefer-
ence relation. S denotes Sentence node. We just show
aspects of sentences for convenience.1

They usually take a limited number of previous sen-
tences as contexts and learn context-aware repre-
sentations using hierarchical networks (Miculicich
et al., 2018; Wang et al., 2017; Tan et al., 2019)
or extra context encoders (Jean et al., 2015; Zhang
et al., 2018; Yang et al., 2019). Different from
representation-based approaches, Tu et al. (2018)
and Kuang et al. (2018) propose using a cache to
memorize context information, which can be either
history hidden states or lexicons. To keep track-
ing of most recent contexts, the cache is updated
when new translations are generated. Therefore,
long-distance contexts would likely be erased.

How to use long-distance contexts is drawing
attention in recent years. Approaches, like treating
the whole document as a long sentence (Junczys-
Dowmunt, 2019) and using memory and hierar-
chical structures (Maruf and Haffari, 2018; Maruf
et al., 2019; Tan et al., 2019), are proposed to take
global contexts into consideration. However, Kim
et al. (2019) point out that not all the words in a
document are beneficial to context integration, sug-
gesting that it is essential for each word to focus on
its own relevant context.

1Dependency and coreference relations are from Stanford
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To address this problem, we suppose to build a
document graph for a document, where each word
is connected to those words which have a direct
influence on its translation. Figure 1 shows an ex-
ample of a document graph. Explicitly, a document
graph is defined as a directed graph where: (1)
each node represents a word in the document; (2)
each edge represents one of the following relations
between words: (a) adjacency; (b) syntactic depen-
dency; (c) lexical consistency; or (d) coreference.

We apply a Graph Convolutional Network
(GCN) on the document graph to obtain a
document-level contextual representation for each
word, fed to the conventional TRANSFORMER

model (Vaswani et al., 2017) by additional atten-
tion and gating mechanisms. We evaluate our
model on four translation benchmarks, IWSLT
English–French (En–Fr) and Chinese–English (Zh–
En), Opensubtitle English–Russian (En–Ru), and
WMT English–German (En–De). Experimental re-
sults demonstrate that our approach is consistently
superior to previous works (Miculicich et al., 2018;
Tu et al., 2018; Zhang et al., 2018; Macé and Ser-
van, 2019; Tan et al., 2019; Maruf et al., 2019) on
all the language pairs.

Contributions of this work are summarized as:
• We represent a document as a graph that con-

nects relevant contexts regardless of their dis-
tances. To the best of our knowledge, this is
the first work to introduce such graphs into
document-level neural machine translation.
• We investigate several relations between

words to construct document graphs and ver-
ify their effectiveness in experiments.
• We propose a graph encoder to learn graph

representations based on GCN layers with an
attention mechanism to combine representa-
tions of different sources.
• We proposed a context integration method that

examined the proposed graph model in differ-
ent context-aware MT architectures.

2 Approach

In this section, we introduce the proposed docu-
ment graph and model for leveraging contextual
information from documents. Firstly, we present a
definition of the problem. Then, the construction
and representation learning of document graphs are
explained in Section 2.2 and Section 2.3, respec-
tively. Finally, we describe the method of integrat-

CoreNLP (https://corenlp.run/).

ing document graphs and model architectures that
we use to examine the integration.

2.1 Problem Definition
Document-level NMT learns to translate from a
document in a source language to a document in
a target language. Formally, a source document is
a set of M sentences X = [X1, ..., Xm, ..., XM ],
where Xm = [xm1 , ..., x

m
i , ..., x

m
Im

] indicates the
mth sentence of the document. The correspond-
ing target document is Y = [Y 1, ..., Y m, ..., YM ],
where Y m = [ym1 , ..., y

m
j , ..., y

m
Jm

] is a translation
of the source sentence Xm.

Given the source document to translate, we as-
sume that there is a pair of source and target hid-
den graphs GX,Ŷ =

〈
GX, GŶ

〉
(called document

graphs and defined in Section 2.2) to help gener-
ate the target document. Therefore, the translation
probability from X to Y can be represented as:

P (Y|X)

=
∑
GX,Ŷ

P (Y|X, GX,Ŷ)P (GX,Ŷ|X) (1)

∝ P (Y|X, GX,Ŷ) (2)

Equation (1) is computationally intractable.
Therefore, instead of considering all possible graph
pairs, we only sample one pair of graphs according
to the source document resulting in a simplified
Equation (2). The construction of source and target
graphs are described in Section 2.2.

The translation of a document is further decom-
posed into translations of each sentence with docu-
ment graphs as context:

P (Y|X) ≈
M∏

m=1

P (Y m|Xm, GX,Ŷ) (3)

2.2 Graph Construction
Graphs used in this paper are directed, which can
be represented as G = (V,E), where V is a set of
nodes and E is a set of edges where an edge e =
(u, v) with u, v ∈ V denotes an arrow connection
from the node u to the node v.

Our graph contains both word-level and
sentence-level nodes. Given a document X =
[· · · ;xm1 , · · · , xmIm ; · · · ] where xmi is the ith (1 ≤
i ≤ Im) word in the mth (1 ≤ m ≤M ) sentence,
we construct a document graph with

∑M
m=1 Im

word-level nodes and M sentence-level nodes.
Each word-level node xmi in the mth sentence is

https://corenlp.run/
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directly connected to the sentence-level node Sm.
Edges between word-level nodes are determined by
intra-sentential and inter-sentential relations. Fig-
ure 1 shows an example document graph. Note that
not all edges are depicted for simplicity.

Intra-sentential Relations provide links be-
tween words in a sentence Xm = xm1 , · · · , xmIm .
These links are relatively local yet informative and
help understand the structure and meaning of the
sentence. In this paper, we consider two kinds of
intra-sentential relations:
• Adjacency provides a local lexicalized con-

text that can be obtained without resorting to
external resources and has been proven bene-
ficial to sentence modeling (Yang et al., 2018;
Xu et al., 2019). For each word xmi , we add
two edges (xmi , x

m
i+1} and (xmi , x

m
i−1}. This

means we add links from the current word to
its adjacent words.
• Dependency directly models syntactic and

semantic relations between two words in a
sentence. Dependency relations not only pro-
vide linguistic meanings but also allow con-
nections between words with a longer dis-
tance. Previous practices have shown that
dependency relations enhance representation
learning of words (Marcheggiani and Titov,
2017; Strubell et al., 2018; Lin et al., 2019).
Given a dependency tree of the sentence and
a word xmi , we add a graph edge (xmi , x

m
j ) if

xmi is a headword of xmj .

Inter-sentential Relations allow links from one
sentence Xm = xm1 , · · · , xmIm to another follow-
ing sentence Xn = xn1 , · · · , xnIn . These relations
provide discourse information, which is important
for capturing document phenomena in document-
level NMT (Tiedemann and Scherrer, 2017; Voita
et al., 2018). Accordingly, we consider two kinds
of relations in our document graph:
• Lexical consistency considers repeated and

similar words across sentences in the doc-
ument, which reflects the cohesion of lex-
ical choices. In this paper, we add edges
{(xmi , xnj )} if xmi = xnj or Lemma(xmi ) =
Lemma(xnj ). Namely, the exact same words
and words with the same lemma in the two
sentences are connected in the graph.
• Coreference is a common phenomenon in

documents and exists when referring back to
someone or something previously mentioned.
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Figure 2: Illustration of the proposed document graph
encoder. L in this paper is set to 2.

It helps understand the logic and structure of
the document and resolve the ambiguities. In
this paper we add a graph edge (xmi , x

n
j ) if

xmi is a referent of xnj given by coreference
resolution.

Inter-sentential relations also exist between words
in the same sentence, where m = n.

Source and Target Graphs In this paper, we
construct a source graph directly from a source
document using the method mentioned above. The
target graph is built incrementally during inference,
i.e., translations of previous sentences in the same
document are used as target context. For simplicity,
each target context sentence is treated as a fully
connected graph and encoded independently by the
graph encoder.

2.3 Document Graph Encoder
As the document is projected into a document
graph, a flexible graph encoder is required to en-
code the complex structure. Previous studies ver-
ified that GCNs can be applied to encode linguis-
tic structures such as dependency trees (Marcheg-
giani and Titov, 2017; Bastings et al., 2017; Koncel-
Kedziorski et al., 2019; Huang et al., 2020). In this
paper, we follow previous practices to use stacked
GCN layers as the encoder of document graph with
considerations on edge directions.

Graph Convolutional Networks GCNs are neu-
ral networks operating on graphs and aggregating
information from immediate neighbors of nodes.
Information of longer-distance nodes is covered
by stacking GCN layers. Formally, given a graph
G(V,E), the GCN network first projects the nodes
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Figure 3: Illustration of the examined architecture. The context information is integrated with a Context-Attn
mechanism. Hyb-integration is adding the Context-Attn inside each encoder layer. Post- and Pre-integration is
aggregating after and before the encoder, respectively. N in this paper is 6. We only apply source context to the
encoder and target context to the decoder, when the contexts are available. Otherwise, we follow the setting of
existing works. We share the graph encoder for both source and target graph. Details are shown in Supplementary.

V into representations H0 ∈ RI×d, where d stands
for hidden size and I = |V |. Node representations
H l of the lth layer can be updated as follows:

H l+1 = σ(D−
1
2AD−

1
2 (W l+1H l +Bl+1)) (4)

where σ is the sigmoid function and W l+1 ∈
Rd×d, Bl+1 ∈ Rd are learnable parameters, A ∈
RI×I is an adjacency matrix that stores edge infor-
mation:

A(i, j) =

{
1, ∃(vi, uj) ∈ E,
0, otherwise.

(5)

The degree matrix D ∈ RI×I is assigned to weight
the expected importance of a current node based on
the number of input nodes, which can be calculated
with the adjacency matrix:

D(i, j) =

{∑I
j′=1A(j

′, i), i = j,

0, otherwise.
(6)

Fusion of Edge Information Equation (5) only
considers input features. To fully use direction in-
formation in the graph, we apply GCN on different
types of edges:

Ĥ l+1
t = σ(D̂

− 1
2

t ÂtD̂
− 1

2
t (Ŵ l+1

t H l +Bl+1
t )) (7)

where t ∈ {in, out, self} represents one of the edge
types, i.e., input edges, output edges, or a specific
type of self-loop edges. We assume the contribu-
tions of the representations learned from a different
kind of edges should be different. We then apply a
type-attention mechanism, which works better than
a linear combination in our experiments,2 to com-

2We report our experiments in Section 2 of Supplementary.

bine these representations of different edge types:

H l+1 =
∑
t

αtĤ
l+1
t (8)

αt = Softmax(
H lĤ l+1

t√
d

) (9)

where the αt are attention weights given by a dot-
product attention algorithm (Vaswani et al., 2017).

Sentence Embedding After the GCN, we ex-
tract the sentence-level nodes Sm as context rep-
resentation. Since the GCN ignores explicitly po-
sitional information between sentences, we add a
sentence embedding before integrating the context
representation into an encoder or decoder. Figure 2
shows our graph encoder.

2.4 Integration of Context Representation
Context representation HG from the document
graph encoder is treated as a memory and used
by an attention mechanism, namely:

Hc = Context-Attn(X,HG, HG) ∈ RI×d (10)

where Context-Attn is a multi-head attention
function (Vaswani et al., 2017). Instead of using
the standard residual connection in this sublayer,
we adopt a gated mechanism following Zhang
et al. (2019) to dynamically control the influence
of context information:

Gate(X,Hc) = λX + (1− λ)Hc (11)

λ = σ(WaX +WcHc) (12)

where λ are gating weights, and σ(·) denotes
the sigmoid function. Wa and Wc are the train-
able parameters. In the rest of this paper, we use
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Context-Attn to denote both the attention and gated
residual mechanisms.

In this paper, the Context-Attn sublayer is used
in three different ways, as shown in Figure 3:
• Hyb-integration: integrates the contextual

information with an additional Context-Attn
layer inside each encoder layer (Zhang et al.,
2018).
• Post-integration: aggregates the contextual

information by adding a Context-Attn layer
after the encoder (Tan et al., 2019; Miculicich
et al., 2018; Maruf et al., 2019).
• Pre-integration: interpolates the context rep-

resentation before the encoder, which can be
considered as the hierarchical embedded (Ma
et al., 2020).

3 Experiments

Data We evaluate our approach on translation
benchmarks with different corpus size: (1) IWSLT
En–Fr and Zh–En translation tasks (Cettolo et al.,
2012) with around 200K sentence pairs for training.
Following convention (Wang et al., 2017; Miculi-
cich et al., 2018; Zhang et al., 2018), both language
pairs take dev2010 as the development set. tst2010
is used for testing on En–Fr and tst2010∼tst2013
on Zh–En. (2) Opensubtitle2018 En–Ru translation
corpus released by Voita et al. (2018), which con-
tains 6M sentence pairs for training, among which
1.5M sentence pairs have context sentences. (3)
We adopted the WMT19 document-level corpus
published by Scherrer et al. (2019) for the En-De
translation task. This data contains 2.9M parallel
sentences with document boundaries and 10.3M
back-translated sentence pairs.

All data are tokenized and segmented into sub-
word units using the byte-pair encoding (Sennrich
et al., 2016). We apply 32k merge steps for each
language on En-Fr, En-Ru, En-De tasks, and 30k
for Zh-En task. As a node in a document graph rep-
resents a word rather than its subwords, we average
embeddings of the subwords as the embedding of
the node. The 4-gram BLEU (Papineni et al., 2002)
is used as the evaluation metric.

Models and Baselines Models trained in two
stages (Jean et al., 2015): conventional sentence-
level TRANSFORMER models (denoted as BASE)
are first trained with configurations following pre-
vious works (Zhang et al., 2018; Miculicich et al.,
2018; Voita et al., 2019b; Vaswani et al., 2017).
Then, we fix sentence-level model parameters and

only train additional parameters introduced by our
methods. We set the layers of the document graph
encoder to 2 and share their parameters3.

To compare our graph-based method with prior
works, we reimplement several document-level
baselines on the TRANSFORMER architecture and
replace their context modules with ours (Please
refer to Supplementary on details):
• CTX (Zhang et al., 2018) employs an addi-

tional encoder to learn context representations,
which are then integrated by cross-attention
mechanisms.
• HAN (Miculicich et al., 2018) uses a hierar-

chical attention mechanism with two levels
(word and sentence) of abstraction to incorpo-
rate context information from both source and
target documents.
• HM-GDC (Tan et al., 2019) learns representa-

tions with a global context using a hierarchical
attention mechanism.
• SELECTIVE (Maruf et al., 2019) consider both

source and target documents by selecting rele-
vant sentences as contexts from a document.
• UNIFIED (Ma et al., 2020) employ the first en-

coder layer of Transformer to encode the cur-
rent sentence with context information. Then,
the context-aware representation of the cur-
rent sentence is feed to the transformer model.

3.1 Overall Results

Table 1 shows the overall results on four transla-
tion tasks. We find that systems with document
graphs achieve the best performance among all
context-aware systems on all language pairs with
comparable or better training speed. This verifies
our hypothesis that document graphs are benefi-
cial for modeling and leveraging the context. With
target graphs, the translation quality in terms of
BLEU gets slightly improved, which shows the
positive effect of the target context to some extent.
Compared with the corresponding baseline model,
our model has a comparable or less number of pa-
rameters indicating that the improvements of our
method are not because of parameter increments.

3.2 Ablation Study

Edge Relations To investigate the influence of
the graph construction, we first inspect each kind of
edge relation individually by constructing graphs

3Please refer to Supplementary for more details.
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Model En-Fr Zh-En En-DE En-Ru Para.4 Speed4 Test 4 Test 4 Test 4 Test
BASE − 36.93 − 17.98 − 40.67 − 31.98 - 24.9k

Hyb-Integration
CTX − 37.55 − 18.77 − 40.95 31.27 31.95 22.06M 16.3k
+ SRC-GRAPH +0.78 38.32⇑ +0.89 19.66⇑ +0.62 41.57↑ +0.92 32.87⇑ 21.01M 17.7K
+ TGT-GRAPH +1.24 38.79⇑ +1.44 20.21⇑ +0.89 41.84⇑ +0.93 32.88⇑ 21.01M 17.0K

Post-integration
HM-GDC − 37.42 − 18.52 − 40.86 − 32.07 7.30 M 19.9k
HAN∗ − 37.70 − 18.69 − 41.08 − 32.36 7.36 M 14.4k
SELECTIVE∗ − 37.95 − 18.95 − 41.27 − 32.54 8.39 M 7.7 k
+ SRC-GRAPH +0.03 37.98 +0.61 19.56↑ +0.27 41.54 −0.07 32.47 6.27 M 19.7K
+ TGT-GRAPH +0.40 38.35↑ +1.07 20.02⇑ +0.62 41.89↑ +0.01 32.55 6.27 M 18.9K

Pre-integration
UNIFIED − 38.02 − 19.01 − 41.35 − 32.44 0.01 M 19.6K
+ SRC-GRAPH +0.77 38.79⇑ +0.99 20.00⇑ +0.52 41.87 +0.45 32.89↑ 5.27 M 19.7K
+ TGT-GRAPH +0.97 38.99⇑ +1.45 20.46⇑ +0.98 42.33⇑ +0.47 32.91↑ 6.27 M 18.5K

Table 1: Main results (BLEU) on IWSLT Zh–En and EN–FR, WMT19 En–De, and Opensubtitle2018 En–Ru
translation tasks. “↑ / ⇑” denotes significant improvement (Koehn, 2004) over the best baseline model with
context on each task at p < 0.05/0.01, respectively. The models in bold are selected to merge with our document
graph methods. “Para.” and “Speed” indicate the model size (M = million) and training speed (tokens/second),
respectively. ∗ denotes that the model considers the target context.

Ablation Model Dev Test
BASE 29.75 36.93

Relations
+ADJACENCY 30.50 37.69
+DEPENDENCY 30.75 37.81
+LEXICAL 30.68 37.78
+COREFERENCE 30.49 37.54

Comp.
+INTRA 30.95 38.04
+INTER 30.89 37.97
+ALL 31.79 38.94

Table 2: Ablation study of source graph variants on
IWSLT En-Fr, where LEXICAL represents “Lexical
consistency”. Comp. represents the complementation.

using only one of them. Table 2 shows that each
kind of relation itself improves the translation qual-
ity over the BASE model, which demonstrates the
effectiveness of each selected intra-sentential and
inter-sentential relation. Combining relations can
further improve the system, which achieves the
best performance when all relations are considered.
These results indicate that the selected relations in
this paper are complementary to each other.

Word-level vs. Sentence-level Nodes We fur-
ther examined the influence of the context informa-
tion at different levels (word- and sentence-level).
In this experiment, we tried to use representations

Ablation BLEU Speedword sentence
− − 29.75 24.9K√

× 31.79 16.2K
×

√
31.66 17.7K√ √
31.75 15.6K

Table 3: Influence of word- and sent-level representa-
tions on IWSLT En-Fr.

of word-level nodes as context. For achieving a
better performance, only words in the current sen-
tence are selected. The results are shown in Table
3. We can find that using only representations of
sentence-level nodes as context (i.e., default set-
ting) achieves comparable BLEU scores but with a
faster training speed.

Sentence Embedding Table 4 show the influ-
ence of sentence embedding. We can find that
using sentence embedding slightly improves the
performance (+0.2 BLEU). This is because our
graphs are directed where positional information is
preserved to some extent.

4 Analysis

In this section, we analyze the proposed method to
reveal its strengths and weaknesses in terms of (1)
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(a) Context-Distance (b) Document-Size

Figure 4: (a) Visualization of the effectiveness based on the number of sentences considered as contexts in the
inference. The straights are the trend-line of the tested models. (b) Visualization of the effectiveness based on the
number of sentences on a document, examined on testing set of Zh-En which contains 56 documents.

Ablation BLEU Para.4
Sentencen embedding

√
31.66 20.21K

× 31.46 20.00K

Table 4: Influence of sentence embedding on the
IWSLT En-Fr benchmark.

context distance and its influence; (2) accuracy of
dependency tree; (3) changes in document phenom-
ena of translations; and (4) give a case study.

4.1 Context Distance

Figure 4a shows the influence of context distance
on translation quality. We found that HAN per-
forms worse when increasing the number of context
sentences. One possible reason is that sequential
structures introduce not only long-distance con-
text but also more irrelevant information. By con-
trast, our model is getting better while more con-
text is considered. This suggests that graphs help
the model focus on relevant contexts regardless of
their distance. SELECTIVE achieves a lower perfor-
mance than our model and the gap becomes larger
when on longer context, which we surmise is be-
cause the attention mechanism has difficulties to
differentiate the usefulness of context. This also
indicates that the prior knowledge indeed benefits
to select relevant context.

Figure 4b shows evaluation results on different
document lengths, i.e., the number of sentences
in the document. We found that models consider-
ing global context (SELECTIVE and OUR) achieve
better results than HAN. OUR is consistently bet-
ter than SELECTIVE as well, especially on shorter

and longer documents. These results suggest that a
global context is beneficial to document-level NMT
and appropriate consideration of global context is
essential.

Figure 5: Influence of dependency-tree accuracy on the
En–Fr translation task. We examined three different
integration methods as described in Section 2.4. We
treat the conversion of k-best results from constituency
parser as the dependency tree with decreasing accuracy.

4.2 Influence of Dependency-Tree Accuracy

Figure 5 illustrates the influence of accuracy of de-
pendency trees during inference. The Best means
the best result from the dependency parser. The 1
to 5 denote dependency trees converted from the 5-
best constituency trees of decreasing accuracy.4 We
find that the performance of our systems with Post
and Hyb methods slightly decrease when parsing
accuracy becomes lower. However, the Pre method
is more robust to parsing accuracy. We attribute
this to the fact that integrating the document graph

4The version of the universal dependency parser in Stan-
ford CoreNLP we used does not support generating n-best
results. Therefore, we convert n-best constituent trees into
dependency trees.
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Model Consistency Discourse
Dex. Lex. Ell. Coref. Cohe.

BASE 50.0 45.1 38.9 50.0 50.0
NOISE 50.0 45.2 39.6 50.5 49.5
HAN 60.2 57.0 64.5 55.5 53.5
SELECTIVE 75.0 68.5 74.3 65.5 55.0
OUR 77.3 72.5 75.1 69.5 58.5
w/o TGT-G 60.4 63.4 59.3 57.0 55.0
w/o INTRA 65.2 56.5 53.8 63.0 53.5
w/o INTER 55.4 52.7 64.1 55.0 54.5

Table 5: Accuracy(%) on the Consistency and Dis-
course test sets. “Dex.”, “Lex.” and “Ell.” refer to
dexis, lexical cohesion and ellipsis, respectively. Coref.
and Cohe. denote the coreference and cohesion tasks,
respectively. TGT-G means target graphs. INTRA
and INTER are the two group of relations for the graph
construction.

before the encoder leads to more opportunities to
resist the noise.

4.3 Discourse Phenomena

We also examine whether our approaches are bene-
ficial to capture discourse phenomena by evaluat-
ing our model on the Consistency test set (Voita
et al., 2019a) and Discourse test set (Bawden et al.,
2018).5

Test set The Consistency test set contains three
types of tasks on En–Ru: 1) Dex. checks the trans-
lation of deictic words or phrases. 2) Lex. focuses
on the translation consistency of reiterative phrases.
3) Ell. tests whether models correctly predict ellip-
sis verb phrases or the morphology of words.

The Discourse test set consists of two probing
tasks on En–Fr: 1) Coref. aims to test whether the
gender of an anaphoric pronoun (it or they) is co-
herent with the previous sentence. 2) Cohe. is a set
of ambiguous examples whose correct translations
rely on the context.

Result on Discourse Phenomena As shown in
Table 5, all the context-aware models comprehen-
sively improve the performance on discourse phe-
nomena over the context-agnostic BASE model.
Results on the the NOISE model (Li et al., 2020)
indicate that the improvement is not merely be-
cause of robust training. Compared to prior context-
aware models, our model achieves the best accu-
racy on all tasks. Especially on the Lex., Coref. and
Cohe. tasks, our model outperforms others over

5More detailed reports on these tasks are presented in the
Supplementary.

two points. Note that on the ellipsis task graph
edges are usually missing for elided verb phrases.
For example, given the following source sentence
and its context (Voita et al., 2019b), the verbs “told”
and “did” are not directly connected in our graph
but indirectly connected via the coreference rela-
tion of their neighbors “Nick” and “he”. Hence,
our approach is still slightly better than the best
prior method SELECTIVE. Directly linking such
words may bring further improvements, which we
leave for future work.

Context Nick told you what happened, right?
Source Yeah, he did.

Analysis on Graphs We further conduct experi-
ments with the hope of figuring out the influence
of graphs on the discourse phenomena, as shown in
Table 5. We found that our model with only source
graphs (i.e., w/o TGT-G) is consistently better than
the BASE model on all tasks. Target graphs further
improve it to achieve the best performance indicat-
ing the importance of target graphs on document-
level translation. Both types of relations, INTER

and INTRA, make significant contributions as well.
Their combination brings significant improvement
verifying they are complementary to some extent.
We also found that compared to INTRA relations,
INTER relations contribute more on all tasks ex-
cept the Ell. task. We attribute this to the fact
that our document graph contains inter-sentential
relations, i.e., lexical consistency and coreference,
which directly link relevant contexts for reiterative
and deictic words.

4.4 Case-Study
To verify the long-distance consistency, we perform
case studies on the Zh–En task. Table 6 shows an
example where a named entity “米格尔” (miguel)
repeatedly appears in different positions in the doc-
ument. We first found that both document-level
NMT systems, i.e., HAN and OUR, generate more
consistent translations of the entity than the context-
agnostic BASE model. Compared with the HAN
model, OUR system keeps translating “米格尔”
into “migel”, suggesting a more effective capability
of handling consistency in long-distance context.

5 Related work

In recent years, a variety of studies work on improv-
ing document-level machine translation with con-
text. Most of them focus on using a limited number
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Model Position Sentence

SRC
0 让我们叫他米格尔。其实他的名字就是米格尔
73 我一致在脑海中想象类似【帝企鹅日记】的事，我看着米格尔
74 我说,"米格尔,它们飞行150英里来渔场,然后它们晚上再飞150英里回去吗?"

REF
0 let’s call him miguel. his name is miguel.
73 i was imagining a "march of the penguins" thing, so i looked at miguel.
74 i said, "miguel, do they fly 150 miles to the farm, and then do they fly 150 miles

back at night?

BASE

0 let’s call him migoa. his name is migoingle.
73 i’ve always imagined something like a sekhri penguins’ diary, and i looked at igel.
74 i said, "miger, are they flying 150 miles to fishery, and then they fly 150 miles

back at night?"

HAN
0 let’s call him migoa. his name is migoingle.
73 i’ve been thinking about this like ’the penguins diary’ in my mind, and i’m looking

at miger.
74 i said, miger, they fly 150 miles to fisheries, and they fly 150 miles at night?

OUR
0 let’s call him migel. his name is migel.
73 and i’ve always imagined something like a ’timend penguin diary’ in my head,

and i’m looking at migel.
74 and i said, "migel, they fly 150 miles to fisheries, and then they fly 150 miles back

at night?

Table 6: An example of Zh–En task. Compared with BASE and HAN, OUR system consistently generates “migel”.

of previous sentences. One typical approach is to
equip conventional sentence-level NMT with an
additional encoder to learn context representations,
which are then integrated into encoder and/or de-
coder (Jean et al., 2015; Zhang et al., 2018; Voita
et al., 2018). Wang et al. (2017) and Miculicich
et al. (2018) adopted hierarchical mechanisms to
integrate contexts into NMT models. Tu et al.
(2018) and Kuang et al. (2018) used cache-based
methods to memorize historical translations which
are then used in following decoding steps.

Recently, several studies have endeavoured to
consider the full document context. Macé and
Servan (2019) averaged the word embeddings of
a document to serve as the global context di-
rectly. Maruf and Haffari (2018) applied a memory
network to remember hidden states of the docu-
ment, which are then attended by a decoder. Maruf
et al. (2019) first selected relevant sentences as
contexts and then attended to words in these sen-
tences. Tan et al. (2019) learned global context-
aware representations by firstly using a sentence
encoder followed by a document encoder. Junczys-
Dowmunt (2019) considered the global context by
merely concatenating all the sentences in a doc-
ument. Zheng et al. (2020) took an additional
attention layer to get a representation mixed from
the current sentence and whole document. Kang
et al. (2020) dynamically selected the relevant con-
text from the whole document via a reinforcement
learning method.

Unlike previous approaches, we represent
document-level global context in graph encoded
by graph encoders and integrated into conventional
NMT via attention and gating mechanisms.

6 Conclusion

In this paper, we propose a graph-based approach
for document-level translation, which leverages
both source and target contexts. Graphs are con-
structed according to inter-sentential and intra-
sentential relations. We employ a GCN-based
graph encoder to learn the graph representations,
which are then fed into the NMT model via at-
tention and gating mechanisms. Experiments on
four translation tasks and several existing archi-
tectures show the proposed approach consistently
improves translation quality across different lan-
guage pairs. Further analyses demonstrate the ef-
fectiveness of graphs and the capability of leverag-
ing long-distance context. In the future, we would
like to enrich the types of relations to cover more
document phenomena.
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A Experiments

Data The statistics of the datasets are reported
in Table 7. For the Chinese language, we segment
the data set with the jieba toolkit but the Moses
tokenizer.pl for the other languages. WMT19 and
Opensubtitle are will pre-processed by Scherrer
et al. (2019) and Voita et al. (2018).

Settings We incorporate the proposed approach
into the widely used context-agnostic frame-
work TRANSFORMER (Vaswani et al., 2017) on
FAIRSEQ toolkit (Ott et al., 2019). The model are
trained on V100 GPU. The conventional context-
agnostic TRANSFORMER models are trained with
BASE settings. For the IWSLT and Opensubtitle
benchmarks, we train the context-agnostic model
with 0.2 dropout. The learning rate is set to 0.0007
with 4k warm-up steps. We set the dropout of the
document graph encoder to 0.2, which tuned on
validation set. We use approximately 16,000 to-
kens in a mini-batch for En-Fr, Zh-En, En-Ru, and
32,000 for En–De.

In decoding, the beam size is set to 4. Following
the setting of previous work (Zhang et al., 2018;
Miculicich et al., 2018; Voita et al., 2019b), we set
the hyper-parameter α of length penalty to 0.6 for
En–Fr, En–De, 0.5 for En-Ru and 1 for Zh–En.

B Ablation Study

Graph Encoder We extend the GCN-based
graph encoder with an attention mechanism to com-
bine different representations, which is different
from the gate-based method in previous work (Bast-
ings et al., 2017). Table 8 shows that the attention-
based aggregation works better in our model. We
presume this is because the attention mechanism
balances the contributions of different representa-
tions. Table 9 shows the influence of the graph
encoder with various numbers of layers. We found
that stacking two graph encoder layers and sharing
their parameter obtains the best performance. Fur-
ther increasing the number of layers does not lead
improvement. This finding is consistent with exist-
ing works as well (Marcheggiani and Titov, 2017;
Bastings et al., 2017). As shown in Table 10, we
also investigate the traditional TF-IDF construction
method, the result indicates that our method is not
limited to the examined relations but also works
with other graph construction methods.

Graph Contribution We evaluated the perfor-
mance of the context form each side. As seen in

Table 11, only using the source or target side graph
shows comparable performance. With both source
and target context further improve the translation
quality.

B.1 Discourse Phenomena
Test set The consistency test set (Voita et al.,
2019b) contains four tasks on En–Ru: 1) Deixis
aims to detect the deictic words or phrases whose
denotation depends on the context. 2) Lex.C is a
lexical cohesion task, which focuses on the reitera-
tion of named entities. 3) Ell.inf tests the model on
words whose morphological form depends on the
context. 4) Ell.VP is to test whether the model can
correctly predict the ellipsis verb phrase in Russian.
Discourse test set (Bawden et al., 2018) consists of
two probing tasks on En–Fr: 1) Coref. aims to test
the anaphoric pronoun (it or they) whose gender is
coherent with the previous sentence. 2) Coh. is a
set of ambiguous examples whose correct transla-
tions rely on the context. The difference between
the Cor. and Sem. is whether the context is correct
or not.

Table 12 and 13 show the details of these two
testing sets.
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Benchmark Language Sent–level Doc–level Development testing
Doc. Sent. Doc. Sent. Doc. Sent.

IWSLT
6 En–Fr – 1, 823 220K 8 887 11 1, 664

Zh–En – 1, 718 199K 8 887 56 5, 473

Opensubtitle7 En–Ru 6.0M 1.5M 1.5M 10K 10K 10K 10K
WMT8 En–De 13.2M 62, 592 2.9M 236 5, 168 122 2, 998

Table 7: Statistics of the Dataset, where “Doc.” is the count of documents and “Sent.” denotes the number of
sentence pairs.

Aggregation BLEU
GATING UNITS 31.41
ATTENTION 31.59

Table 8: Results of aggregation methods in the graph
encoder for combining representations learned from
different edge directions. GATING UNITS denotes the
weights of summation are calculated by a gating mech-
anism (Bastings et al., 2017). ATTENTION generates
weights with an attention mechanism.

#Layers Shared BLEU
1 – 31.47
2 – 31.59
2 Share 31.66
3 – 31.52

Table 9: Influence of the number of Graph encoder lay-
ers used in the graph encoder on IWSLT En–Fr task.

Ablation Model Dev Test
BASE 29.75 36.93
+TF-IDF 30.63 37.74
+ALL 31.66 38.79

Table 10: Ablation study of graph variants on the
IWSLT En-Fr benchmark,where TF-IDF is the model
with the graph constructed by TF-IDF method. ALL is
using the examined relations to construct the graph

Ablation Model Dev Test
SRC-GRAPH 30.93 38.32
TGT-GRAPH 30.79 38.10
BOTH 31.66 38.79

Table 11: Ablation study of graph variants on the
IWSLT En-Fr benchmark,where SRC-GRAPH is the
model with the source graph. TGT-GRAPH is only us-
ing the target graphas the context.

Model Deixis Lex.C Ell.inf Ell.VP
BASE 50.0 45.1 52.8 25.0
NOISE 50.0 45.2 53.2 26.0
CTX 57.1 48.4 73.0 58.9
UNIFIED 56.7 65.2 67.9 58.3
HAN 60.2 57.0 70.1 59.0
SELECTIVE 75.0 68.5 74.0 74.6
POST 76.9 71.3 75.6 74.3
PRE 77.9 74.8 75.9 74.1
HYB. 77.3 72.5 76.3 73.9

w/o TGT-G 60.4 63.4 61.2 57.4
w/o INTRA 65.2 56.5 54.5 53.1
w/o INTER 55.4 52.7 65.0 63.2

Table 12: Accuracy(%) on Consistency test sets. TGT-
G denotes the target graph. INTRA and INTER is the
graph construction method.

Model Coref.(%) Coh.(%)
ALL Cor. Sem. ALL

BASE 50.0 51.0 49.0 50.0
NOISE 50.5 47.0 54.0 49.5
CTX 55.0 54.5 55..5 52.0
UNIFIED 56.0 55.0 57.0 54.0
HAN 55.5 57.0 54.0 53.5
SELECTIVE 65.5 70.0 61.0 55.0
POST. 68.0 70.0 66.0 56.5
PRE 69.5 73.0 66.0 59.5
HYB. 69.5 70.5 68.5 58.5

w/o TGT-G 57.0 57.0 58.0 55.0
w/o INTRA 63 67.0 59.0 53.5
w/o INTER 55.0 56.0 54.0 54.5

Table 13: Accuracy(%) on Discourse test sets. TGT-G
denotes the target graph. INTRA and INTER is the
graph construction method.
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Figure 6: Illustration of the examined architecture. The structures in the red dashed box are the component we
added. We didn’t modify the basic architecture of the existing works, but take place their context encoder with our
graph encoder. Note that the Unified method didn’t add the context on the target side. Therefore, we modified the
decoder when we integrate the target graph.


